CN112729647A - 一种x射线衍射全谱多峰拟合模式的多晶材料残余应力测量方法 - Google Patents

一种x射线衍射全谱多峰拟合模式的多晶材料残余应力测量方法 Download PDF

Info

Publication number
CN112729647A
CN112729647A CN202011596141.6A CN202011596141A CN112729647A CN 112729647 A CN112729647 A CN 112729647A CN 202011596141 A CN202011596141 A CN 202011596141A CN 112729647 A CN112729647 A CN 112729647A
Authority
CN
China
Prior art keywords
polycrystalline material
ray diffraction
residual stress
stress
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011596141.6A
Other languages
English (en)
Inventor
汪选国
汪研
张林海
方海英
万才明
许建艳
吴芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Jinglue Marine Technology Co ltd
Original Assignee
Ningbo Jinglue Marine Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Jinglue Marine Technology Co ltd filed Critical Ningbo Jinglue Marine Technology Co ltd
Priority to CN202011596141.6A priority Critical patent/CN112729647A/zh
Publication of CN112729647A publication Critical patent/CN112729647A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0047Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to residual stresses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/2055Analysing diffraction patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • G01N2223/0566Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction analysing diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • G01N2223/0568Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction spectro-diffractometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/607Specific applications or type of materials strain

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明提出一种X射线衍射全谱多峰拟合模式的多晶材料残余应力测量方法,利用材料的一张X射线衍射全谱谱线,采用多峰拟合模式,考虑了多晶体晶粒取向的基础上,获得多晶体材料平面应变,在此基础上结合多晶体材料应力应变关系,最终计算出多晶体材料残余应力值。本发明在计算材料应变过程中采用多个衍射峰信息,考虑了多晶体材料晶粒取向,避免了由于多晶体材料的择优取向对传统X射线衍射应力分析方法的影响,为多晶体材料残余应力测量提供了一种方便快捷的方法。

Description

一种X射线衍射全谱多峰拟合模式的多晶材料残余应力测量 方法
技术领域
本发明涉及分析测试技术领域,尤其涉及一种X射线衍射全谱多峰拟合模式的多晶材料残余应力测量方法。
背景技术
在材料生产、处理或加工过程中,由于材料的局部区域变形的不均匀性从而在材料中产生了残余应力。适当的残余应力分布可以成为有利因素提高材料的性能。例如通过喷丸强化技术,在金属工件表面形成残余压应力场,可有效提高工件的使用寿命。因此,为了更好地利用残余应力优化材料性能,就需要检测和控制材料在生产中各个工序的残余应力。
X射线衍射技术,理论基础比较严谨,实验技术日渐完善,无需破坏试样是目前残余应力分析的有效方法之一。然而该方法在测量残余应力时,需要设置不同的测量倾斜角,同时对测试材料也有一定的限制。例如当多晶材料中存在织构时,传统方法就很难实现。
经对现有技术文献的检索发现,M.Guagliano等人在《Engineering FailureAnalysis,2002,Vol.9,No.2,pp147-158》(工程失效分析,2002年,9卷,第2期,第147-158页)发表了“Contact fatigue failure analysis ofshot-peened gears”论文,研究了残余应力对齿轮疲劳寿命的影响,指出残余应力值是分析齿轮强化效果的一个重要指标。P.J.Withers等人在《Materials Science andTechnology,2001,Vol.17,No.4,pp355-365》(材料科学与技术,2001年,17卷,第4期,第355-365页)上发表了“Overview-Residualstress Part 1-Measurmenttechniques”论文,总结了X射线衍射法测量残余应力的方法以及不足,如果材料中存在织构,传统X射线衍射法测量残余应力的结果将会产生较大误差。
发明内容
本发明的目的在于提出一种残余应力测量经过精准的测量方法。
为达到上述目的,本发明提出一种X射线衍射全谱多峰拟合模式的多晶材料残余应力测量方法,包括以下步骤:
A、利用X射线衍射仪获取多晶材料样品的X射线衍射全谱;
B、建立多晶材料样品的应力-应变表达关系式,
所述应力-应变关系表达式为:
Figure BDA0002868563420000021
式中,σx为沿样品坐标系X轴的应力、σy为沿样品坐标系Y轴的应力,C11、C12、C13、C33为材料的弹性系数,εz为沿样品坐标系Z轴的应变;
C、利用X射线衍射全谱求解应变值εz
求解表达式为:
Figure BDA0002868563420000022
式中,m为晶粒取向数,ν(hxkxlx)为晶粒取向是(hx kx lx)的晶粒体积分数;
D、利用衍射全谱以及多晶材料的弹性系数求解残余应力;
将应变值εz结合多晶材料的弹性系数代入表达式(3)中求解,得到多晶材料的残余应力。
进一步的,利用单张X射线衍射谱线以及多晶材料的弹性系数,结合建立的多晶材料应力应变表达式求解出材料残余应力值
与现有技术相比,本发明的优势之处在于:本发明基于X射线衍射全谱的多晶材料残余应力测量方法,考虑了多晶体材料的不同晶粒取向,有效的避免了多晶体的择优取向对传统X射线应力测量方法的影响。同时该方法仅需一张X射线衍射图谱,通过计算即可获得残余应力值,十分方便。
附图说明
图1为本发明实施例中多晶材料样品的X射线衍射几何示意图。
图2为本发明实施例中多晶材料的衍射全谱。
图3为本发明实施例多晶材料采用不同喷丸强度处理后的残余应力值。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案作进一步地说明。
本发明提出一种X射线衍射全谱多峰拟合模式的多晶材料残余应力测量方法,其具体步骤、工作过程和原理如下:
1、利用X射线衍射仪获取多晶体材料的X射线衍射全谱
对于多晶材料,当X射线照射在多晶材料表面时,如果衍射角与衍射晶面符合布拉格衍射方程时,相应的衍射峰就会出现加强。多晶材料的衍射几何如图1所示。
2、建立多晶材料的应力-应变表达关系式
其原理是,设立样品坐标系,让X轴、Y轴位于样品表面互相垂直,Z轴平行于样品表面法线方向。对于横向各向同性材料其沿样品坐标系中的应力与应变关系可以表示为:
σx=C11εx+C12εy+C13εz
σy=C12εx+C11εy+C13εz
σz=C13εx+C13εy+C33εz (1)
式中,σx、σy、σz为应力,C11、C12、C13、C33为材料弹性系数,εx、εy、εz为沿样品坐标系的应变,当表面为二维应力时,σz=0,在此边界条件下应力-应变关系表达式为:
Figure BDA0002868563420000031
当表面应力各向同性时,σx=σy,上式可以简化为:
Figure BDA0002868563420000032
3、利用X射线衍射全谱求解应变值εz
在多晶材料中,如果存在m种晶粒取向,则沿样品表面法线Z轴的应变可以表示为每种取向晶粒沿Z轴的应变与该种取向体积分数乘积之和,具体表达式为:
Figure BDA0002868563420000041
其中每种取向晶粒沿Z轴的应变以及不同取向晶粒的体积分数均可以利用X射线衍射谱线获得,(hxkxlx)取向晶粒其沿Z轴的应变可以利用样品实测的晶面间距变化
Figure BDA0002868563420000042
或者衍射角的变化
Figure BDA0002868563420000043
(弧度制)表示,具体表达式为:
Figure BDA0002868563420000044
式中
Figure BDA0002868563420000045
为无应力状态下的晶面间距,
Figure BDA0002868563420000046
为X射线衍射角。同时,不同取向晶粒的体积分数可以表示为:
Figure BDA0002868563420000047
式中
Figure BDA0002868563420000048
为(hxkxlx)取向晶粒的实测衍射强度,
Figure BDA0002868563420000049
为样品无应力无织构条件下的衍射强度,可从标准衍射数据库中获取。
4、利用衍射全谱以及多晶材料的弹性系数求解残余应力
对获得的X射线衍射谱线采用公式(4)计算出样品沿Z轴的应变值εz,然后结合材料弹性系数代入公式(3)中求解样品残余应力。
具体实施例如下:
多晶材料样品为304奥氏体不锈钢,样品尺寸为20mm×20mm×5mm,分为三组。利用气动喷丸机及
Figure BDA00028685634200000410
的高强度钢丝切丸,对样品表面进行喷丸强化处理,三组喷丸强度(以A型Almen试片弧高值表示)分别为:0.30mm,0.35mm,0.40mm。
材料X射线衍射全谱测量参数设置
如图1所示,在试验中具体的X射线衍射仪测量参数为管电压:40kV,管电流:30mA,Cu-Kα辐射,扫描速度2°/min,扫描步幅为0.01°,设置扫描范围为35°-100°。
利用X射线衍射仪获取304奥氏体不锈钢不同喷丸强度的X射线衍射谱线。
采用衍射仪(Rigaku UltimaⅣ),依照式(2)中的测试参数,获得不同喷丸强度的X射线衍射全谱,具体见图2。
利用衍射全谱数据以及304奥氏体不锈钢弹性系数,计算其残余应力值。
对X射线衍射谱线按照式(4)-式(6)计算沿Z轴应变,结合304奥氏体不锈钢弹性系数,代入式(3)中计算出不同喷丸强度下的残余应力值,结果见图3。
测量结果表明,利用X射线衍射全谱结合多峰拟合分析多晶体材料残余应力结果与报道的传统方法结果基本吻合。该方法理论清晰,仅需一张X射线衍射图谱即可计算出残余应力值,且考虑了多晶体材料中不同晶粒取向,能确保X射线应力测定结果的可靠性
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。

Claims (2)

1.一种X射线衍射全谱多峰拟合模式的多晶材料残余应力测量方法,其特征在于,包括以下步骤:
A、利用X射线衍射仪获取多晶材料样品的X射线衍射全谱;
B、建立多晶材料样品的应力-应变表达关系式,
所述应力-应变关系表达式为:
Figure FDA0002868563410000011
式中,σx为沿样品坐标系X轴的应力、σy为沿样品坐标系Y轴的应力,C11、C12、C13、C33为材料的弹性系数,εz为沿样品坐标系Z轴的应变;
C、利用X射线衍射全谱求解应变值εz
求解表达式为:
Figure FDA0002868563410000012
式中,m为晶粒取向数,
Figure FDA0002868563410000013
为晶粒取向是(hx kx lx)的晶粒体积分数;
D、利用衍射全谱以及多晶材料的弹性系数求解残余应力;
将应变值εz结合多晶材料的弹性系数代入表达式(3)中求解,得到多晶材料的残余应力。
2.如权利要求1所述的基于X射线衍射全谱的多晶材料残余应力测量方法,其特征在于:利用单张X射线衍射谱线以及多晶材料的弹性系数,结合建立的多晶材料应力应变表达式求解出材料残余应力值。
CN202011596141.6A 2020-12-29 2020-12-29 一种x射线衍射全谱多峰拟合模式的多晶材料残余应力测量方法 Pending CN112729647A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011596141.6A CN112729647A (zh) 2020-12-29 2020-12-29 一种x射线衍射全谱多峰拟合模式的多晶材料残余应力测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011596141.6A CN112729647A (zh) 2020-12-29 2020-12-29 一种x射线衍射全谱多峰拟合模式的多晶材料残余应力测量方法

Publications (1)

Publication Number Publication Date
CN112729647A true CN112729647A (zh) 2021-04-30

Family

ID=75611316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011596141.6A Pending CN112729647A (zh) 2020-12-29 2020-12-29 一种x射线衍射全谱多峰拟合模式的多晶材料残余应力测量方法

Country Status (1)

Country Link
CN (1) CN112729647A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793872A (zh) * 2005-12-29 2006-06-28 哈尔滨工业大学 微小区域残余应力的无损检测方法
CN104034744A (zh) * 2014-06-03 2014-09-10 杭州电子科技大学 一种x射线衍射测量热解炭涂层残余应力的方法
CN105021331A (zh) * 2014-04-29 2015-11-04 上海理工大学 基于x射线衍射全谱的多晶材料残余应力测量方法
CN111089670A (zh) * 2018-10-24 2020-05-01 中国石油化工股份有限公司 一种快速检测高分子材料制品残余主应力的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793872A (zh) * 2005-12-29 2006-06-28 哈尔滨工业大学 微小区域残余应力的无损检测方法
CN105021331A (zh) * 2014-04-29 2015-11-04 上海理工大学 基于x射线衍射全谱的多晶材料残余应力测量方法
CN104034744A (zh) * 2014-06-03 2014-09-10 杭州电子科技大学 一种x射线衍射测量热解炭涂层残余应力的方法
CN111089670A (zh) * 2018-10-24 2020-05-01 中国石油化工股份有限公司 一种快速检测高分子材料制品残余主应力的方法

Similar Documents

Publication Publication Date Title
Perec et al. Obtaining the selected surface roughness by means of mathematical model based parameter optimization in abrasive waterjet cutting
CN104502385A (zh) 一种短波长x射线衍射的板状内部应力定点无损检测方法
Amini et al. The effects of ultrasonic peening on chemical corrosion behavior of aluminum 7075
CN103808743B (zh) 一种采用x射线衍射技术测量钢中奥氏体含量的方法
CN105817834A (zh) 一种高频脉冲放电辅助的表面滚压强化加工装置和方法
Zhang et al. Combined effects of machining-induced residual stress and external load on SCC initiation and early propagation of 316 stainless steel in high temperature high pressure water
Takakuwa et al. Optimizing the conditions for residual stress measurement using a two-dimensional XRD method with specimen oscillation
EP3587033B1 (en) Surface treatment processing method and surface treatment processing device
Zhang et al. Three-dimensional modeling and reconstructive change of residual stress during machining process of milling, polishing, heat treatment, vibratory finishing, and shot peening of fan blade
Bagherian Azhiri et al. Ultrasonic nanocrystalline surface modification of low strength aluminum alloy: trade-off between surface integrity and production rate aiming at desired fatigue life
Tang et al. Numerical modeling considering initial gradient mechanical properties and experiment verification of residual stress distribution evolution of 12Cr2Ni4A steel generated by ultrasonic surface rolling
CN112729647A (zh) 一种x射线衍射全谱多峰拟合模式的多晶材料残余应力测量方法
JP2019124481A (ja) 残留応力測定方法
Ahmad et al. Analysis of residual stresses in laser-shock-peened and shot-peened marine steel welds
Fayzimatov et al. Ensure the quality of the surface layer of parts in high-speed end milling of hardened steels
CN111855717B (zh) 一种脉冲磁场处理对金属零件残余应力影响的分析方法
Yang et al. Distortion control of thin sections by single-sided laser peening
Yin et al. Investigation of the grinding temperature and subsurface quality of a novel point grinding wheel
Akiniwa et al. Effect of residual stresses on fatigue strength of severely surface deformed steels by shot peening
CN113218875B (zh) 一种金属增材制造件残余应力的激光超声测量方法
Tafarroj et al. Using an optimized RBF neural network to predict the out-of-plane welding distortions based on the 3-2-1 locating scheme
Starodubtseva et al. Grinding of aluminum alloy panels after shot peen forming on contact type installations
Uzun et al. Tomographic eigenstrain reconstruction for full-field residual stress analysis in large scale additive manufacturing parts
Prevéy et al. Residual stress in pipelines
Xu et al. Improving fatigue properties of normal direction ultrasonic vibration assisted face grinding Inconel 718 by regulating machined surface integrity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination