CN112738272A - 一种最小化网络时延的边缘节点负载均衡方法 - Google Patents
一种最小化网络时延的边缘节点负载均衡方法 Download PDFInfo
- Publication number
- CN112738272A CN112738272A CN202110036777.3A CN202110036777A CN112738272A CN 112738272 A CN112738272 A CN 112738272A CN 202110036777 A CN202110036777 A CN 202110036777A CN 112738272 A CN112738272 A CN 112738272A
- Authority
- CN
- China
- Prior art keywords
- node
- unloading
- time delay
- edge
- calculation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
- H04L67/1004—Server selection for load balancing
- H04L67/1008—Server selection for load balancing based on parameters of servers, e.g. available memory or workload
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
- G06F9/5072—Grid computing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5083—Techniques for rebalancing the load in a distributed system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/142—Network analysis or design using statistical or mathematical methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mathematical Physics (AREA)
- Signal Processing (AREA)
- Algebra (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Probability & Statistics with Applications (AREA)
- Pure & Applied Mathematics (AREA)
- Computer Hardware Design (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
一种最小化网络时延的边缘节点负载均衡方法,结合了MEC和SDN的优势,用于解决边缘网络节点负载不均衡及单个节点资源有限的问题。首先设计了过载节点卸载策略,即过载节点分割计算任务,通过一跳或者多跳的方式分别卸载到其它相对欠载的边缘节点;然后将过载节点的优化卸载问题建模最小化时延的数学问题。再设计了一种基于量子粒子群算法的边缘节点卸载算法求解该节点的最佳卸载策略包括任务的分割比例、目标节点的选择以及路径。本发明利用SDN控制器根据监控边缘网络的状态,调度过载节点向欠载节点卸载,优化卸载决策,降低过载节点的负载,最终降低边缘网络的处理时延。
Description
技术领域
本发明属于5G网络计算卸载技术领域,尤其涉及一种最小化网络时延的边缘节点负载均衡方法。
背景技术
边缘计算是5G网络的核心技术之一。终端设备向边缘节点卸载计算任务已经成为新的计算范式。然而,一方面相比于传统的中心云,边缘节点的计算资源是有限的;另一方面在不同区域的边缘节点服务于不同的群体,其承载的计算负载量是悬殊的。如何平衡边缘节点的负载,降低计算时延,提高整个边缘网络的服务效益是一个非常重要的研究问题。
发明内容
针对上述问题,本发明提供了一种最小化网络时延的边缘节点负载均衡方法,结合边缘计算和软件定义网络(SDN)的优势,设计了边缘网络中边缘节点协作卸载计算模型,通过调度边缘网络中过载节点的计算任务,即分割过载节点的计算任务,并通过一跳或者多跳的方式卸载到其它相对欠载的边缘节点,以平衡网络中边缘节点的负载。
为了实现上述目的,本发明提供如下的技术方案:
一种最小化网络时延的边缘节点负载均衡方法,所述方法包括如下步骤:
步骤2:统计每个边缘节点的负载情况,假设与节点j关联且向该节点卸载任务的终端设备的集合为Ij={1,2,......,I};每个设备产生的任务大小为si,处理每一位数据所需要的CPU周期数为ci,则边缘节点接收到的数据量的大小为计算负载为将负载量最大的节点视为源节点;
步骤3:分割源节点的计算任务,假设节点j上的计算任务被分成了若干个部分,每部分的计算任务分别卸载给其它边缘节点k,k∈{1,2,…,J},视为目标节点,其数据量αjk表示分割比例,即边缘节点j卸载给边缘节点k的计算任务占边缘节点j总计算任务的比例,有
步骤6:计算卸载路径传输时延,rmn表示该链路(m,n)的传输速率,卸载路径的传输时延为通路上每条链路的传输时延之和,即所有xmn(αjk)=1的链路的传输时延之和,故节点j向节点k卸载任务的传输时延为
步骤9:结合步骤3、5、6、7、8,建立如下关于过载节点的卸载的数学模型:
xmn(αjk)∈{0,1} ②
问题P1描述的是源节点j通过多路卸载以及本地计算的方式完成的负载所需的最小时间,节点j的计算任务被分成了若干个部分,每个部分是并行执行的因此时延消耗最大的部分为节点完成全部任务的时延,目的是最小化节点的时延;约束①表述了节点j上的计算任务的分配原则,卸载到其它节点包括留在本地的任务比例和为1;约束②和③确保任务能卸载到目标基站;约束④说明目标基站分配给其它基站的计算资源限制;约束⑤说明,卸载计算的时延不能超过任务全部留在本地计算的时延,否则卸载没有意义;
步骤11:根据步骤9和步骤10重塑问题
s.t.①~③,⑤
步骤13:定义粒子群的大小为N,第n个粒子的位置向量为λn={λj1,λjk,...,λjk,...,λj|J|},λjk的具体表达为:λjk=(αj1,x);
步骤14:首次迭代,第n个粒子的局部最佳位置为Pn(1)=λn(1),从Pn(1)(n=1,2,......,N)中找到最佳的粒子位置作为G(1);
步骤16:更新粒子的局部最佳位置和和全局最佳位置
步骤17:循环迭代,直到达到设定的迭代次数,输出全局最佳粒子的位置G即全局最佳解;
步骤18:SDN控制器将求得的G,即将包含任务分割比例、路径、目标节点的卸载决策信息发送给源节点,节点接收到相应信息的时候执行相应的卸载操作;
步骤19:SDN控制器继续收集基础设施层的状态信息,当发现有过载节点的重复步骤2到步骤18。
本发明的有益效果为:利用SDN控制器根据监控边缘网络的状态,调度过载节点向欠载节点卸载,优化卸载决策,降低过载节点的负载,最终降低边缘网络的处理时延。
附图说明:
图1是边缘网络结构模型示意图。
具体实施方式
下面结合附图对本发明作进一步说明。
参照图1,一种最小化网络时延的边缘节点负载均衡方法,包括如下步骤:
步骤1:如图1所示的边缘网络结构模型图,任意一个边缘节点都可以直接关联到其邻近的节点,只要该节点在其辐射半径范围内,例如节点1可以直接向节点2或者节点3卸载数据,但是要关联到远端的节点,只能通过中继节点转发,例如节点1向节点4卸载数据只能通过节点3转发或者由节点2转发给节点5,再由节点5传输给节点4,用表示边缘网络,是边缘节点的集合,表示节点之间的通信链路的集合;
步骤2:统计边缘网络中每个边缘节点的负载情况,每个节点关联着若干个设备,假设与节点j关联且向该节点卸载任务的终端设备的集合为Ij={1,2,......,I}。每个设备产生的任务的大小为si,处理每一位数据所需要的CPU周期数为ci,则边缘节点接收到的数据量的大小为计算负载为将负载量最大的节点视为源节点,如图1中的节点1;
步骤3:分割源节点的计算任务,假设节点j上的计算任务被分成了若干个部分,每部分的计算任务分别卸载给其它边缘节点k,k∈{1,2,…,J},视为目标节点,其数据量αjk表示分割比例,即边缘节点j卸载给边缘节点k的计算任务占边缘节点j总计算任务的比例,有
例如节点1通过节点2转发向节点5卸载数据,则x12(α15)=1,x25(α15)=1。节点1作为源节点,对于数据只会存在一条流出路径,因此∑nx1n(α15)-∑nxn1(α15)=1,节点2作为中继节点,数据从该节点流入又从该节点流出,因此∑nx2n(α15)-∑nxn2(α15)=0。节点5作为目标节点,对于数据仅存在一条流入路径,因此∑n x5n(α15)-∑n xn5(α15)=-1;
步骤6:计算卸载路径传输时延,rmn表示该链路(m,n)的传输速率。传输时延为通路上每个链路的传输时延之和,换句话说,就是所有xmn(αjk)=1的链路的传输时延之和,故节点j向节点k卸载任务的传输时延为
步骤9:结合步骤3、5、6、7、8,建立如下关于过载节点的卸载的数学模型:
xmn(αjk)∈{0,1} ②
问题P1描述的是源节点j通过多路卸载以及本地计算的方式完成的负载所需的最小时间,节点j的计算任务被分成了若干个部分,每个部分是并行执行的因此时延消耗最大的部分就是节点完成全部任务的时延,目的是最小化节点的时延;约束①表述了节点j上的计算任务的分配原则,卸载到其它节点包括留在本地的任务比例和为1;约束②和③确保任务能卸载到目标基站;约束④说明目标基站分配给其它基站的计算资源限制;约束⑤说明,卸载计算的时延不能超过任务全部留在本地计算的时延,否则卸载没有意义;
步骤11:根据步骤9和步骤10重塑问题
s.t.①~③,⑤
步骤13:定义粒子群的大小为N,第n个粒子的位置向量为λn={λj1,λjk,...,λjk,...,λj|J|},λjk的具体表达为:λjk=(αj1,x);
步骤14:首次迭代,第n个粒子的局部最佳位置为Pn(1)=λn(1),从Pn(1)(n=1,2,......,N)中找到最佳的粒子位置作为G(1);
步骤16:更新粒子的局部最佳位置和和全局最佳位置
步骤17:循环迭代,直到达到设定的迭代次数,输出全局最佳粒子的位置G即全局最佳解;
步骤18:SDN控制器将求得的G,即将包含任务分割比例、路径、目标节点的卸载决策信息发送给源节点,节点接受到相应信息的时候执行相应的卸载操作;
步骤19:SDN控制器继续收集基础设施层的状态信息,当发现有过载节点的重复步骤2到步骤18。
本说明书的实施例所述的内容仅仅是对发明构思的实现形式的列举,仅作说明用途。本发明的保护范围不应当被视为仅限于本实施例所陈述的具体形式,本发明的保护范围也及于本领域的普通技术人员根据本发明构思所能想到的等同技术手段。
Claims (1)
1.一种最小化网络时延的边缘节点负载均衡方法,其特征在于,所述方法包括如下步骤:
步骤2:统计每个边缘节点的负载情况,假设与节点j关联且向该节点卸载任务的终端设备的集合为Ij={1,2,......,I},每个设备产生的任务大小为si,处理每一位数据所需要的CPU周期数为ci,则边缘节点接收到的数据量的大小为计算负载为将负载量最大的节点视为源节点;
步骤3:分割源节点的计算任务,假设节点j上的计算任务被分成了若干个部分,每部分的计算任务分别卸载给其它边缘节点k,k∈{1,2,…,J},视为目标节点,其数据量αjk表示分割比例,即边缘节点j卸载给边缘节点k的计算任务占边缘节点j总计算任务的比例,有
步骤6:计算卸载路径传输时延,rmn表示该链路(m,n)的传输速率,卸载路径的传输时延为通路上每条链路的传输时延之和,即所有xmn(αjk)=1的链路的传输时延之和,故节点j向节点k卸载任务的传输时延为
步骤9:结合步骤3、5、6、7、8,建立如下关于过载节点的卸载的数学模型:
xmn(αjk)∈{0,1} ②
问题P1描述的是源节点j通过多路卸载以及本地计算的方式完成的负载所需的最小时间,节点j的计算任务被分成了若干个部分,每个部分是并行执行的因此时延消耗最大的部分为节点完成全部任务的时延,目的是最小化节点的时延;约束①表述了节点j上的计算任务的分配原则,卸载到其它节点包括留在本地的任务比例和为1;约束②和③确保任务能卸载到目标基站;约束④说明目标基站分配给其它基站的计算资源限制;约束⑤说明,卸载计算的时延不能超过任务全部留在本地计算的时延,否则卸载没有意义;
步骤11:根据步骤9和步骤10重塑问题
s.t.①~③,⑤
步骤13:定义粒子群的大小为N,第n个粒子的位置向量为λn={λj1,λjk,...,λjk,...,λj|J|},λjk的具体表达为:λjk=(αj1,x);
步骤14:首次迭代,第n个粒子的局部最佳位置为Pn(1)=λn(1),从Pn(1)(n=1,2,......,N)中找到最佳的粒子位置作为G(1);
步骤16:更新粒子的局部最佳位置和和全局最佳位置
步骤17:循环迭代,直到达到设定的迭代次数,输出全局最佳粒子的位置G即全局最佳解;
步骤18:SDN控制器将求得的G,即将包含任务分割比例、路径、目标节点的卸载决策信息发送给源节点,节点接收到相应信息的时候执行相应的卸载操作;
步骤19:SDN控制器继续收集基础设施层的状态信息,当发现有过载节点的重复步骤2到步骤18。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110036777.3A CN112738272B (zh) | 2021-01-12 | 2021-01-12 | 一种最小化网络时延的边缘节点负载均衡方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110036777.3A CN112738272B (zh) | 2021-01-12 | 2021-01-12 | 一种最小化网络时延的边缘节点负载均衡方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112738272A true CN112738272A (zh) | 2021-04-30 |
CN112738272B CN112738272B (zh) | 2022-07-15 |
Family
ID=75590486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110036777.3A Active CN112738272B (zh) | 2021-01-12 | 2021-01-12 | 一种最小化网络时延的边缘节点负载均衡方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112738272B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114143326A (zh) * | 2021-12-08 | 2022-03-04 | 深圳前海微众银行股份有限公司 | 负载调节方法、管理节点以及存储介质 |
CN114138452A (zh) * | 2021-10-15 | 2022-03-04 | 中标慧安信息技术股份有限公司 | 一种边缘计算中高能效的计算节点选择方法及装置 |
CN114500560A (zh) * | 2022-01-06 | 2022-05-13 | 浙江鼎峰科技股份有限公司 | 一种最小化网络时延的边缘节点服务部署与负载均衡方法 |
CN115118728A (zh) * | 2022-06-21 | 2022-09-27 | 福州大学 | 基于蚁群算法的边缘负载均衡任务调度方法 |
CN115809148A (zh) * | 2023-01-16 | 2023-03-17 | 中国华能集团清洁能源技术研究院有限公司 | 一种面向边缘计算的负载均衡任务调度方法及装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150358236A1 (en) * | 2014-06-05 | 2015-12-10 | KEMP Technologies Inc. | Adaptive load balancer and methods for intelligent data traffic steering |
CN110113376A (zh) * | 2019-03-29 | 2019-08-09 | 南京邮电大学 | 一种基于移动边缘计算的多径传输负载均衡优化算法 |
CN110365753A (zh) * | 2019-06-27 | 2019-10-22 | 北京邮电大学 | 基于边缘计算的物联网服务低时延负载分配方法及装置 |
CN111641973A (zh) * | 2020-05-29 | 2020-09-08 | 重庆邮电大学 | 一种雾计算网络中基于雾节点协作的负载均衡方法 |
CN111726854A (zh) * | 2020-04-24 | 2020-09-29 | 浙江工业大学 | 一种降低物联网计算卸载能耗的方法 |
CN111741054A (zh) * | 2020-04-24 | 2020-10-02 | 浙江工业大学 | 一种移动用户深度神经网络计算卸载时延最小化方法 |
CN112162789A (zh) * | 2020-09-17 | 2021-01-01 | 中国科学院计算机网络信息中心 | 一种基于软件定义的边缘计算随机卸载决策方法及系统 |
-
2021
- 2021-01-12 CN CN202110036777.3A patent/CN112738272B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150358236A1 (en) * | 2014-06-05 | 2015-12-10 | KEMP Technologies Inc. | Adaptive load balancer and methods for intelligent data traffic steering |
CN110113376A (zh) * | 2019-03-29 | 2019-08-09 | 南京邮电大学 | 一种基于移动边缘计算的多径传输负载均衡优化算法 |
CN110365753A (zh) * | 2019-06-27 | 2019-10-22 | 北京邮电大学 | 基于边缘计算的物联网服务低时延负载分配方法及装置 |
CN111726854A (zh) * | 2020-04-24 | 2020-09-29 | 浙江工业大学 | 一种降低物联网计算卸载能耗的方法 |
CN111741054A (zh) * | 2020-04-24 | 2020-10-02 | 浙江工业大学 | 一种移动用户深度神经网络计算卸载时延最小化方法 |
CN111641973A (zh) * | 2020-05-29 | 2020-09-08 | 重庆邮电大学 | 一种雾计算网络中基于雾节点协作的负载均衡方法 |
CN112162789A (zh) * | 2020-09-17 | 2021-01-01 | 中国科学院计算机网络信息中心 | 一种基于软件定义的边缘计算随机卸载决策方法及系统 |
Non-Patent Citations (3)
Title |
---|
卢海峰等: "基于深度强化学习的移动边缘计算任务卸载研究", 《计算机研究与发展》 * |
田贤忠;姚超;赵晨;丁军: "一种面向5G网络的移动边缘计算卸载策略", 《计算机科学》 * |
花德培等: "基于蚁群优化算法的移动边缘协作计算", 《电子测量技术》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114138452A (zh) * | 2021-10-15 | 2022-03-04 | 中标慧安信息技术股份有限公司 | 一种边缘计算中高能效的计算节点选择方法及装置 |
CN114138452B (zh) * | 2021-10-15 | 2022-11-15 | 中标慧安信息技术股份有限公司 | 一种边缘计算中高能效的计算节点选择方法及装置 |
CN114143326A (zh) * | 2021-12-08 | 2022-03-04 | 深圳前海微众银行股份有限公司 | 负载调节方法、管理节点以及存储介质 |
WO2023103349A1 (zh) * | 2021-12-08 | 2023-06-15 | 深圳前海微众银行股份有限公司 | 负载调节方法、管理节点以及存储介质 |
CN114143326B (zh) * | 2021-12-08 | 2024-07-26 | 深圳前海微众银行股份有限公司 | 负载调节方法、管理节点以及存储介质 |
CN114500560A (zh) * | 2022-01-06 | 2022-05-13 | 浙江鼎峰科技股份有限公司 | 一种最小化网络时延的边缘节点服务部署与负载均衡方法 |
CN114500560B (zh) * | 2022-01-06 | 2024-04-26 | 浙江鼎峰科技股份有限公司 | 一种最小化网络时延的边缘节点服务部署与负载均衡方法 |
CN115118728A (zh) * | 2022-06-21 | 2022-09-27 | 福州大学 | 基于蚁群算法的边缘负载均衡任务调度方法 |
CN115118728B (zh) * | 2022-06-21 | 2024-01-19 | 福州大学 | 基于蚁群算法的边缘负载均衡任务调度方法 |
CN115809148A (zh) * | 2023-01-16 | 2023-03-17 | 中国华能集团清洁能源技术研究院有限公司 | 一种面向边缘计算的负载均衡任务调度方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN112738272B (zh) | 2022-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112738272B (zh) | 一种最小化网络时延的边缘节点负载均衡方法 | |
US20230199061A1 (en) | Distributed computation offloading method based on computation-network collaboration in stochastic network | |
CN109167671A (zh) | 一种面向量子密钥分发业务的配用通信系统均衡负载调度算法 | |
CN110928654A (zh) | 一种边缘计算系统中分布式的在线任务卸载调度方法 | |
CN112187891B (zh) | 基于多业务的边缘计算节点集合的负载优化方法及装置 | |
CN114637608B (zh) | 一种计算任务分配和更新方法、终端及网络设备 | |
CN113918240A (zh) | 任务卸载方法及装置 | |
CN111263401A (zh) | 一种基于移动边缘计算的多用户协作计算卸载方法 | |
CN110851277A (zh) | 一种增强现实场景下基于边云协同的任务调度策略 | |
CN112235387B (zh) | 一种基于能量消耗最小化的多节点协作计算卸载方法 | |
CN114625506A (zh) | 一种基于自适应协方差矩阵进化策略的边缘云协同任务卸载方法 | |
Zhang et al. | Quantified edge server placement with quantum encoding in internet of vehicles | |
Zhou et al. | Robust risk-sensitive task offloading for edge-enabled industrial Internet of Things | |
CN116089091A (zh) | 基于物联网边缘计算的资源分配和任务卸载方法 | |
CN115150893A (zh) | 基于任务划分与d2d的mec任务卸载策略方法 | |
An et al. | Fuzzy deep Q-learning task offloading in delay constrained vehicular fog computing | |
Vakilian et al. | Node cooperation for workload offloading in a fog computing network via multi-objective optimization | |
CN114816739A (zh) | 针对负载均衡的片上网络增量任务映射方法 | |
CN111611069B (zh) | 多数据中心间多类型任务迁移方法 | |
Zhu et al. | Online distributed learning-based load-aware heterogeneous vehicular edge computing | |
CN115065384B (zh) | 考虑用户关联、子信道分配及波束关联的多波束卫星通信系统资源分配方法 | |
CN114615705B (zh) | 一种基于5g网络下单用户资源分配策略方法 | |
CN106127396A (zh) | 一种智能电网中云调度任务的方法 | |
CN117149370A (zh) | 一种智能电网的任务分配方法、装置及电子设备 | |
CN102892146B (zh) | 出站波束调度处理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |