CN112745559A - 一种聚合物介电弹性体及其制备方法和应用 - Google Patents
一种聚合物介电弹性体及其制备方法和应用 Download PDFInfo
- Publication number
- CN112745559A CN112745559A CN202011535277.6A CN202011535277A CN112745559A CN 112745559 A CN112745559 A CN 112745559A CN 202011535277 A CN202011535277 A CN 202011535277A CN 112745559 A CN112745559 A CN 112745559A
- Authority
- CN
- China
- Prior art keywords
- zno
- pda
- dielectric elastomer
- polymer dielectric
- eva
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/10—Encapsulated ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/227—Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
- G01N23/2273—Measuring photoelectron spectrum, e.g. electron spectroscopy for chemical analysis [ESCA] or X-ray photoelectron spectroscopy [XPS]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1227—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
- G01R31/1263—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2296—Oxides; Hydroxides of metals of zinc
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0001—Type of application of the stress
- G01N2203/0003—Steady
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
- G01N2203/0017—Tensile
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0069—Fatigue, creep, strain-stress relations or elastic constants
- G01N2203/0075—Strain-stress relations or elastic constants
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/026—Specifications of the specimen
- G01N2203/0262—Shape of the specimen
- G01N2203/0278—Thin specimens
- G01N2203/0282—Two dimensional, e.g. tapes, webs, sheets, strips, disks or membranes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/067—Parameter measured for estimating the property
- G01N2203/0676—Force, weight, load, energy, speed or acceleration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/067—Parameter measured for estimating the property
- G01N2203/0682—Spatial dimension, e.g. length, area, angle
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/05—Investigating materials by wave or particle radiation by diffraction, scatter or reflection
- G01N2223/056—Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/07—Investigating materials by wave or particle radiation secondary emission
- G01N2223/085—Investigating materials by wave or particle radiation secondary emission photo-electron spectrum [ESCA, XPS]
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
Abstract
本发明公开了一种聚合物介电弹性体及其制备方法和应用,所述聚合物介电弹性体通过多巴胺在氧化锌纳米颗粒表面的自聚合,使聚多巴胺对氧化锌纳米颗粒的的包裹呈典型的核壳结构(PDA@ZnO)。将PDA@ZnO掺杂在乙烯‑醋酸乙烯共聚物(EVA)中,制备出PDA@ZnO/EVA聚合物介电弹性体。本发明的PDA@ZnO/EVA聚合物介电弹性体的介电性能和击穿强度得到显著改善,应用于电致动器时,能够在低电场下产生大的形变和位移。本发明的PDA@ZnO/EVA聚合物介电弹性体具有优异的力学性能,同时介电性能的提升,使得该聚合物介电弹性体用于电子皮肤作为传感器时具有较高的灵敏度和宽的传感范围。
Description
技术领域
本发明属于复合材料技术领域,具体涉及一种介电性能增强的PDA@ZnO/EVA聚合物介电弹性体制备方法及电致动器和电子皮肤领域的应用。
背景技术
介电弹性体(DE)作为电子型电活性聚合物,具有大的电压诱导变形、快速响应和高能量密度等优点。因此DE常被用作电致动器和传感器,作为电致动器能够将电能直接转换成机械能,作为传感器时根据采集到的电容信号的变化,可以判断出传感器受到的力和发生的形变量。电致动器(DEA)是一种柔性电容器,在柔性电极之间夹有一层介电弹性体。在DEA的两侧施加电压,电极层上不断积累的异性电荷相互吸引并挤压介电弹性体,使其在厚度方向上收缩,面内扩张。基于DE的电容式传感器与DEA具有类似的结构,因此其应变传感和应力传感是通过检测介电弹性体电容的变化来实现的。随着科技的发展,对基于介电弹性体的致动器和传感器的市场需求日渐增大,尤其是在可穿戴设备,机器人和仿生领域,同时分别对于它们的电致动性能和灵敏度具有更苛刻的要求。
目前对于DEA电致动性能的改善,主要是通过以下三种方法:1) 提高DEA电极层的导电性和可拉伸性,另外电极层的图案化和阵列也是有效的方法;2) 通过机械结构或者液压机构对电场下产生的面积形变或者致动位移进行放大;3) 对介电弹性体的模量和介电常数的协同改进。方法3)具有操作简单、成本低、普适性的优点,有利于工业化生产和实际应用。
电子皮肤作为一种新型智能柔性传感器,具有可拉伸性、高灵敏度、多功能性和可穿戴的优点。通过检测受力时两个电极之间距离变化产生的微小电容变化来检测输入力,这种微小的电容变化归因于基于介电弹性体的电容器结构。另一方面,电容式力传感器具有柔性可拉伸结构,在整个负载范围内表现出可靠的传感能力。然而,这些传感器的灵敏度也相对较低,因为常被用来制备介电弹性体的材料具有较低的介电常数(2.8~4.8)。因此,提高电容式传感器的介电弹性体的介电常数,是使其应用于需要高灵敏度的电子皮肤的关键。
乙烯-醋酸乙烯酯共聚物(EVA)是乙烯单体和醋酸乙烯酯单体,在引发剂存作用下共聚得到的共聚物。EVA具有弹性高、柔韧性强、耐候性的优点,可用于聚氯乙烯及工业橡胶制品改性,广泛应用于包装、内饰、医药领域。其高弹性,低模量,低成本的优点,使其能够用于制备介电弹性体,并有利于工业化生产。而用来制备高电致动性能的电致动器和高灵敏度的传感器,需要EVA膜具有高的介电常数,另外电致动器也需要更高的击穿电压。
发明内容
针对现有技术中存在的问题,本发明提出一种介电性能增强的PDA@ZnO/EVA聚合物介电弹性体。所制备的聚合物介电弹性体由于ZnO的高介电常数,以及PDA壳层在电场下的诱导极化,介电性能得到大幅提升。另外具有核壳结构的PDA@ZnO纳米颗粒,能够抑制电场下聚合物介电弹性体内部导电通路的形成,使聚合物介电弹性体的击穿电压提高。因此聚合物介电弹性体介电常数和击穿电压的大幅提升,使其用于电致动器时具有出色的电致动性能和稳定性能,作为传感器时具有高灵敏度和更宽的传感范围。
为解决上述技术问题,本发明采用以下技术方案:
一种PDA@ZnO/EVA聚合物介电弹性体,所述聚合物介电弹性体是通过多巴胺在氧化锌纳米颗粒表面的自聚合,使聚多巴胺对氧化锌纳米颗粒进行包裹呈典型的核壳结构(PDA@ZnO)。将PDA@ZnO掺杂在乙烯-醋酸乙烯共聚物(EVA)中,制备出高介电性能、高击穿电压和柔性可拉伸的PDA@ZnO/EVA聚合物介电弹性体。
进一步,所述的氧化锌纳米颗粒的直径为45~55 nm,核壳结构的PDA@ZnO中PDA层的厚度通过反应时间的长短来控制,使PDA壳层的厚度达到1~5 nm。
进一步,所述的PDA@ZnO/EVA聚合物介电弹性体的厚度为 0.1~1.5 mm,杨氏模量为1.3~1.2 MPa,介电常数为11~22 (100 kHz),击穿强度为45~89 V/μm。
本发明所述的聚合物介电弹性体的制备方法的制备方法,包括以下步骤:
(1)PDA@ZnO的制备:取ZnO纳米颗粒超声分散于Tris-HCl溶液中,再加入盐酸多巴胺,在室温和氧气气氛下连续搅拌24 h,然后用去离子水进行离心清洗,最后在真空干燥箱中60℃干燥24 h得到PDA@ZnO纳米颗粒;
(2)PDA@ZnO/EVA聚合物介电弹性体的制备:取PDA@ZnO纳米颗粒超声分散于四氢呋喃溶剂中,再加入2 g的EVA,在室温下连续搅拌1 h后,加入4 g 己二酸二正丁酯,然后再继续搅拌1 h,最后倒入玻璃培养皿中,在真空干燥箱中60℃干燥24 h,得到PDA@ZnO/EVA聚合物介电弹性体。
进一步,所述步骤(1)中盐酸多巴胺的质量是ZnO纳米颗粒质量的3倍,Tris-HCl溶液的浓度为0.01M,PH=8.5。
进一步,所述步骤(2)中己二酸二正丁酯的质量是EVA质量的2倍,PDA@ZnO纳米颗粒的质量占PDA@ZnO纳米颗粒、己二酸二正丁酯和EVA总质量的百分比为5~15 %。
在PDA@ZnO/EVA聚合物介电弹性体的两侧制备柔性电极,并用于电致动器和电子皮肤。
进一步,所述柔性电极采用导电硅脂、银纳米线、PEDOT、Ppy或PANI。
进一步,所述的PDA@ZnO/EVA聚合物介电弹性体,经涂覆柔性电极后用于电致动器,在5~20 V/μm的电场下能够产生5~25 %的面积形变和0.1~3 mm的面外致动位移。
进一步,所述的PDA@ZnO/EVA聚合物介电弹性体,经涂覆柔性电极后作为电子皮肤贴合在人体关节处,能够实时检测人体关节在1~130°内的角度变化。
本发明的有益效果:EVA作为通用塑料,具有成本低和加工技术成熟的优势,有利于基于EVA的电致动器和传感器的工业化生产和应用。本发明提出的PDA@ZnO/EVA聚合物介电弹性体,其介电常数和击穿电压得到了大幅提升,作为电致动器时具有更高的电致动性能和稳定性能,作为传感器时具有更高的灵敏度和更宽的传感范围。具体为:
(1)本发明提出的PDA@ZnO/EVA聚合物介电弹性体的介电性能和击穿强度得到显著改善,应用于电致动器时,能够在低电场下产生大的形变和位移。
(2)本发明提出的PDA@ZnO/EVA聚合物介电弹性体具有优异的力学性能,同时介电性能的提升,使得该聚合物介电弹性体用于电子皮肤作为传感器时具有较高的灵敏度和宽的传感范围。
(3)本发明所涂覆的柔性电极,具有出色的力学性能和导电性能。在受力产生100%的形变时,导电性能的损失不超过10%,保证了传感器在极限检测范围时的传感精度。
附图说明
图1为本发明下拉弹簧辅助的介电弹性体电致动器产生面外致动。
图2为本发明ZnO和PDA@ZnO的拉曼光谱。
图3为本发明ZnO和PDA@ZnO的X射线光电子能谱。
图4为本发明ZnO和PDA@ZnO的X射线衍射谱图。
图5为本发明膜1~4的应力应变曲线(左)和杨氏模量柱状图(右)。
图6为本发明膜1~4在不同频率下的介电常数(左)和介电损耗(右)。
图7为本发明膜1~4应用于电致动器时的电致动性能。
图8为本发明膜1~4应用于电子皮肤时的传感性能。
具体实施方式
下面结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围,该领域的技术熟练人员可以根据上述发明的内容作出一些非本质的改进和调整。
实施例1
PDA@ZnO的制备
取ZnO纳米颗粒3 g超声分散于400 mL的Tris-HCl(0.01M,PH=8.5)溶液中,然后倒入500 mL洁净的圆底烧瓶中。称取1.5 g盐酸多巴胺,在连续搅拌下缓慢的加入圆底烧瓶中。往圆底烧瓶中通入氧气三分钟后,用橡皮塞进行密封。反应持续24 h后,用去离子水进行离心清洗,最后在真空干燥箱中60 ℃干燥24 h得到PDA@ZnO纳米颗粒。
实施例2
EVA膜(膜1)的制备
取2 g的EVA溶解于20 mL的四氢呋喃溶剂中,在室温下连续搅拌1 h后,加入4 g己二酸二正丁酯,然后再继续搅拌1 h。最后倒入玻璃培养皿中,在真空干燥箱中60 ℃干燥24 h,得到EVA膜(膜1)。
实施例3
PDA@ZnO/EVA聚合物介电弹性体(膜2)的制备
取PDA@ZnO纳米颗粒0.32g超声分散于20 mL的四氢呋喃溶剂中,再加入2 g的EVA。在室温下连续搅拌1 h后,加入4 g 己二酸二正丁酯,然后再继续搅拌1 h。最后倒入玻璃培养皿中,在真空干燥箱中60 ℃干燥24 h,得到PDA@ZnO/EVA聚合物介电弹性体(膜1)。
实施例4
PDA@ZnO/EVA聚合物介电弹性体(膜3)的制备
取PDA@ZnO纳米颗粒0.66 g超声分散于20 mL的四氢呋喃溶剂中,再加入2 g的EVA。在室温下连续搅拌1 h后,加入4 g 己二酸二正丁酯,然后再继续搅拌1 h。最后倒入玻璃培养皿中,在真空干燥箱中60 ℃干燥24 h,得到PDA@ZnO/EVA聚合物介电弹性体(膜2)。
实施例5
PDA@ZnO/EVA聚合物介电弹性体(膜4)的制备
取PDA@ZnO纳米颗粒1.06 g超声分散于20 mL的四氢呋喃溶剂中,再加入2 g的EVA。在室温下连续搅拌1 h后,加入4 g 己二酸二正丁酯,然后再继续搅拌1 h。最后倒入玻璃培养皿中,在真空干燥箱中60 ℃干燥24 h,得到PDA@ZnO/EVA聚合物介电弹性体(膜4)。
对ZnO和PDA@ZnO粉末进行拉曼光谱测试,其光谱图如图2所示。ZnO的光谱线图中,在463cm-1的峰强而窄,为ZnO的典型特征峰E2 high。当DA在ZnO的表面进行自聚合进行包裹后,PDA@ZnO在463cm-1的峰变得弱而宽,说明PDA对氧化锌的包裹程度高。另外PDA@ZnO的拉曼光谱在463cm-1,新增的峰为C=O的拉伸振动峰,证实了PDA存在于ZnO表面。
对ZnO和PDA@ZnO粉末进行X射线光电子能谱光谱测试,其谱图如图3所示。ZnO的光谱线图中,在结合能为10eV、89eV、139eV、1022eV和1195eV分别为 Zn 3d、Zn 3p、Zn 3s、Zn2p和Zn 2s的结合态,另外530eV处的O 1s为ZnO表面附着的氧官能团。PDA@ZnO相对于ZnO的图谱新增的结合态为C 1s(285 eV)和N1s(400 eV),这一变化是由于多巴胺的引入造成的,证明了聚多巴胺对ZnO的包裹。
对ZnO和PDA@ZnO粉末进行X射线衍射测试,其谱图如图4所示。ZnO的衍射图谱中,在θ角为31°、34°、36°、47°、56°、63°、68°、和69°分别为ZnO的002、100、101、102、110、103、112和201晶面。PDA@ZnO相对于ZnO的衍射图谱上的峰没有变化,只是强度降低,同样证明了聚多巴胺对ZnO的包裹。
一、膜1~4的力学性能测试
对所制备的膜1~4进行力学性能测试,其应力应变曲线和杨氏模量如图5所示。由于PDA@ZnO的加入降低了EVA的凝胶度,所以聚合物介电弹性体的模量和断裂伸长率随着PDA@ZnO含量的增加而降低。膜1~4的弹性模量,拉伸强度,断裂伸长率的数据记录与表1中。
二、膜1~4的介电性能测试
对所制备的膜1~4进行介电性能测试,其介电常数和介电损耗与频率的关系如图6所示。膜1~4在100 Hz时的介电常数记录于表1中。
三、膜1~4的击穿强度测试
对所制备的膜1~4进行击穿强度测试,所制备的聚合物介电弹性体置于两个尖端电极之间。随着电压的不断增加,当两个尖端电极放释放的电信号击穿聚合物介电弹性体时,该电压为击穿电压。由于击穿强度与聚合物介电弹性体的厚度有关,通常单位为V/μm,膜1~4的击穿强度记录与表1中。
表1. 膜1~4的力学性能、介电常数和击穿强度
四、膜1~4用于电致动器时电致动性能测试
对所制备的膜1~4的两侧涂覆柔性电极,应用于介电弹性体电致动器。通过如图1所示的下拉弹簧的机械引导,使其产生面外致动,并用激光位移传感器记录位移曲线,其位移曲线如图7所示,相关数据记录于表2中。
表2. 复合凝胶电致动器不同电压和不同频率下的致动位移
五、膜1~4用于电子皮肤时的传感性能
对所制备的膜1~4的两侧涂覆柔性电极,应用于电子皮肤。该电子皮肤环绕于手指关节处时,能够检测到手指的弯曲角度。如图8所示,当电子皮肤的传感信号电容为60 pF时,手指关节处的夹角为180°,当电子皮肤的传感信号电容为220 pF时,手指关节处的夹角为120°,当电子皮肤的传感信号电容为220 pF时,手指关节处的夹角为70°。
以上显示和描述了本发明的基本原理和主要特征以及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
Claims (10)
1.一种聚合物介电弹性体,其特征在于:所述聚合物介电弹性体为PDA@ZnO/EVA聚合物介电弹性体,通过多巴胺在氧化锌纳米颗粒表面的自聚合,使聚多巴胺(PDA)对氧化锌纳米颗粒的包裹呈核壳结构即得到PDA@ZnO,将PDA@ZnO掺杂在乙烯-醋酸乙烯共聚物(EVA)中,制备出PDA@ZnO/EVA聚合物介电弹性体。
2.根据权利要求1所述的聚合物介电弹性体,其特征在于:所述氧化锌纳米颗粒的直径为45~55 nm,具有核壳结构的PDA@ZnO的PDA层的厚度为1~5 nm。
3.根据权利要求1所述的聚合物介电弹性体,其特征在于:所述聚合物介电弹性体的厚度为 0.1~1.5 mm,杨氏模量为1.3~1.2 MPa,介电常数为6.79~17.93,击穿强度为45~89 V/μm。
4.根据权利要求1-3任一所述的聚合物介电弹性体的制备方法,其特征在于包括以下步骤:
(1)PDA@ZnO的制备:取ZnO纳米颗粒超声分散于Tris-HCl溶液中,再加入盐酸多巴胺,在室温和氧气气氛下连续搅拌24 h,然后用去离子水进行离心清洗,最后在真空干燥箱中60℃干燥24 h得到PDA@ZnO纳米颗粒;
(2)PDA@ZnO/EVA聚合物介电弹性体的制备:取PDA@ZnO纳米颗粒超声分散于四氢呋喃溶剂中,再加入2 g的EVA,在室温下连续搅拌1 h后,加入4 g 己二酸二正丁酯,然后再继续搅拌1 h,最后倒入玻璃培养皿中,在真空干燥箱中60℃干燥24 h,得到PDA@ZnO/EVA聚合物介电弹性体。
5.根据权利要求4所述的聚合物介电弹性体的制备方法,其特征在于:所述步骤(1)中盐酸多巴胺的质量是ZnO纳米颗粒质量的3倍,Tris-HCl溶液的浓度为0.01M,PH=8.5。
6.根据权利要求4所述的聚合物介电弹性体的制备方法,其特征在于:所述步骤(2)中己二酸二正丁酯的质量是EVA质量的2倍,PDA@ZnO纳米颗粒的质量占PDA@ZnO纳米颗粒、己二酸二正丁酯和EVA总质量的百分比为5~15 %。
7.根据权利权利要求1-3任一所述的聚合物介电弹性体的应用,其特征在于:在PDA@ZnO/EVA聚合物介电弹性体的两侧涂覆柔性电极用于电致动器和电子皮肤。
8.根据权利要求7所述的应用,其特征在于:所述柔性电极采用导电硅脂、银纳米线、PEDOT、Ppy或PANI。
9.根据权利要求7所述的应用,其特征在于:在PDA@ZnO/EVA聚合物介电弹性体的两侧涂覆柔性电极用于电致动器,在5~20 V/μm的电场下能够产生5~25 %的面积形变和0.1~3mm的面外致动位移。
10.根据权利要求7所述的应用,其特征在于:PDA@ZnO/EVA聚合物介电弹性体的两侧经涂覆柔性电极后作为电子皮肤式传感器贴合在手指关节处,能够实时检测人体关节在1~180°内的角度变化。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011535277.6A CN112745559B (zh) | 2020-12-23 | 2020-12-23 | 一种聚合物介电弹性体及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011535277.6A CN112745559B (zh) | 2020-12-23 | 2020-12-23 | 一种聚合物介电弹性体及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112745559A true CN112745559A (zh) | 2021-05-04 |
CN112745559B CN112745559B (zh) | 2023-02-17 |
Family
ID=75645786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011535277.6A Active CN112745559B (zh) | 2020-12-23 | 2020-12-23 | 一种聚合物介电弹性体及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112745559B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113587803A (zh) * | 2021-08-04 | 2021-11-02 | 郑州轻工业大学 | 电容式聚合物应变传感器、制备方法及应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150290092A1 (en) * | 2012-10-26 | 2015-10-15 | Syneurx International Corp. | Core-shell particles, preparation process thereof, and composition containing the same |
CN105440583A (zh) * | 2015-12-04 | 2016-03-30 | 武汉理工大学 | 一种多巴胺类化合物修饰或包裹纳米粒子改性聚合物复合材料及其制备方法 |
CN106496684A (zh) * | 2016-09-18 | 2017-03-15 | 北京石油化工学院 | 一种多层核壳结构石墨烯基介电弹性体复合材料及制备 |
CN106566010A (zh) * | 2016-10-25 | 2017-04-19 | 东莞市联洲知识产权运营管理有限公司 | 一种含银的壳核石墨烯基介电弹性复合材料及其制备方法 |
CN106750540A (zh) * | 2016-11-25 | 2017-05-31 | 东莞市联洲知识产权运营管理有限公司 | 一种用于介电弹性体的多巴胺改性介电填料及其制备方法 |
CN107256811A (zh) * | 2017-07-03 | 2017-10-17 | 武汉纽赛儿科技股份有限公司 | 氮掺杂碳包覆氧化锌的合成方法及其应用 |
US20170323700A1 (en) * | 2016-04-25 | 2017-11-09 | Cooper Technologies Company | Elastomer composites with high dielectric constant |
CN108219299A (zh) * | 2018-02-05 | 2018-06-29 | 哈尔滨理工大学 | 一种三元乙丙橡胶基电缆附件材料的制备方法及其三元乙丙橡胶基电缆附件材料 |
CN110713717A (zh) * | 2019-11-23 | 2020-01-21 | 西北工业大学 | 一种耐高温多巴胺包覆钛酸钡/聚酰亚胺(bt@pda/pi)介电纳米复合薄膜 |
-
2020
- 2020-12-23 CN CN202011535277.6A patent/CN112745559B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150290092A1 (en) * | 2012-10-26 | 2015-10-15 | Syneurx International Corp. | Core-shell particles, preparation process thereof, and composition containing the same |
CN105440583A (zh) * | 2015-12-04 | 2016-03-30 | 武汉理工大学 | 一种多巴胺类化合物修饰或包裹纳米粒子改性聚合物复合材料及其制备方法 |
US20170323700A1 (en) * | 2016-04-25 | 2017-11-09 | Cooper Technologies Company | Elastomer composites with high dielectric constant |
CN106496684A (zh) * | 2016-09-18 | 2017-03-15 | 北京石油化工学院 | 一种多层核壳结构石墨烯基介电弹性体复合材料及制备 |
CN106566010A (zh) * | 2016-10-25 | 2017-04-19 | 东莞市联洲知识产权运营管理有限公司 | 一种含银的壳核石墨烯基介电弹性复合材料及其制备方法 |
CN106750540A (zh) * | 2016-11-25 | 2017-05-31 | 东莞市联洲知识产权运营管理有限公司 | 一种用于介电弹性体的多巴胺改性介电填料及其制备方法 |
CN107256811A (zh) * | 2017-07-03 | 2017-10-17 | 武汉纽赛儿科技股份有限公司 | 氮掺杂碳包覆氧化锌的合成方法及其应用 |
CN108219299A (zh) * | 2018-02-05 | 2018-06-29 | 哈尔滨理工大学 | 一种三元乙丙橡胶基电缆附件材料的制备方法及其三元乙丙橡胶基电缆附件材料 |
CN110713717A (zh) * | 2019-11-23 | 2020-01-21 | 西北工业大学 | 一种耐高温多巴胺包覆钛酸钡/聚酰亚胺(bt@pda/pi)介电纳米复合薄膜 |
Non-Patent Citations (1)
Title |
---|
黄朔: "高电致形变介电弹性体复合材料的制备及电机性能研究", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技I辑》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113587803A (zh) * | 2021-08-04 | 2021-11-02 | 郑州轻工业大学 | 电容式聚合物应变传感器、制备方法及应用 |
Also Published As
Publication number | Publication date |
---|---|
CN112745559B (zh) | 2023-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Highly stretchable, self-adhesive, biocompatible, conductive hydrogels as fully polymeric strain sensors | |
Qiao et al. | Multiple weak H-bonds lead to highly sensitive, stretchable, self-adhesive, and self-healing ionic sensors | |
CN108168420B (zh) | 一种基于MXene材料的柔性应变传感器 | |
Sun et al. | A facile strategy for fabricating multifunctional ionogel based electronic skin | |
Kannichankandy et al. | Flexible piezo-resistive pressure sensor based on conducting PANI on paper substrate | |
Wu et al. | Rational design of flexible capacitive sensors with highly linear response over a broad pressure sensing range | |
CN112284577B (zh) | 一种压电压阻复合式触觉传感器及制备方法 | |
CN110426063B (zh) | 一种双模式传感器及其在检测压力和应变过程中的应用 | |
Jun et al. | A pressure-induced bending sensitive capacitor based on an elastomer-free, extremely thin transparent conductor | |
Tang et al. | Scalable manufactured self-healing strain sensors based on ion-intercalated graphene nanosheets and interfacial coordination | |
CN112745559B (zh) | 一种聚合物介电弹性体及其制备方法和应用 | |
CN112146796A (zh) | 一种柔性应力传感器及其制备方法 | |
Du et al. | Bio-inspired homogeneous conductive hydrogel with flexibility and adhesiveness for information transmission and sign language recognition | |
CN105361977A (zh) | 电阻式柔性透明关节部位电子皮肤及其制备方法和应用 | |
KR101743221B1 (ko) | 투명하고 신축성 있는 동작 센서 제조 방법 | |
CN109196320A (zh) | 具有带裂缝的透明导电薄膜的高灵敏度传感器及其制造方法 | |
Yin et al. | An ultra-soft conductive elastomer for multifunctional tactile sensors with high range and sensitivity | |
CN114235225A (zh) | 一种离电式柔性三轴力触觉传感器、制备及应用 | |
Shi et al. | All-Polymer Piezoelectric Elastomer with High Stretchability, Low Hysteresis, Self-Adhesion, and UV-Blocking as Flexible Sensor | |
Li et al. | Highly Stretchable, Fast Self-Healing, Self-Adhesive, and Strain-Sensitive Wearable Sensor Based on Ionic Conductive Hydrogels | |
CN113603902A (zh) | 一种导电水凝胶电极材料及其应用 | |
CN116907696A (zh) | 一种基于应力解耦的可拉伸压力传感器及其制备方法 | |
CN108680190B (zh) | 利用溶菌酶焊接的自支撑银薄膜制备的柔性电子传感器及制备方法 | |
CN111044184A (zh) | 基于硅微/纳米线的微型化大量程应变传感器及其应用 | |
CN103811654B (zh) | 具有压电效应的压电电缆及其制备方法和用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |