CN112730364A - Detector for detecting heparin content in blood - Google Patents

Detector for detecting heparin content in blood Download PDF

Info

Publication number
CN112730364A
CN112730364A CN202011579390.4A CN202011579390A CN112730364A CN 112730364 A CN112730364 A CN 112730364A CN 202011579390 A CN202011579390 A CN 202011579390A CN 112730364 A CN112730364 A CN 112730364A
Authority
CN
China
Prior art keywords
blood
heparin
micro
concentration
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011579390.4A
Other languages
Chinese (zh)
Inventor
闫锦旗
邓宇
高流焕
杨志达
徐想
李飞
黄梓荣
林曼丽
杨晓丹
王太平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202011579390.4A priority Critical patent/CN112730364A/en
Publication of CN112730364A publication Critical patent/CN112730364A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The invention discloses a detector for detecting the heparin content in blood, which comprises a shell, a microfluidic chip arranged in the shell, a laser-induced fluorescence detection device for detecting the heparin concentration in the blood, a Bluetooth module for sending heparin concentration data to an upper computer, and a controller for receiving the heparin concentration detected by the laser-induced fluorescence detection device and sending the data to the upper computer through the Bluetooth module; the shell is provided with a micro-channel communicated with an inlet of the micro-fluidic chip, and the micro-channel is communicated with the intravenous injection needle. The micro-fluidic chip filters blood, the blood is mixed with a reagent for reaction, fluorescent substances in the mixture are enriched, and the laser-induced fluorescence detection device detects the concentration of heparin in the blood at the outlet end of the micro-fluidic chip. The invention can realize real-time monitoring of the heparin content and the change condition of the heparin content. When the content reaches the dangerous index, a warning is given to ensure the safety of the patient.

Description

Detector for detecting heparin content in blood
Technical Field
The invention relates to a detector, in particular to a detector for detecting the heparin content of blood on line.
Background
Heparin is a highly sulfated mucopolysaccharide that binds to antithrombin and thereby greatly enhances the inhibitory effects of antithrombin on thrombin and other coagulation factors. Heparin is widely used clinically as a preventive and therapeutic agent for related diseases, particularly as an anticoagulant in surgery. However, excessive use of heparin causes side effects such as massive bleeding, thrombocytopenia, hyperkalemia, osteoporosis, and the like, and thus the dosage of heparin must be strictly monitored. The current clinical methods for heparin quantitative determination include activated clotting time method (ACT) and activated partial thromboplastin time method (APTT). However, the two heparin detection methods have the defects of long time consumption, high price, indirect detection, unreliable data and the like; 2. colorimetric, absorption and electrochemical immunoassay methods; although these methods have good sensitivity and specificity, they are complicated, time-consuming, inconvenient to use, and unable to perform real-time detection, resulting in low accuracy.
Disclosure of Invention
In view of the above problems, an object of the present invention is to provide a detector for detecting heparin content in blood. The invention can realize real-time monitoring of the heparin content and the change condition of the heparin content. When the content reaches the dangerous index, a warning is given to ensure the safety of the patient.
The purpose of the invention can be achieved by adopting the following technical scheme:
a detector for detecting the heparin content in blood comprises a shell, a microfluidic chip arranged in the shell, a laser-induced fluorescence detection device for detecting the heparin concentration in blood, a Bluetooth module for sending heparin concentration data to an upper computer, and a controller for receiving the heparin concentration detected by the laser-induced fluorescence detection device and sending the data to the upper computer through the Bluetooth module; the shell is provided with a micro-channel communicated with an inlet of the micro-fluidic chip, and the micro-channel is communicated with the intravenous injection needle. The micro-fluidic chip filters blood, the blood is mixed with a reagent for reaction, fluorescent substances in the mixture are enriched, and the laser-induced fluorescence detection device detects the concentration of heparin in the blood at the outlet end of the micro-fluidic chip.
As a preferred scheme, the microfluidic chip comprises a one-way valve for preventing blood from flowing backwards, a piezoelectric peristaltic micropump for controlling the flow rate of blood, a filtering module for filtering blood cells in the blood, a mixing module for combining a contained reagent with heparin in plasma to form a fluorescent substance, and an enrichment module for increasing the concentration of the fluorescent substance; the inlet of the one-way valve is communicated with the micro-channel, and the laser-induced fluorescence detection device detects the number of the fluorescent particles in the blood flowing out of the outlet of the enrichment module.
Preferably, an osmosis membrane is arranged in the enrichment module, and the blood removes water and inorganic salts under the action of the osmosis membrane, so that the concentration of the fluorescent substance is increased.
As a preferable scheme, a liquid storage tank is arranged in the housing, and the liquid storage tank is communicated with an outlet of the enrichment module.
Preferably, the upper computer is provided with a display for displaying the heparin concentration.
As a preferable scheme, a battery for supplying power to the laser-induced fluorescence detection device, the bluetooth module and the controller is arranged in the housing.
As a preferable scheme, the battery is a rechargeable battery, and a charging interface for charging the battery is arranged on the housing.
As a preferred scheme, the controller is a single chip microcomputer.
The implementation of the invention has the following beneficial effects:
1. when the micro-fluidic chip is used, the intravenous injection needle is connected with the micro-channel, and blood enters the micro-channel through the intravenous injection needle and enters the micro-fluidic chip through the micro-channel under the pushing of blood pressure. The microfluidic chip sequentially filters blood, mixes the blood with a reagent for reaction, enriches fluorescent substances in the mixture, and finally the laser-induced fluorescence detection device performs fluorescence detection on the blood flowing out of the microfluidic chip, so that the aim of detecting the concentration of heparin in the blood is fulfilled. The data obtained after detection are sent to the controller, the controller sends the data to the upper computer in a wireless transmission mode through the Bluetooth module and displays the data on the upper computer, so that the function of displaying the real-time concentration and the change condition of heparin is realized, and the detection accuracy is improved. When the concentration of heparin reaches the dangerous index, the upper computer sends out warning through loudspeaker and light, makes the doctor reduce the injection volume of heparin to guarantee patient's life safety. The whole detector has simple structure and convenient and quick operation and use.
2. Under the action of blood pressure, blood flows into the one-way valve and the piezoelectric peristaltic micropump in sequence through the microchannel. The one-way valve prevents the blood from flowing backwards, and the piezoelectric peristaltic micropump controls the flow rate of the blood. Blood flowing out of the piezoelectric peristaltic micropump flows through the filtering module; the filtering module filters blood cells in the blood, and then the filtered blood (hereinafter referred to as plasma) enters the mixing module; a reagent is attached to the mixing module, and the reagent is combined with heparin in plasma to form a fluorescent substance; then the plasma mixed with the reagent enters an enrichment module; the enrichment module is a pipeline with an upper half layer and a lower half layer, and a permeable membrane is arranged in the middle of the pipeline; plasma flows through first half layer pipeline and removes most of water and micromolecule material such as inorganic salt under the osmotic membrane effect, promotes fluorescent substance concentration in the plasma greatly, has promoted fluorescence detection efficiency and precision greatly.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below, it is obvious that the drawings in the following description are only some embodiments of the present invention, and for those skilled in the art, other drawings can be obtained according to the drawings without creative efforts.
FIG. 1 is a schematic diagram of the structure of the detector for detecting heparin content in blood according to the present invention.
Fig. 2 is a schematic view of the internal structure of fig. 1.
Fig. 3 is a schematic structural diagram of a microfluidic chip of a detector for detecting heparin content in blood according to the present invention.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
Examples
Referring to fig. 1 and 2, the present embodiment relates to a detector for detecting heparin content in blood, which includes a housing 1, a microfluidic chip 2 disposed in the housing 1, a laser-induced fluorescence detection device 3 for detecting heparin concentration in blood, a bluetooth module 4 for sending heparin concentration data to an upper computer, and a controller for receiving the heparin concentration detected by the laser-induced fluorescence detection device 3 and sending the data to the upper computer through the bluetooth module 4; the shell 1 is provided with a micro-channel 11 communicated with the inlet of the micro-fluidic chip 2, and the micro-channel 11 is communicated with the intravenous injection needle. The micro-fluidic chip 2 filters blood, the blood is mixed with a reagent for reaction, fluorescent substances in the mixture are enriched, and the laser-induced fluorescence detection device 3 detects the concentration of heparin in the blood at the outlet end of the micro-fluidic chip 2. The controller is a single chip microcomputer.
When in use, the intravenous needle is connected with the micro-channel 11, and blood enters the micro-channel 11 through the intravenous needle under the pushing of blood pressure and enters the micro-fluidic chip 2 through the micro-channel 11. The micro-fluidic chip 2 filters blood, mixes the blood with a reagent for reaction, enriches fluorescent substances in the mixture, and finally the laser-induced fluorescence detection device 3 performs fluorescence detection on the blood flowing out of the micro-fluidic chip 2, thereby realizing the purpose of detecting the concentration of heparin in the blood. The data obtained after detection are sent to the controller, the controller sends the data to the upper computer in a wireless transmission mode through the Bluetooth module 4 and displays the data on the upper computer, so that the function of displaying the real-time concentration and the change condition of heparin is realized, and the detection accuracy is improved. When the concentration of heparin reaches the dangerous index, the upper computer sends out warning through loudspeaker and light, makes the doctor reduce the injection volume of heparin to guarantee patient's life safety. The whole detector has simple structure and convenient and quick operation and use.
As shown in fig. 3, the microfluidic chip 2 includes a one-way valve 21 for preventing blood from flowing backwards, a piezoelectric peristaltic micropump 22 for controlling the flow rate of blood, a filtering module 23 for filtering blood cells in blood, a mixing module 24 for combining a contained reagent with heparin in plasma to form a fluorescent substance, and an enrichment module 25 for increasing the concentration of the fluorescent substance; the inlet of the one-way valve 21 is communicated with the micro-channel 11, and the laser-induced fluorescence detection device 3 detects the number of fluorescent particles in the blood flowing out from the outlet of the enrichment module 25. An osmotic membrane is arranged in the enrichment module 25, and water and inorganic salts are removed from blood under the action of the osmotic membrane, so that the concentration of the fluorescent substance is increased.
Under the action of blood pressure, the blood flows through the micro-channel 11 into the one-way valve 21 and the piezoelectric peristaltic micro-pump 22 in sequence. The check valve 21 prevents the reverse flow of blood, and the piezoelectric peristaltic micro-pump 22 controls the flow rate of blood. The blood flowing from the piezoelectric peristaltic micropump 22 flows through the filtration module 23; the filtering module 23 filters blood cells in the blood, and then the filtered blood (hereinafter referred to as plasma) enters the mixing module 24; a reagent is attached to the mixing module 24, and the reagent is combined with heparin in plasma to form a fluorescent substance; then the plasma mixed with the reagent enters an enrichment module 25; the enrichment module 25 is a pipeline with an upper half layer and a lower half layer, and a permeable membrane is arranged in the middle of the pipeline; plasma flows through the upper layer pipeline, and most of small molecular substances such as water, inorganic salt and the like are removed under the action of the permeable membrane, so that the concentration of fluorescent substances in the plasma is greatly improved, and the fluorescence detection efficiency and precision are greatly improved; and finally, the plasma containing high-concentration fluorescent substances enters a detection area, the number of the fluorescent particles at the moment is detected under the detection of a laser-induced fluorescence detection device 3 (shown in figure 2, the device is arranged below the microfluidic chip 2) in figure 2, the data is sent to a controller, and the controller sends the data to an upper computer through a Bluetooth module 4. The plasma after flowing through the detection area finally enters the liquid storage tank, and the whole working process of the microfluidic chip 2 is completed.
A liquid storage tank is arranged in the shell 1 and is communicated with an outlet of the enrichment module 25. The blood entering from the inlet of the microfluidic chip 2 finally flows into the liquid storage tank to form a liquid flow loop, so that the blood can be continuously detected in real time.
The upper computer is provided with a display for displaying the concentration of the heparin. Of course, a display may be directly provided on the housing 1, and the heparin concentration data may be displayed through the display.
And a battery 5 for providing power for the laser-induced fluorescence detection device 3, the Bluetooth module 4 and the controller is arranged in the shell 1. The battery 5 is a rechargeable battery, and a charging interface for charging the battery 5 is arranged on the shell 1.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims (8)

1. A detector for detecting the heparin content in blood is characterized by comprising a shell, a microfluidic chip arranged in the shell, a laser-induced fluorescence detection device for detecting the heparin concentration in blood, a Bluetooth module for sending heparin concentration data to an upper computer, and a controller for receiving the heparin concentration detected by the laser-induced fluorescence detection device and sending the data to the upper computer through the Bluetooth module; the shell is provided with a micro-channel communicated with an inlet of the micro-fluidic chip, and the micro-channel is communicated with the intravenous injection needle. The micro-fluidic chip filters blood, the blood is mixed with a reagent for reaction, fluorescent substances in the mixture are enriched, and the laser-induced fluorescence detection device detects the concentration of heparin in the blood at the outlet end of the micro-fluidic chip.
2. The detector of claim 1, wherein the microfluidic chip comprises a one-way valve for preventing blood from flowing backwards, a piezoelectric peristaltic micropump for controlling blood flow rate, a filtering module for filtering blood cells in blood, a mixing module for combining a reagent contained in the mixing module with heparin in plasma to form a fluorescent substance, and an enrichment module for increasing the concentration of the fluorescent substance; the inlet of the one-way valve is communicated with the micro-channel, and the laser-induced fluorescence detection device detects the number of the fluorescent particles in the blood flowing out of the outlet of the enrichment module.
3. The apparatus according to claim 2, wherein the concentration module is provided with a permeable membrane, and the blood is subjected to the action of the permeable membrane to remove water and inorganic salts, so as to increase the concentration of the fluorescent substance.
4. The detector according to claim 3, wherein a reservoir is provided in the housing, and the reservoir is in communication with the outlet of the enrichment module.
5. The detector for detecting the heparin content in the blood according to claim 1, wherein the upper computer is provided with a display for displaying the heparin concentration.
6. The detector according to claim 1, wherein a battery is disposed in the housing for providing power to the laser-induced fluorescence detection device, the bluetooth module and the controller.
7. The detector according to claim 5, wherein the battery is a rechargeable battery, and the housing has a charging interface for recharging the battery.
8. The detector according to any one of claims 1 to 6, wherein the controller is a single-chip microcomputer.
CN202011579390.4A 2020-12-28 2020-12-28 Detector for detecting heparin content in blood Pending CN112730364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011579390.4A CN112730364A (en) 2020-12-28 2020-12-28 Detector for detecting heparin content in blood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011579390.4A CN112730364A (en) 2020-12-28 2020-12-28 Detector for detecting heparin content in blood

Publications (1)

Publication Number Publication Date
CN112730364A true CN112730364A (en) 2021-04-30

Family

ID=75606420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011579390.4A Pending CN112730364A (en) 2020-12-28 2020-12-28 Detector for detecting heparin content in blood

Country Status (1)

Country Link
CN (1) CN112730364A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295594A (en) * 2021-12-06 2022-04-08 贵州理工学院 Turn on type fluorescence sensor for screening triple helix DNA intercalators based on molecular beacon

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040048388A1 (en) * 2002-09-09 2004-03-11 Teragenics, Inc. Microfluidic chip for biomolecule crystallization
EP1535952A1 (en) * 2003-11-28 2005-06-01 Universite Louis Pasteur Method for preparing crosslinked polyelectrolyte multilayer films
CN108956567A (en) * 2018-07-12 2018-12-07 广东工业大学 A kind of cell analysis chip and its cell fluorescence detection system and detection method
CN111308098A (en) * 2020-03-17 2020-06-19 北京利德曼生化股份有限公司 Microfluidic fluorescence immune chip for rapidly and quantitatively detecting sST2 in whole blood
CN111889150A (en) * 2020-07-01 2020-11-06 西安交通大学 ATP fluorescent microfluidic chip, bioluminescence continuous detection system and detection method
CN111929286A (en) * 2020-08-28 2020-11-13 华南理工大学 In-vivo heparin real-time monitoring device based on micro-fluidic chip

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040048388A1 (en) * 2002-09-09 2004-03-11 Teragenics, Inc. Microfluidic chip for biomolecule crystallization
EP1535952A1 (en) * 2003-11-28 2005-06-01 Universite Louis Pasteur Method for preparing crosslinked polyelectrolyte multilayer films
CN108956567A (en) * 2018-07-12 2018-12-07 广东工业大学 A kind of cell analysis chip and its cell fluorescence detection system and detection method
CN111308098A (en) * 2020-03-17 2020-06-19 北京利德曼生化股份有限公司 Microfluidic fluorescence immune chip for rapidly and quantitatively detecting sST2 in whole blood
CN111889150A (en) * 2020-07-01 2020-11-06 西安交通大学 ATP fluorescent microfluidic chip, bioluminescence continuous detection system and detection method
CN111929286A (en) * 2020-08-28 2020-11-13 华南理工大学 In-vivo heparin real-time monitoring device based on micro-fluidic chip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295594A (en) * 2021-12-06 2022-04-08 贵州理工学院 Turn on type fluorescence sensor for screening triple helix DNA intercalators based on molecular beacon
CN114295594B (en) * 2021-12-06 2023-09-19 贵州理工学院 "turn on" type fluorescence sensor based on molecular beacon screening triple helix DNA intercalator

Similar Documents

Publication Publication Date Title
RU2651130C2 (en) Dialysis device and method of dialysis
CN104780955B (en) Make the method and related system of medication solution
CN102176934B (en) A flow system of a dialysis device and a portable dialysis device
EP3281658B1 (en) Peritoneal dialysate flow path sensing
SE534780C2 (en) Purification in an artificial kidney containing a pulsatory pump
WO2008065950A1 (en) State detecting device
CN103747860B (en) Method and arrangement for venting gases from container having powdered concentrate for use in hemodialysis
CN112730364A (en) Detector for detecting heparin content in blood
CN204500735U (en) A kind of portable, quick biochemistry analyzer
CN102215673A (en) Easing pressure oxygen-dissolving device
RU2007145352A (en) PORTABLE DEVICE FOR MEASUREMENT AND MONITORING ANALITES IN BIOLOGICAL LIQUIDS
CN202018437U (en) Double-flow-path electrolyte analyzer
CN212308926U (en) Platelet-rich plasma preparation device
CN111811887A (en) A sewage collection system for virus and bacterium monitoring
JP2012026807A (en) Endotoxin detection method and endotoxin detector
CN206518724U (en) Citrate anticoagulation device
CN109276999A (en) Water purifier control method and system
CN100441243C (en) Blood purification device
CN106855578A (en) A kind of coagulation function detection chip
CN110779961A (en) Bicarbonate radical detection device, use method thereof and dialysis machine
CN208700740U (en) A kind of water purification unit
CN113759139A (en) Sample analyzer and liquid supply method thereof
CN109364316A (en) A kind of pneumatic type acquisition hematological system
CN217248717U (en) Automatic liquid preparation system of full-automatic chemiluminescence immunoassay analyzer
CN213554276U (en) Treatment system of continuous blood purification equipment and plasma adsorption technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210430