CN112747669A - 一种基于双频激光干涉对光镊系统微粒位移探测的装置 - Google Patents

一种基于双频激光干涉对光镊系统微粒位移探测的装置 Download PDF

Info

Publication number
CN112747669A
CN112747669A CN202011462254.7A CN202011462254A CN112747669A CN 112747669 A CN112747669 A CN 112747669A CN 202011462254 A CN202011462254 A CN 202011462254A CN 112747669 A CN112747669 A CN 112747669A
Authority
CN
China
Prior art keywords
light beam
laser
particles
light
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011462254.7A
Other languages
English (en)
Other versions
CN112747669B (zh
Inventor
陈杏藩
苏晶晶
刘一石
李楠
胡慧珠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Zhejiang Lab
Original Assignee
Zhejiang University ZJU
Zhejiang Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, Zhejiang Lab filed Critical Zhejiang University ZJU
Priority to CN202011462254.7A priority Critical patent/CN112747669B/zh
Publication of CN112747669A publication Critical patent/CN112747669A/zh
Application granted granted Critical
Publication of CN112747669B publication Critical patent/CN112747669B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种基于双频激光干涉对光镊系统微粒位移探测的装置。第一激光器发出第一光束,第一光束经过扩束准直系统后耦合到光纤耦合器中,第一光束经光纤耦合器出射的光束同时入射到凹面镜和照射到微粒上,经凹面镜反射回来的光束照射到微粒上,由凹面镜反射回来的光束形成捕获光束,捕获光束形成光阱对微粒进行捕获。本发明将双频激光干涉技术和凹面镜单光束光镊结合一起,通过测量光阱中微粒运动的多谱勒频移信息,并通过相位解调技术等获得微粒的位移信号,具有宽频带,测量精度高,抗干扰能力强,结构简单等优点。

Description

一种基于双频激光干涉对光镊系统微粒位移探测的装置
技术领域
本发明涉及双频激光干涉领域的一种装置,具体涉及了一种基于双频激光干涉对光镊系统微粒位移探测的装置。
背景技术
光力悬浮系统是建立在激光控制、激光捕获等技术基础上的一门新兴的学科,其通过激光光束的光力作用,将微纳小球悬浮起来,利用光力支撑微粒,替代了机械支撑结构,从而隔绝该粒子和环境之间的相互作用,避免了各种环境因素,如振动、热传导等对于粒子自身运动等干扰。从而利用微纳小球测量传感中位移变化的话,其性能精度更高。
双频激光干涉是应用频率的变化来测量位移,这种位移信息载于固定的频差上,属于交流信号,具有很大的增益和高信噪比,对由光强引起的直流电平变化不敏感,所以抗干扰能力强。不受激光强度和磁场变化的影响,没有零点漂移,是单频激光干涉仪的基础上发展的一种外差式干涉仪。发生干涉的两束光频率不同,干涉信号包含了两个信号频率之和(和频)、两个信号频率之差(差频以及高次谐波),光电探测器探测到信号包络,解算出两束光的频率之差,结合多谱勒频移原理计算被测物体的运动速度,从而解算出位移。
双光束光镊中,相向传输的两束光作用在捕获微粒上,散射力被相互抵消,可捕获微粒的粒子直径范围可以大幅扩展,对聚焦透镜数值孔径的要求也不高,但是其系统的复杂度更高,双光束的对准状态必须精密调整,光束的错位不对准可能会导致微粒旋转等降低捕获的稳定性。单光束光镊系统中,需要采用高数值孔径的透镜来实现激光束的高度汇聚,以产生足够强的梯度力来捕获微粒,但通常需要大倍率高数值孔径的油浸物镜。还有一种单光束光镊是利用凹面镜反射回来的光形成高汇聚的捕获光束,捕获光束的梯度力远大于入射平行光束的散射力,形成强的梯度力光场,这种装置的结构简单,且抗干扰能力更强。
光镊位置探测方法的原则在于方法能否满足探测位置信息所需的灵敏度和带宽,现有的方法有:图像传感器(CCD和CMOS相机)方法,四象限探测器(QPD)方法、平衡探测器方法。图像传感器的方法是利用透镜系统将微粒成像与CCD和CMOS相机光敏面上,然后通过图像解析的方法确定微粒所处的像素位置,并借助像素位置的变化和已标定相邻像素间距来获得微粒的位移。这种方法简单直接,可追踪不同形状的微粒和同时追踪多个微粒的位移。但一般情况下图像传感器的空间分辨率受像素限制,带宽低。四象限探测器(QPD)方法主要是借助透镜系统收集捕获微粒的散射光,通过散射光在QPD上分布的变化来确定微粒的位移,带宽高,空间分辨率达nm量级,但灵敏度一般。平衡探测器利用D形镜切割微粒散射光束,并利用两分支光束的光强差分进行位置测量,大幅提升了位置测量带宽,探测灵敏度高,但是探测光路较复杂。双频激光干涉法利用被捕获颗粒的散射光与捕获光之间相互干涉,这种干涉会放大微弱的散射光信号。其远场干涉图样的强度分布会因为粒子位置不同而发生变化。通过测量这种分布变化,提取出被捕获微粒的位置信息。
发明内容
为了克服现有技术的不足,本发明基于多谱勒效应和外差干涉测量技术,提出了一种基于双频激光干涉对光镊系统位移探测的装置。
本发明的技术方案如下:
本发明包括第一激光器、扩束准直系统、光纤耦合器、第二激光器、第一分光镜、第二分光镜、反射棱镜、声光调制器、第三分光镜、微粒、光电探测系统和凹面镜;第一激光器发出第一光束,第一光束经过扩束准直系统后耦合到光纤耦合器中,第一光束经光纤耦合器出射的光束同时入射到凹面镜和照射到微粒上,经凹面镜反射回来的光束照射到微粒上,由凹面镜反射回来的光束形成高汇聚的捕获光束,捕获光束形成光阱对微粒进行捕获。
第二激光器发出第二光束,第二光束入射到第一分光镜发生反射和透射,反射后的光束作为参考光束,透射后的光束作为测量光束,从而分为参考光束和测量光束的两束,测量光束经第二分光镜透射进入到光纤耦合器中,测量光束经光纤耦合器出射的光束入射到微粒上发生反射,经微粒反射后原路返回,依次透过光纤耦合器、第二分光镜反射后入射到第三分光镜处发生透射,使得来自微粒表面的大部分反射光和散射光经第二分光镜回去进入第三分光镜。
参考光束依次经过反射棱镜反射、声光调制器调制后入射到第三分光镜处发生反射,声光调制器使参考光束附加上声光调制器的调制频率。
第三分光镜处的反射光束和透射光束发生干涉并汇聚成一束合成光束,合成光束入射到光电探测系统被接收探测;通过光电探测系统探测合成光束的多谱勒频移,然后利用多谱勒频移处理获得微粒的位移。
具体采用以下公式根据多谱勒频移处理获得:
Figure BDA0002825797540000031
其中,fout为光电探测系统探测获得的合成光束中测量光束的频率,fs为声光调制器的频率,λ0表示第一激光器和第二激光器发出光束的波长,V表示微粒振动速度,t表示测量时间,为光电探测系统的频率的倒数,L表示微粒的位移。fout-fs表示多谱勒频移,即多谱勒频差。
所述的第一激光器、扩束准直系统、光纤耦合器和微粒组成光捕获系统,第二激光器、第一分光镜、第二分光镜、反射棱镜、声光调制器、第三分光镜、光电探测系统和和凹面镜组成光探测系统,光捕获系统和光探测系统分立存在。
所述的捕获光束的梯度力远大于平行光束的散射力,实现对微粒10稳定捕获。
所述的第一激光器为连续工作方式的固体激光器。
所述的第二激光器为半导体激光器。
所述的扩束准直系统由两个平凸透镜组成。平凸透镜的方向朝向平行光方向。
所述的微粒在空间三个维度的径向大小在数百微米到数纳米之间。
所述的凹面镜上有近红外介质膜,介质膜平均反射率大于99%。
所述的光电探测系统包括光电探测器和计算机,合成光束入射到光电探测器的探测面上,光电探测器采用四象限探测器,四象限探测器探测接收合成光束的光强信号,最终经过计算机处理获得微粒的位移。
所述的光纤耦合器用于耦合捕获光束和探测光束,光纤耦合器输出端入射到光阱中,用于捕获微粒,光纤耦合器的一个输入端和扩束准直系统连接,光纤耦合器的另一个输入端耦合第二分光镜出射的测量光束。
本发明的有益效果:
将双频激光干涉技术和凹面镜单光束光镊结合一起,通过测量光阱中微粒运动的多谱勒频移信息,并通过相位解调技术等获得微粒的位移信号,具有宽频带,测量精度高,抗干扰能力强,结构简单等优点。
附图说明
图1为本发明装置的结构示意图;
图2为凹面镜移动微小位移示意图。
图中,1第一激光器、2扩束准直系统、3光纤耦合器、4第二激光器、5第一分光镜、6第二分光镜、7反射棱镜、8声光调制器、9第三分光镜、10微粒、11光电探测系统、12凹面镜。
具体实施方式
下面结合附图对本发明的一个实施案例作详细的说明,但不应该因此限制本发明的保护范围。
如图1所示,本发明包括第一激光器1、扩束准直系统2、光纤耦合器3、第二激光器4、第一分光镜5、第二分光镜6、反射棱镜7、声光调制器8、第三分光镜9、微粒10、光电探测系统11和凹面镜12;第一激光器1发出第一光束,第一光束经过扩束准直系统2后耦合到光纤耦合器3中,第一光束经光纤耦合器3出射的光束同时入射到凹面镜12和照射到微粒10上,经凹面镜12反射回来的光束照射到微粒10上,由凹面镜12反射回来的光束形成高汇聚的捕获光束,捕获光束形成光阱对微粒10进行捕获。具体实施的凹面镜12上有近红外介质膜,介质膜平均反射率大于99%。
第一激光器1、扩束准直系统2、光纤耦合器3和微粒10组成光捕获系统,第二激光器4、第一分光镜5、第二分光镜6、反射棱镜7、声光调制器8、第三分光镜9、光电探测系统11和和凹面镜12组成光探测系统,光捕获系统和光探测系统分立存在。
第二激光器4发出第二光束,第二光束入射到第一分光镜5发送反射和透射,反射后的光束作为参考光束,透射后的光束作为测量光束,从而分为参考光束和测量光束的两束,测量光束经第二分光镜6透射进入到光纤耦合器3中,测量光束经光纤耦合器3出射的光束入射到微粒10上发生反射,经微粒10反射后原路返回,依次透过光纤耦合器3、第二分光镜6反射后入射到第三分光镜9处发生透射,使得来自微粒10表面的大部分反射光和散射光经第二分光镜6回去进入第三分光镜9。参考光束依次经过反射棱镜7反射、声光调制器8调制后入射到第三分光镜9处发生反射,声光调制器8使参考光束附加上声光调制器的调制频率。
第三分光镜9处的反射光束和透射光束发生干涉并汇聚成一束合成光束,这样参考光束和测量光束在第三分光镜9处发生干涉,合成光束入射到光电探测系统11被接收探测;通过光电探测系统11探测合成光束的多谱勒频移,然后利用多谱勒频移处理获得微粒10的位移。测量光束和参考光束的频差变化所引起的干涉条纹的光强变化通过光电探测器得到。
经过目标微粒10反射后的电场E1为:
E1=Acos(kz1+2πf0t)
其中,k=2π/λ0,k表示波数,A表示振幅,λ0,f0表示第一激光器1和第二激光器4发出光束的波长和频率,z1是测量光束经过目标微粒10反射后到达第三分光镜9的距离,t表示测量时间。
参考光束中加入声光调制器,附加了一个频移fs,因此到达第三分光镜9的参考光束的电场E2为:
E2=Acos(kz2+2π(fs+f0)t)
其中,z2是参考光束到达第三分光镜9的距离。
根据叠加原理,合成的场强E为:
Figure BDA0002825797540000051
z1-z2的差为距离差z0,即z0=z1-z2,开始时,z1-z2的差为恒定值,当目标微粒以均匀速度V振动时,则:
kz1-kz2=kz0±2πfDt
其中,fD=2V/λ,fD为多谱勒频移,V表示微粒振动速度,因此:
I=(|E1+E2|2)=2A2(1+cos(kz0+2π(fs+fD)t))
其中,I表示光电探测系统探测到的光强。
这样输出信号的频率为:
fout=fs+2V/λ,即
Figure BDA0002825797540000052
通过对速度进行积分,就可以得到微粒的位移值:
L=Vt
其中,fout为光电探测系统11探测获得的合成光束中测量光束的频率,fs为声光调制器8的频率,λ0表示第一激光器1和第二激光器4发出光束的波长;V表示微粒振动速度,t表示测量时间,为光电探测系统11的频率的倒数,L表示微粒10的位移。fout-fs表示多谱勒频移,即多谱勒频差。
如图2所示,具体实施中,通过凹面镜12沿光束传播方向水平平移微小距离,微粒10将在一定范围内振动,会引起测量光束的频率发生变化,即产生多谱勒频移。合成光束携带多谱勒频移信息与参考光束发生干涉。测量光束和参考光束间的频差变化所引起的干涉条纹的光强变化和条数发生变化通过光电探测系统11,通过光电探测系统11探测能获得频差变化,进而再处理得到微粒的位移信息。
捕获光束的梯度力远大于平行光束的散射力,实现对微粒10稳定捕获,微粒10在空间三个维度的径向大小在数百微米到数纳米之间。
具体实施的扩束准直系统2由两个平凸透镜组成。平凸透镜的方向朝向平行光方向。第一激光器1为连续工作方式的固体激光器,具体实施的第一激光器1为Nd:YAG 1064nm激光器。第二激光器4为半导激光器。具体实施的第二激光器4为980nm半导激光器。
具体实施中,光纤耦合器3用于耦合捕获光束和探测光束,光纤耦合器3输出端入射到光阱中,用于捕获微粒,光纤耦合器3的一个输入端和扩束准直系统2耦合,光纤耦合器3的另一个输入端耦合第二分光镜6出射的测量光束。
光电探测系统11包括光电探测器和计算机,合成光束入射到光电探测器的探测面上,光电探测器采用四象限探测器,四象限探测器探测接收合成光束的光强信号,最终经过计算机处理获得微粒10的位移。
打开第一激光器1,出射的第一光束入射到凹面镜12上,由凹面镜10反射回来的光形成高汇聚的捕获光阱。往光阱里注入单个微粒10,对微粒进行捕获。打开第二激光器4,测量光束测量光阱中微粒10的位移,声光调制器8使参考光束附加上声光调制器的调制频率。参考光束和测量光束在第三分束镜9处发生干涉并被位置探测系统探测。凹面镜12沿光束传播方向向前或向后移动微小距离,此时光阱的聚焦位置发生改变,微粒10也因此移动。光电探测器采集到的输出信号的频率发生改变,通过计算机处理得出光镊系统中微粒10运动的位移,位移精度可达亚纳米级别。

Claims (10)

1.一种基于双频激光干涉对光镊系统微粒位移探测的装置,其特征在于:包括第一激光器(1)、扩束准直系统(2)、光纤耦合器(3)、第二激光器(4)、第一分光镜(5)、第二分光镜(6)、反射棱镜(7)、声光调制器(8)、第三分光镜(9)、微粒(10)、光电探测系统(11)和凹面镜(12);第一激光器(1)发出第一光束,第一光束经过扩束准直系统(2)后耦合到光纤耦合器(3)中,第一光束经光纤耦合器(3)出射的光束同时入射到凹面镜(12)和照射到微粒(10)上,经凹面镜(12)反射回来的光束照射到微粒(10)上,由凹面镜(12)反射回来的光束形成捕获光束,捕获光束形成光阱对微粒(10)进行捕获;
第二激光器(4)发出第二光束,第二光束入射到第一分光镜(5)发生反射和透射,反射后的光束作为参考光束,透射后的光束作为测量光束;测量光束经第二分光镜(6)透射进入到光纤耦合器(3)中,测量光束经光纤耦合器(3)出射的光束入射到微粒(10)上发生反射,经微粒(10)反射后原路返回,依次透过光纤耦合器(3)、第二分光镜(6)反射后入射到第三分光镜(9)处发生透射;参考光束依次经过反射棱镜(7)反射、声光调制器(8)调制后入射到第三分光镜(9)处发生反射;第三分光镜(9)处的反射光束和透射光束发生干涉并汇聚成一束合成光束,合成光束入射到光电探测系统(11)被接收探测。
2.根据权利要求1所述的一种基于双频激光干涉仪的位移探测的装置,其特征在于:通过光电探测系统(11)探测合成光束的多谱勒频移,然后利用多谱勒频移处理获得微粒(10)的位移。
3.根据权利要求2所述的一种基于双频激光干涉仪的位移探测的装置,其特征在于:具体采用以下公式根据多谱勒频移处理获得:
Figure FDA0002825797530000011
L=Vt
其中,fout为光电探测系统(11)探测获得的合成光束中测量光束的频率,fs为声光调制器(8)的频率,λ0表示第一激光器(1)和第二激光器(4)发出光束的波长;V表示微粒振动速度,t表示测量时间,为光电探测系统(11)的频率的倒数,L表示微粒(10)的位移。
4.根据权利要求1所述的一种基于双频激光干涉仪的位移探测的装置,其特征在于:所述的第一激光器(1)、扩束准直系统(2)、光纤耦合器(3)和微粒(10)组成光捕获系统,第二激光器(4)、第一分光镜(5)、第二分光镜(6)、反射棱镜(7)、声光调制器(8)、第三分光镜(9)、光电探测系统(11)和凹面镜(12)组成光探测系统,光捕获系统和光探测系统分立存在。
5.根据权利要求1所述的一种基于双频激光干涉仪的位移探测的装置,其特征在于:所述的捕获光束的梯度力大于平行光束的散射力,实现对微粒10稳定捕获。
6.根据权利要求1所述的一种基于双频激光干涉仪的位移探测的装置,其特征在于:所述的第一激光器(1)为连续工作方式的固体激光器。
7.根据权利要求1所述的一种基于双频激光干涉仪的位移探测的装置,其特征在于:所述的第二激光器(4)为半导体激光器。
8.根据权利要求1所述的一种基于双频激光干涉仪的位移探测的装置,其特征在于:所述的扩束准直系统(2)由两个平凸透镜组成。
9.根据权利要求1所述的一种基于双频激光干涉仪的位移探测的装置,其特征在于:所述的微粒(10)在空间三个维度的径向大小在数百微米到数纳米之间。
10.根据权利要求1所述的一种基于双频激光干涉仪的位移探测的装置,其特征在于:所述的凹面镜(12)上有近红外介质膜,介质膜平均反射率大于99%。
CN202011462254.7A 2020-12-09 2020-12-09 一种基于双频激光干涉对光镊系统微粒位移探测的装置 Active CN112747669B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011462254.7A CN112747669B (zh) 2020-12-09 2020-12-09 一种基于双频激光干涉对光镊系统微粒位移探测的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011462254.7A CN112747669B (zh) 2020-12-09 2020-12-09 一种基于双频激光干涉对光镊系统微粒位移探测的装置

Publications (2)

Publication Number Publication Date
CN112747669A true CN112747669A (zh) 2021-05-04
CN112747669B CN112747669B (zh) 2022-02-11

Family

ID=75649185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011462254.7A Active CN112747669B (zh) 2020-12-09 2020-12-09 一种基于双频激光干涉对光镊系统微粒位移探测的装置

Country Status (1)

Country Link
CN (1) CN112747669B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113848382A (zh) * 2021-09-07 2021-12-28 浙江大学 基于电场力激励的频率特性测试方法及光镊系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108657A (ja) * 1999-10-05 2001-04-20 Tokyo Denshi Kk ガス中微量物の分析法及び分解法並びにこれらに使用する多面鏡装置
GB201002967D0 (en) * 2010-02-22 2010-04-07 Ilika Technologies Ltd Mass spectrometer and methods of ion separation and detention
CN101772254A (zh) * 2009-12-30 2010-07-07 浙江大学 一种相位调制的激光驱动粒子加速方法与装置
CN106291961A (zh) * 2016-08-31 2017-01-04 苏州大学 一种产生矢量特殊空间关联结构部分相干光束的方法及其装置
CN106999724A (zh) * 2014-11-21 2017-08-01 三菱电机株式会社 粒子射线治疗设施的设计辅助方法、粒子射线治疗设施的制造方法及粒子射线治疗设施
CN108919500A (zh) * 2018-09-19 2018-11-30 长春理工大学 基于双光束激光阱的可调谐局域空心光束光镊系统
CN111750778A (zh) * 2020-07-01 2020-10-09 浙江大学 基于双光镊系统的微粒位置探测装置和精度提高方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108657A (ja) * 1999-10-05 2001-04-20 Tokyo Denshi Kk ガス中微量物の分析法及び分解法並びにこれらに使用する多面鏡装置
CN101772254A (zh) * 2009-12-30 2010-07-07 浙江大学 一种相位调制的激光驱动粒子加速方法与装置
GB201002967D0 (en) * 2010-02-22 2010-04-07 Ilika Technologies Ltd Mass spectrometer and methods of ion separation and detention
CN106999724A (zh) * 2014-11-21 2017-08-01 三菱电机株式会社 粒子射线治疗设施的设计辅助方法、粒子射线治疗设施的制造方法及粒子射线治疗设施
CN106291961A (zh) * 2016-08-31 2017-01-04 苏州大学 一种产生矢量特殊空间关联结构部分相干光束的方法及其装置
CN108919500A (zh) * 2018-09-19 2018-11-30 长春理工大学 基于双光束激光阱的可调谐局域空心光束光镊系统
CN111750778A (zh) * 2020-07-01 2020-10-09 浙江大学 基于双光镊系统的微粒位置探测装置和精度提高方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
XUNMIN ZHU等: "《Displacement Detection Decoupling in Counterpropagating Dual-beams Optical Tweezers with Large-sized Particle》", 《SENSORS》 *
XUNMIN ZHU等: "《Revolution of a trapped particle in counter-propagating dual-beam optical tweezers under low pressure》", 《OPTICS EXPRESS》 *
缪立军,等: "《光阱中微粒位置高精度检测技术》", 《红外与激光工程》 *
蒋建斌,等: "《基于卡尔曼滤波的真空光阱悬浮微球位移探测》", 《光子学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113848382A (zh) * 2021-09-07 2021-12-28 浙江大学 基于电场力激励的频率特性测试方法及光镊系统
CN113848382B (zh) * 2021-09-07 2023-12-19 浙江大学 基于电场力激励的频率特性测试方法及光镊系统

Also Published As

Publication number Publication date
CN112747669B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
JP2859292B2 (ja) 散乱表面からの過渡運動の光学的検出方法及び装置
EP1571414B1 (en) Apparatus and method for surface contour measurement
KR100866038B1 (ko) 헤테로다인 간섭계를 이용한 주사 현미경
EP3118608A1 (en) Method and apparatus for measuring light-splitting pupil laser differential motion confocal brillouin-raman spectrums
CN109975820B (zh) 基于Linnik型干涉显微镜的同步偏振相移检焦系统
CN106768280B (zh) 一种基于多波长无透镜傅里叶变换数字全息的振动检测装置
US20230324667A1 (en) Flying-over beam pattern scanning hologram microscope device using scan mirror and translation stage
CN102721673B (zh) 多光束阵列光诱导反射率成像装置及方法
JP7419394B2 (ja) モードフィールド拡大器を備えたlidarシステム
WO2013091584A1 (zh) 一种检测基质内缺陷的方法及装置
CN111650203A (zh) 一种微球内表面缺陷测量方法
CN112729135B (zh) 一种具有主动光学防抖功能的面阵扫频测距/厚的装置和方法
US9170411B2 (en) Scanning optical microscope
CN112747669B (zh) 一种基于双频激光干涉对光镊系统微粒位移探测的装置
CN103090786B (zh) 用于用干涉测量法测量物体的装置和方法
JP2023155115A (ja) 固体原子スピンの幾何学的位相に基づく光学浮上角速度測定装置及び方法
KR100927865B1 (ko) I/q 간섭계와 스캐닝 방법을 이용한 복합 기능 현미경
CN105629259B (zh) 直视合成孔径激光成像雷达本振增强光学复数化接收装置
CN209264563U (zh) 一种折射率显微测量系统
CN114894123B (zh) 一种高精密光楔角度测量装置及其测量方法
CN1227520C (zh) 远距离散射物微振动信号测量和保真拾取干涉仪
CN112731345B (zh) 具有主动光学防抖功能的抗振型面阵扫频测距/厚的装置和方法
CN109142273A (zh) 一种折射率显微测量系统
CN109974591B (zh) 采用颗粒微小位移测量装置测量细微颗粒产生位移的方法
TW202129222A (zh) 混合式3d檢測系統

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant