CN109196320A - 具有带裂缝的透明导电薄膜的高灵敏度传感器及其制造方法 - Google Patents

具有带裂缝的透明导电薄膜的高灵敏度传感器及其制造方法 Download PDF

Info

Publication number
CN109196320A
CN109196320A CN201780032925.6A CN201780032925A CN109196320A CN 109196320 A CN109196320 A CN 109196320A CN 201780032925 A CN201780032925 A CN 201780032925A CN 109196320 A CN109196320 A CN 109196320A
Authority
CN
China
Prior art keywords
high sensor
transparent
conductive film
crack
transparent high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780032925.6A
Other languages
English (en)
Other versions
CN109196320B (zh
Inventor
李泰珉
崔瑢桓
李建熙
崔万秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Repeatedly First Energy Resource System Is Studied Group
Seoul National University Industry Foundation
SNU R&DB Foundation
Global Frontier Center For Multiscale Energy Systems
Original Assignee
Repeatedly First Energy Resource System Is Studied Group
Seoul National University Industry Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Repeatedly First Energy Resource System Is Studied Group, Seoul National University Industry Foundation filed Critical Repeatedly First Energy Resource System Is Studied Group
Publication of CN109196320A publication Critical patent/CN109196320A/zh
Application granted granted Critical
Publication of CN109196320B publication Critical patent/CN109196320B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本发明提供一种具有带裂缝的透明导电薄膜的高灵敏度传感器。所述高灵敏度传感器是通过在支撑体上形成的透明导电薄膜上形成微细裂缝来获得,通过测定所述微细裂缝所形成的微细接合结构的变化、短路或开路引起的电阻变化,来测定外部的拉力或压力,这种高灵敏度透明导电裂缝传感器可适用于高精密度测量或人造皮肤,通过将所述传感器像素化,也可用作定位检测传感器,能够有有效地用于精密测量领域、基于人造皮肤等的生物测定设备、人体动作测定传感器、显示面板传感器等领域。

Description

具有带裂缝的透明导电薄膜的高灵敏度传感器及其制造方法
技术领域
本发明涉及一种具有带裂缝的透明导电薄膜的高灵敏度传感器及其制造方法,涉及一种使用形成有微细裂缝的透明导电薄膜的高灵敏度传感器,其可适用在用于检测拉力及压力的高精度测量或人造皮肤。
背景技术
通常,高灵敏度传感器作为检测微小信号并将该信号以电信号等数据传输的装置,是现代工业中必备部件之一。
在这种传感器中,作为用于测定压力或拉力的传感器,已知有电容(capacitive)传感器、压电(piezoelectric)传感器、应变仪等。
应变传感器作为现有的拉力传感器,是一种将物理的微细变化转变为电信号来检测出的传感器,将其粘贴在机械或结构物表面,可检测出在其表面上发生的微细的尺寸变化,即应变(strain),并且根据应变大小来获知对确认强度或安全性而言十分重要的应力。
另外,应变仪是一种根据金属电阻元件的电阻值变化,来测定被测物表面的变形的仪器,通常金属材料的电阻值具有被外力拉伸时增加而压缩时减小的性质,还被用作传感器的传感元件,以用于将力、压力、加速度、位移及扭力(torque)等物理量转换为电信号,并且除了实验、研究,还广泛用于测量控制。
近来,积极地进行将人造皮肤等传感器应用于人体的研究。此时,作为传感器应有的特性,要求具有柔软特性以适用于曲线凹凸的人体以及透明特性以使用在人体上毫无违和感。
但是,现有的应变传感器由于使用金属线而易腐蚀,导致灵敏度非常差,而且输出值小,因此需要额外的电路来补偿小信号,半导体拉力传感器具有热敏缺陷。另外,上述传感器因所使用的材料而具有不透明这种局限性。
由于如上所述的问题,上述传感器只能在特定环境下驱动或受各种环境因素的影响,存在测定值的准确度下降等问题的同时,反复驱动时,存在难以确保测定值稳定的问题。尤其,考虑到近来积极进行研究的人造皮肤所要求的特性,这些传感器因自身结构问题,难以制造出柔软的结构体,而且由于不透明的特性,存在应用范围受限的问题。
因此,需要开发一种能够改善这种问题的新型高灵敏度传感器。
发明内容
发明要解决的技术问题
本发明要解决的技术问题在于提供一种透明高灵敏度传感器,其受环境影响少,且即使反复使用也能够维持测定值的准确度,具有柔韧性及透明性,可应用于多种领域,能够检测拉力及压力变化。
本发明要解决的另一技术问题在于提供一种所述透明高灵敏度传感器的制造方法。
用于解决问题的方案
为了解决所述技术问题,本发明提供一种透明高灵敏度传感器,具备透明支撑体,及形成在所述支撑体的至少一面上的透明导电薄膜。所述透明导电薄膜具有裂缝,所述裂缝具有相向且至少一部分面相互接触的裂缝面。通过测定电性变化来测定外部刺激,所述电性变化是所述裂缝面因外部物理刺激发生移动而使接触面积变化或短路或再接触而发生的。
为了解决所述另一技术问题,本发明提供一种透明高灵敏度传感器的制造方法,包括:在支撑体的至少一面上形成透明导电薄膜的步骤;及在所述导电薄膜上形成裂缝的步骤。
发明效果
本发明的透明高灵敏度传感器利用形成在支撑体一面上的带有裂缝的透明导电薄膜,不仅能够以高灵敏度测定拉力和/或压力,而且具有柔韧性及透明性,因此可应用于多种领域。如上所述的透明高灵敏度传感器可适用于高精度测量或人造皮肤,通过将所述传感器像素化,也可用作定位检测传感器,能够有效地用于精密测量领域、基于人造皮肤等的生物测定设备、人体动作测定传感器、显示面板传感器等领域。
另外,所述高灵敏度传感器可通过简单的工序实现大量生产,因此具有非常高的经济性。
附图说明
图1是具有带裂缝的透明导电薄膜的高灵敏度传感器的工作原理的概略图。
图2是表示具有带裂缝的透明导电薄膜的高灵敏度传感器的照片。
图3是表示对具有带裂缝的透明导电薄膜的高灵敏度传感器施加外部刺激时裂缝的接合结构开路的示意图。
图4是具有带裂缝的透明导电薄膜的高灵敏度传感器拉伸2%后观测的场发射扫描电子显微镜(FESEM)图像。
图5是表示具有带裂缝的透明导电薄膜的高灵敏度传感器的裂缝生成前后的透射率的图表。
图6是表示具有带裂缝的透明导电薄膜的高灵敏度传感器的电阻经时变化的图表。(ITO厚度:600nm,拉伸2%,应变灵敏系数:4000)
图7是表示具有带裂缝的透明导电薄膜的高灵敏度传感器的滞后现象及再现性的、电阻随应力(strain)变化的图表(红色:拉伸动作;黑色:收缩动作)。
图8是表示具有带裂缝的透明导电薄膜的高灵敏度传感器的电阻随压力变化的图表。
图9示出具有带裂缝的透明导电薄膜的高灵敏度传感器的像素。
图10是表示所观察到的对被红色柱子压到的像素部位的电阻变化的压力传感器像素的图。
图11是表示图10的压力传感器像素的电阻变化的图表(左图:施加1.8kPa的压力时;右图:施加1.2kPa的压力时)。
图12示出本发明的传感器的柔韧性测试实验结果。
具体实施方式
本发明可实施多种变化,可具备各种实施例,附图中例示特定实施例并对详细内容进行详细说明。但是,应理解为,这并非将本发明限于特定实施方式,包括本发明思想及技术范围内的所有变化、等同物及替代物。在说明本发明时,判断对公知技术的说明可能混淆本发明的主旨的情况下,省略其详细说明。
以下,对本发明实施例的具有带裂缝的透明导电薄膜的高灵敏度传感器进行更详细的说明。
本发明一实施例的透明高灵敏度传感器的特征在于,具备支撑体及形成在所述支撑体的至少一面上的透明导电薄膜,所述透明导电薄膜具有裂缝,所述裂缝具有相向且至少一部分面相互接触的裂缝面,通过测定电性变化来测定外部刺激,所述电性变化是所述裂缝面因外部物理刺激发生移动而使接触面积变化或短路或再接触而发生的。
所述透明高灵敏度传感器是如下的传感器:通过测定形成在透明导电薄膜上的裂缝随着拉力或压力而张开时的导电薄膜的电阻变化,来测量外部的拉力或压力。
本发明中杨氏模量(Young’s modulus)又称为“弹性模量”,是表示弹性材料的应力度与变形度之间的关系的系数,根据胡克定律,线性弹性材料的情况下,与应力度大小无关地呈现为恒定值。
在杨氏模量(Young’s modulus)小的物质上放置杨氏模量(Young’s modulus)大的物质的情况下,对该物质进行拉伸时,由于相互不同的杨氏模量之间的差异,导致在杨氏模量大的物质上产生裂缝。杨氏模量差约为95GPa以上或100GPa以上,优选为111GPa以上且120GPa以下或115GPa以下或113GPa以下。本发明中根据如上所述的原理,在杨氏模量小的支撑体上形成杨氏模量大的透明导电薄膜,人为制作微细接合结构(interconnection),通过该结构作为用于检测非常小的拉力或压力变化的传感器来运用。即,透明导电薄膜上形成的裂缝中存在如下的裂缝,即,具有相向且至少一部分面相互接触的裂缝面的裂缝,在施加拉力或压力变化等外部刺激的情况下,相互接触的裂缝面发生移动,而使接触面积发生变化,从而电阻也随之发生变化或形成短路(short)或开路(open),导致所述导电薄膜的电阻值发生剧烈变化,通过检测该电阻值的变化,可以将所述透明导电薄膜结构体运用为拉力传感器、压力传感器等。
根据一实施例,所述透明导电薄膜上的裂缝可以有多种形状,根据所述裂缝的产生程度、透明导电薄膜的厚度、形成条件等而有所不同,没有特别限定。
在本发明的透明高灵敏度传感器中,优选所述支撑体为选自聚对苯二甲酸乙二醇酯(PET)、聚丙烯(PP)、聚乙烯(PE)等组成的组中的任一种或它们的组合,最优选为聚对苯二甲酸乙二醇酯(PET)。
根据一实施例,优选支撑体的透射度为85%以上,支撑体的厚度可以为30μm至100μm,优选使用杨氏模量为3GPa至5GPa的支撑体。
在本发明的透明高灵敏度传感器中,优选所述透明导电薄膜为选自ZnO、ZnO:B、ZnO:Al、ZnO:H、SnO、SnO2、SnO2:F、氧化铟锡(Indium-Tin-Oxide(ITO))及氟掺杂氧化锡(fluorinated SnO(FTO))等组成的组中的任一种或它们的组合,最优选为氧化铟锡(Indium-Tin-Oxide(ITO))。
根据一实施例,所述透明导电薄膜的厚度不受限制,但优选具有可通过拉力及弯曲等物理方法来能够形成裂缝的程度的厚度,这种裂缝的形成条件可根据透明导电薄膜及支撑体的种类而有所不同。
在本发明的透明高灵敏度传感器中,优选所述透明导电薄膜的厚度为0.1nm至1μm,更优选为100nm至1000nm,进一步优选为450nm至600nm。另外,透明导电薄膜的杨氏模量可以为100GPa至120GPa。
根据一实施例,优选所述裂缝以垂直于拉伸方向的方向形成。其原因是如果裂缝以垂直于拉伸方向的方向形成,则能够使相对于拉力的电阻变化效果达到最大。
在本发明的透明高灵敏度传感器中,所述透明高灵敏度传感器的应变灵敏系数(gauge factor)为1至1×105,优选为4000至5000。
本发明中,应变灵敏系数是指应变仪对所产生的应力(strain)的电阻变化率。
就本发明的透明高灵敏度传感器而言,已确认在柔韧性测试中所述透明高灵敏度传感器是在半径1mm以上且半径5mm以下的情况下动作。并且具有80%以上的透射度,优选具有85%以上的透射度。
例如,图2中示出本发明的透明高灵敏度传感器。可从图2确认,本发明的透明高灵敏度传感器柔韧性优异,即使贴附在手掌后伸缩手掌也毫无违和感,并且还体现出具有足以看到背面字迹程度的透明性。
根据如上所述的特性,本发明的透明高灵敏度传感器可应用于人造皮肤、显示面板等多种领域,也可将所述传感器进行像素化来应用于定位检测传感器。
以下,为帮助对本发明的理解,示出实施例,但以下实施例仅为例示本发明,对于本领域技术人员而言,在本发明的范畴及技术思想范围内可进行多种变更及修改,显然,这些变更及修改属于所附权利要求书的范围。
<实施例1>透明高灵敏度传感器的制作
在30μm厚度的PET膜(杨氏模量:3GPa)上通过溅射(sputter)工序蒸镀600nm厚度的氧化锡铟(Indium-Tin-Oxide,ITO)。蒸镀条件为200W、45mins、不加热(no heating)。
此时,ITO保持无定形状态(无定形ITO的杨氏模量:116GPa)。因为将ITO定形化时,容易短路而不能用作传感器。之后,在制作的传感器上施加拉力,人为制造裂缝。此时,裂缝形成在垂直于拉伸方向的方向上。之后,利用导电聚合物连接电线以便能够将电信号连接到传感器。在图1及图2中示出了这样制作的透明高灵敏度传感器。图3示出随着所述透明高灵敏度传感器工作而裂缝张开。
<实验例1>裂缝的场发射扫描电子显微镜分析
将实施例1的传感器拉伸2%后,分析裂缝部分的场发射扫描电子显微镜(FESEM)图像。
分析结果示于图4中,如图4所示,可以确认裂缝是以垂直于拉伸方向的方向形成的。
<实验例2>裂缝生成前后的透射率比较
对实施例1的传感器的裂缝生成前后的透射率进行比较。利用紫外-可见光吸收光谱(UV visible spectroscopy)来测定透射率。
分析结果示于图5,如图5所示,可以确认裂缝生成前和裂缝生成后的透射率几乎没有变化。
<实验例3>随应力变化的电阻值的变化
对实施例1的传感器施加拉力并施加电流来测定电阻的变化。具体而言,图6示出最大拉伸到2%后再恢复至原来状态即0%应力状态的过程中所测定的电阻的变化,图7是表示实施例1的传感器的滞后现象及再现性的图表。
如图6所示,将实施例1的传感器最大拉伸到2%后再恢复至原来状态即0%拉伸状态的过程中测定电阻,此时,可知电阻的变化达到初始电阻的约80倍,可再现性地反复获得相同状态的电阻变化。这是因为,原来相互接触的裂缝面随应力的施加而发生移动,并且接触面积变小,最终发生分离导致电阻急剧增加,当去除应力时,传感器收缩,原来分离的裂缝面重新接触,随着接触面积增加,阻抗减少并恢复至原来状态。
图7是在一边拉伸(loading)所述实施例1的传感器一边对电阻变化进行测定的图,呈现出在2%处增加到初始电阻的约80倍以上,而去除应力(unloading)时恢复到原来电阻值的可逆变化。可知,在2%的应力下传感器的灵敏度为GF:4000以上,所述传感器的灵敏度可被定义为电阻变化/初始电阻/应力。
<实验例4>随压力变化的电阻值的变化
对实施例1的传感器施加压力并测定随压力变化的电阻的变化。
图8示出将施加在实施例1的传感器的压力从0变化至70kPa的过程中所测定的电阻值的变化。可知当压力为70kPa时,电阻值变化最高达80倍。图9示出压力传感器的像素,图10及11示出被柱子压到的部位的电阻变化。具体示出对实施例1的传感器施加1.8kPa的压力(左图)时的情况和施加1.2kPa的压力(右图)时的情况。
<实验例5>
如图12所示,分别在食指和中指的关节处连接透明电极传感器并施行手指动作识别。将握拳状态设定为初始状态,此时,透明电极传感器处于以半径3mm折曲的状态。张开手的情况下,透明电极传感器进一步以半径5mm折曲,此时,透明电极传感器上端的透明电极的裂缝张开且电阻发生变化。通过所述实验可以确认透明电极传感器是能够识别手指动作的,并且还可以确认可在半径5mm内使用。
以上,对本发明内容的特定部分进行详细描述,对于本领域技术人员而言,这些具体说明仅是优选的实施方案,显然本发明的范围并不限定于此。因此,本发明的实质范围由所附权利要求及其等同物定义。

Claims (16)

1.一种透明高灵敏度传感器,其特征在于,
具备:
透明支撑体,及
形成在所述支撑体的至少一面上的透明导电薄膜;
所述透明导电薄膜具有裂缝,所述裂缝具有相向且至少一部分面相互接触的裂缝面,
通过测定电性变化来测定外部刺激,所述电性变化是所述裂缝面因外部物理刺激发生移动而使接触面积变化或短路或再接触而发生的。
2.根据权利要求1所述的透明高灵敏度传感器,其特征在于,
所述支撑体的杨氏模量比透明导电薄膜的杨氏模量小。
3.根据权利要求2所述的透明高灵敏度传感器,其特征在于,
所述支撑体是选自由聚对苯二甲酸乙二醇酯、聚丙烯、聚乙烯等组成的组中的任一种或它们的组合。
4.根据权利要求1所述的透明高灵敏度传感器,其特征在于,
所述透明导电薄膜是选自由ZnO、ZnO:B、ZnO:Al、ZnO:H、SnO、SnO2、SnO2:F、氧化铟锡、氟掺杂氧化锡等组成的组中的任一种或它们的组合。
5.根据权利要求1所述的透明高灵敏度传感器,其特征在于,
所述裂缝是因所述支撑体与所述透明导电薄膜的杨氏模量的差异而形成的。
6.根据权利要求5所述的透明高灵敏度传感器,其特征在于,
所述裂缝是纳米级的微细裂缝。
7.根据权利要求1所述的透明高灵敏度传感器,其特征在于,
外部刺激引起所述裂缝电性短路或开路,导致所述导电薄膜的电阻值发生变化。
8.根据权利要求7所述的透明高灵敏度传感器,其特征在于,
所述外部刺激是拉力及压力中的任一种或它们的组合。
9.根据权利要求1所述的透明高灵敏度传感器,其特征在于,
所述透明导电薄膜的厚度为01.nm至1μm。
10.根据权利要求1所述的透明高灵敏度传感器,其特征在于,
所述透明高灵敏度传感器的应变灵敏系数为1至1×105
11.根据权利要求1所述的透明高灵敏度传感器,其特征在于,
所述高灵敏度传感器具有半径1mm以上的柔韧性及80%以上的透射度。
12.一种压力传感器,其特征在于,
具备权利要求1至11中任一项所述的透明高灵敏度传感器。
13.一种拉力传感器,其特征在于,
具备权利要求1至11中任一项所述的透明高灵敏度传感器。
14.一种人造皮肤,其特征在于,
具备权利要求1至11中任一项所述的透明高灵敏度传感器。
15.一种显示面板,其特征在于,
具备权利要求1至11中任一项所述的透明高灵敏度传感器。
16.一种透明高灵敏度传感器的制造方法,所述透明高灵敏度传感器为权利要求1所述的透明高灵敏度传感器,其特征在于,包括:
在支撑体的至少一面上形成透明导电薄膜的步骤;及
在所述导电薄膜上形成裂缝的步骤。
CN201780032925.6A 2016-05-30 2017-05-24 具有带裂缝的透明导电薄膜的高灵敏度传感器及其制造方法 Active CN109196320B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020160066677A KR101840114B1 (ko) 2016-05-30 2016-05-30 크랙 함유 투명 전도성 박막을 구비하는 고감도 센서 및 그의 제조 방법
KR10-2016-0066677 2016-05-30
PCT/KR2017/005401 WO2017209435A1 (ko) 2016-05-30 2017-05-24 크랙 함유 투명 전도성 박막을 구비하는 고감도 센서 및 그의 제조 방법

Publications (2)

Publication Number Publication Date
CN109196320A true CN109196320A (zh) 2019-01-11
CN109196320B CN109196320B (zh) 2021-07-02

Family

ID=60478823

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780032925.6A Active CN109196320B (zh) 2016-05-30 2017-05-24 具有带裂缝的透明导电薄膜的高灵敏度传感器及其制造方法

Country Status (4)

Country Link
US (1) US11796403B2 (zh)
KR (1) KR101840114B1 (zh)
CN (1) CN109196320B (zh)
WO (1) WO2017209435A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023221036A1 (zh) * 2022-05-19 2023-11-23 深圳市韶音科技有限公司 传感器及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102117950B1 (ko) * 2018-11-08 2020-06-02 계명대학교 산학협력단 바이오센서용 전극 제조방법 및 그 바이오센서용 전극
CN113758614A (zh) * 2021-08-26 2021-12-07 重庆大学 一种液态金属压力传感器及其压力值标定方法
CN113650330B (zh) * 2021-09-13 2022-05-13 大连理工大学 柔性聚合物表面金属纳米裂纹的自动化制造装置及使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411712A (zh) * 2013-07-18 2013-11-27 电子科技大学 接触应力传感器
CN205050572U (zh) * 2015-10-28 2016-02-24 汕头市东通光电材料有限公司 一种防雾耐热手机导电薄膜
CN105552113A (zh) * 2016-02-29 2016-05-04 北京大学 一种辐射敏感场效应晶体管及其制备方法
CN105612588A (zh) * 2013-12-03 2016-05-25 多次元能源系统研究集团 一种具有裂纹的导电薄膜的高灵敏度传感器及其制作方法
CN105609642A (zh) * 2016-04-08 2016-05-25 常州天合光能有限公司 具有纳米线透明导电衬底的钙钛矿太阳电池及制备方法
CN106030267A (zh) * 2014-12-24 2016-10-12 日本梅克特隆株式会社 压敏元件和压力传感器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923801B2 (en) * 2007-04-18 2011-04-12 Invisage Technologies, Inc. Materials, systems and methods for optoelectronic devices
US9056584B2 (en) * 2010-07-08 2015-06-16 Gentex Corporation Rearview assembly for a vehicle
DE112011103678T5 (de) * 2010-11-04 2014-01-23 Tokai Rubber Industries, Ltd. Biegesensor
JP6169082B2 (ja) 2011-09-24 2017-07-26 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 人工皮膚および弾性歪みセンサ
KR101378168B1 (ko) 2012-07-13 2014-03-24 재단법인 멀티스케일 에너지시스템 연구단 나노입자를 포함하는 전자소자의 제조방법
KR101898604B1 (ko) * 2015-11-30 2018-09-13 재단법인 멀티스케일 에너지시스템 연구단 직선으로 유도된 크랙 함유 고감도 센서 및 그의 제조 방법
KR102044152B1 (ko) * 2017-02-24 2019-11-13 성균관대학교산학협력단 크랙 치유 고분자를 포함하는 크랙 센서 및 이를 포함하는 전자 소자
US11552057B2 (en) * 2017-12-20 2023-01-10 Seoul Viosys Co., Ltd. LED unit for display and display apparatus having the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411712A (zh) * 2013-07-18 2013-11-27 电子科技大学 接触应力传感器
CN105612588A (zh) * 2013-12-03 2016-05-25 多次元能源系统研究集团 一种具有裂纹的导电薄膜的高灵敏度传感器及其制作方法
CN106030267A (zh) * 2014-12-24 2016-10-12 日本梅克特隆株式会社 压敏元件和压力传感器
CN205050572U (zh) * 2015-10-28 2016-02-24 汕头市东通光电材料有限公司 一种防雾耐热手机导电薄膜
CN105552113A (zh) * 2016-02-29 2016-05-04 北京大学 一种辐射敏感场效应晶体管及其制备方法
CN105609642A (zh) * 2016-04-08 2016-05-25 常州天合光能有限公司 具有纳米线透明导电衬底的钙钛矿太阳电池及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Z.E.A.BEN-AOUN 等: "Effects of elasticity and pressure-sensitive yielding on plane-stress crack-tip fields", 《ENGINEERING FRACTURE MECHANICS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023221036A1 (zh) * 2022-05-19 2023-11-23 深圳市韶音科技有限公司 传感器及其制备方法

Also Published As

Publication number Publication date
US11796403B2 (en) 2023-10-24
US20200240860A1 (en) 2020-07-30
KR20170135175A (ko) 2017-12-08
CN109196320B (zh) 2021-07-02
KR101840114B1 (ko) 2018-03-19
WO2017209435A1 (ko) 2017-12-07

Similar Documents

Publication Publication Date Title
Zhang et al. Dual-mode electronic skin with integrated tactile sensing and visualized injury warning
Kim et al. Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices
Afsarimanesh et al. A review on fabrication, characterization and implementation of wearable strain sensors
Das et al. A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring
CN109196320A (zh) 具有带裂缝的透明导电薄膜的高灵敏度传感器及其制造方法
Zhang et al. Self-powered triboelectric-mechanoluminescent electronic skin for detecting and differentiating multiple mechanical stimuli
Lee et al. Transparent ITO mechanical crack-based pressure and strain sensor
Borghetti et al. Mechanical behavior of strain sensors based on PEDOT: PSS and silver nanoparticles inks deposited on polymer substrate by inkjet printing
Nag et al. Tactile sensing from laser-ablated metallized PET films
CN105738012B (zh) 一种人工皮肤柔性触觉传感器测量装置
Yang et al. A flexible highly sensitive capacitive pressure sensor
CN109700451B (zh) 基于纳米粒子点阵量子电导的柔性温敏压力传感器及其组装方法和应用
US10439128B2 (en) Piezoelectric device, piezoelectric sensor using the same, and wearable device having the same
Dahiya et al. Tactile sensing technologies
TWM526124U (zh) 壓力感應觸控面板
CN110082012B (zh) 一种柔性压力传感器及其制作方法
Jun et al. A pressure-induced bending sensitive capacitor based on an elastomer-free, extremely thin transparent conductor
Li et al. An ultra-stretchable and highly sensitive photoelectric effect-based strain sensor: Implementation and applications
Roels et al. Self-healing sensorized soft robots
Gao et al. Flexible pressure sensor with wide linear sensing range for human–machine interaction
Choi et al. Emotion-interactive empathetic transparent skin cushion with tailored frequency-dependent hydrogel–plasticized nonionic polyvinyl chloride interconnections
Nhu et al. Wearable fluidic strain sensor for human motion sensing
Choi et al. Crack-inducing strain sensor array using inkjet-printed silver thin film for underplate and off-centered force sensing applications
CN112745559B (zh) 一种聚合物介电弹性体及其制备方法和应用
Lee et al. Pressure-sensitive strain sensor based on a single percolated Ag nanowire layer embedded in colorless polyimide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant