CN112725375A - 一种沉默载体及其在转基因植株中的用途 - Google Patents

一种沉默载体及其在转基因植株中的用途 Download PDF

Info

Publication number
CN112725375A
CN112725375A CN202110070237.7A CN202110070237A CN112725375A CN 112725375 A CN112725375 A CN 112725375A CN 202110070237 A CN202110070237 A CN 202110070237A CN 112725375 A CN112725375 A CN 112725375A
Authority
CN
China
Prior art keywords
vector
silencing vector
tomato
slsweet14
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110070237.7A
Other languages
English (en)
Other versions
CN112725375B (zh
Inventor
姜晶
刘欣
张新圣
王满宁
程杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Agricultural University
Original Assignee
Shenyang Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Agricultural University filed Critical Shenyang Agricultural University
Priority to CN202110070237.7A priority Critical patent/CN112725375B/zh
Publication of CN112725375A publication Critical patent/CN112725375A/zh
Application granted granted Critical
Publication of CN112725375B publication Critical patent/CN112725375B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明涉及基因工程应用技术领域,具体公开了一种沉默载体及其在转基因植株中的用途,沉默载体的构建过程为:将SlSWEET14基因的PCR产物与中间载体pENTR/D‑TOPO连接,获得pENTR/D‑TOPO–SlSWEET14载体,然后将pENTR/D‑TOPO–SlSWEET14载体与终载体pB7GWIWG2(I)进行LR反应,获得沉默载体的重组质粒。本发明利用番茄基因SlSWEET14基因构建的沉默载体能够有效调控植株的生长和含糖量的积累。

Description

一种沉默载体及其在转基因植株中的用途
技术领域
本发明涉及基因工程应用技术领域,具体涉及一种沉默载体及其在转基因植株中的用途。
背景技术
番茄是我国设施种植面积大且经济效益高的蔬菜作物,果实具有丰富的营养和独特的风味,深受消费者青睐。但在当今番茄市场供应充足条件下,人们对番茄品质的要求越来越高。果实中糖的积累涉及光合产物的运输、卸载、代谢、转化和储存,糖转运蛋白家族在糖转运和代谢的信号转导过程中起重要作用,是植物源/库中蔗糖跨膜运转的主要机制,对调控作物产量和品质形成中碳素分配具有重要意义。SWEETs属于高等植物中一类全新的跨膜转运蛋白质家族,对其基因的克隆及生理作用的阐述还只是刚开始,还有很多生理功能问题尚未解决。
目前所有已鉴定的蔗糖转运蛋白和单糖转运蛋白都需要能量支持,而这可能会对果实发育造成一定的损耗。SWEETs蛋白转运糖并不需要消耗能量,这为果实发育过程中糖的转运机制提供了一种新思路。我们在前期研究中找到了在果实大量表达的SlSWEETs家族成员,但其在番茄果实成熟过程中调控蔗糖转运的分子机理尚不清楚,导致鲜有在分子层面构建相关载体用于调控植株生长的研究,因此限制了其在转基因植株中的用途,尤其是对于果实中糖分的调控。
发明内容
为解决上述技术问题,本发明提供了一种沉默载体及其在转基因植株中的用途,利用番茄SlSWEET14基因的克隆产物构建获得沉默载体,然后通过将沉默载体转入番茄植株中获得转基因番茄,获得的转基因番茄株高增高,果实糖分积累增大。
本发明提供了一种沉默载体,所述沉默载体的构建过程为:通过引物SlSWEET14iF和SlSWEET14iR引物扩增番茄SlSWEET14基因的特异cDNA序列,获得PCR产物,然后将PCR产物与中间载体pENTR/D-TOPO连接,获得pENTR/D-TOPO-SlSWEET14载体,然后将pENTR/D-TOPO-SlSWEET14载体与终载体pB7GWIWG2(I)进行LR反应后获得沉默载体的重组质粒;
所述番茄SlSWEET14核苷酸序列如SEQ ID NO.1所示,其氨基酸序列如SEQ IDNO.2所示;
所述SlSWEET14iF引物的核苷酸序列如SEQ ID NO.3所示;
所述SlSWEET14iR引物的核苷酸序列如SEQ ID NO.4所示。
本发明还提供了所述的沉默载体在转基因植株中的用途。
进一步地,所述转基因植株的构建步骤如下:
S1,构建沉默载体;
S2,将沉默载体转化农杆菌LBA4404,然后用MS液体培养基稀释获得农杆菌悬浮液;
S3,将番茄种子于55℃温汤浸种20min,然后置于消毒水中灭菌20min,捞出,洗净后于MS固体培养基中25℃暗培养3d后进行光照培养4d,获得无菌苗;
S4,将番茄子叶切成0.5cm2的小块,置于预培养基上25℃暗培养2d,然后将预培养的外植体浸入OD600为0.6的农杆菌悬浮液中浸染5min,然后吸去外植体表面多余菌液,备用;
S5,将S4中获得的外植体于共培养基中暗培养2d,转入生芽培养基中于25℃,1800lx光强的条件下培养两周,再转入新的生芽培养基继代培养40-50天,待转化的抗性芽长至2-3cm时,将芽切下转入生根培养基中诱导生根,将生根良好的T0代植株移到营养液中遮荫保湿,炼苗3d,然后将植株种植到基质中,于25℃,1800lx光强,16h光照/8h黑暗的条件中培养50-60天,获得T1代转基因植株;
所述营养液配方为山崎配方。
进一步地,S3中,所述消毒水由蒸馏水和84消毒液按照体积比1:2组成。
进一步地,S5中,每升所述预培养基配方为:MS+15g·L-1蔗糖+7g·L-1琼脂。
进一步地,S5中,每升所述共培养基配方为:MS+30g·L-1蔗糖+7g·L-1琼脂+20mg·L-1乙酰丁香酮。
进一步地,S5中,每升所述生芽培养基配方为:MS+30g·L-1蔗糖+7g·L-1琼脂+1mg·L-1 6-苄基腺嘌呤+0.2mg·L-1 3-吲哚乙酸。
进一步地,S5中,每升所述生根培养基配方为:MS+30g·L-1蔗糖+7g·L-1琼脂+0.05mg·L-1α-萘乙酸。
进一步地,S5中,所述基质由泥炭、珍珠岩和蛭石按照体积比1:1:1混合而成。
进一步地,所述沉默载体能够促进苗期植株生长、节间的伸长、株高增高以及促进果实糖分积累。
与现有技术相比,本发明的有益效果在于:
1、本发明提供了SlSWEET14的基因序列在调控番茄果实糖含量的应用;
在选育增加糖含量的高品质番茄品种或品系时,利用基因技术手段检测其植株中番茄SlSWEET14基因的表达情况,选择番茄SlSWEET14基因表达量低的植株作为育种的亲本植株。
2、本发明提供了SlSWEET14的基因序列在调控株高的应用;
本发明的实验证明,将提供SlSWEET14的编码基因在Micro-Tom中敲除后获得的转基因植株,与未敲除该基因的野生型植株相比,植株的株高明显高于野生型植株,因此,该基因可应用于植物株型遗传改良等工作。
3、本发明提供了培育番茄含糖量增加的转基因植物的方法,具体是将上述的编码基因利用基因沉默技术进行敲除从而得到转基因植物,所述转基因植物的果实糖度相比于对照野生型植株果实明显提高。
4、本发明所设计的基因沉默位点、果实糖含量的表型以及株高的特征均属于本发明的保护范围。
5、利用番茄SlSWEET14基因沉默载体在番茄植株中沉默表达,增强了番茄果实糖的积累,通过高效液相分析实验数据统计分析证明,野生型番茄果实成熟时积累的果糖、葡萄糖分别为13.5mg/g FW和9.1mg/g FW,而本发明通过沉默番茄SlSWEET14基因获得的两份转基因植株的果实中果糖能达到22.8mg·g-1FW(14i-2)和17.2mg·g-1FW(14i-3);葡萄糖能达到13.7mg·g-1FW(14i-2)和12.2mg·g-1FW(14i-3),明显高于对照的野生型番茄。由此证实了沉默番茄SlSWEET14基因可明显增强果实糖的积累。
6、本发明的创造性贡献在于首次发现SlSWEET14基因在番茄中沉默表达可以显著提高番茄果实糖含量,并且可以改变植株的高度,这对番茄的高品质育种具有重要意义;因此,本发明提供的番茄SlSWEET14基因可作为目的基因导入番茄植株中,通过降低SlSWEET14基因在番茄植株中的表达量、增加植株高度,提高果实的含糖量;还可在番茄育种中,通过基因检测手段,选择低表达的番茄SlSWEET14基因的番茄植株,从而对高含糖量的番茄品种进行选育,其应用方法安全、可靠,利用转基因技术,将所述番茄SlSWEET14在番茄植株中进行沉默表达。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1中的SlSWEET14基因的PCR扩增结果图;
图2为本发明实施例1中构建获得的T1代转基因植株的分子鉴定胶图;
图3为本发明实施例1中6个T1代转基因株系SlSWEET14表达量分析,其中CK表示野生型番茄,其余6个为转基因的沉默株系;
图4为本发明实施例1中转基因植株(14i-2和14i-3)与对照(CK)植株的株高外观比较图;
其中,图4A表示对照植株与转基因植株14i-2和14i-3在幼苗期的株高外观比较图;
图4B表示对照植株与转基因植株14i-2在果实发育期的株高外观比较图;
图4C表示对照植株与转基因植株14i-3在果实发育期的株高外观比较图;
图5为本发明实施例1中对照植株(CK)与转基因植株(14i-2和14i-3)的株高、节间长度、茎节间数和茎粗的比较图;
其中,图5A表示对照植株CK与转基因植株14i-2和14i-3的株高比较图;
图5B表示对照植株CK与转基因植株14i-2和14i-3的节间长度比较图;
图5C表示对照植株CK与转基因植株14i-2和14i-3的茎节间数比较图;
图5D表示对照植株CK与转基因植株14i-2和14i-3的茎粗比较图;
图6为本发明实施例1中转基因植株14i-2和14i-3果实红熟期可溶性糖含量分析图;
其中,图6A为转基因植株14i-2和14i-3番茄果实中的果糖含量变化;
图6B为转基因植株14i-2和14i-3葡萄糖含量变化;
具体实施方式
下面对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。本发明各实施例中所述实验方法,如无特殊说明,均为常规方法。
本发明提供了一种沉默载体及其在转基因植株中的用途。
具体实施例如下:
实施例1
一、一种调控番茄果实可溶性糖的SlSWEET14基因沉默片段序列克隆
通过实时定量PCR分析筛选获得了果实中大量表达的SlSWEETs基因,根据NCBI(http://www.ncbi.nlm.nih.gov/)中SlSWEET14基因的cDNA序列用Primer Primer 5软件设计扩增引物SlSWEET14F和SLSWEET14R;
所述SlSWEET14F引物的基因序列如SEQ ID NO.5所示:
SEQ ID NO.5:5'-TATGACGACTCATTTGGCTTT-3';
所述SlSWEET14R引物的基因序列如SEQ ID NO.6所示:
SEQ ID NO.6:5'-CACACACAATCAGACCTATG-3';
以番茄果实为材料,使用RNAprep pure Plant Kit试剂盒(TIANGEN)提取总RNA,使用TIANGEN公司的FastQuant cDNA第一链合成试剂盒将RNA反转录成cDNA;
其反应体系总体积50μl,包含有高保真酶混合液25μl,正向引物SlSWEET14F 2.5μl,反向引物SlSWEET14R 2.5μl,cDNA模板2μl,ddH2O18μl;
反应程序为:预变性98℃30s(1个循环);变性98℃10s,退火20s,延伸72℃30s(35个循环);终延伸72℃10min(1个循环)。
所述SlSWEET14基因的核苷酸序列如SEQ ID NO.1所示,其氨基酸序列如SEQ IDNO.2所示。
二、沉默载体的构建
(1)将上述SlSWEET14基因的cDNA用引物SlSWEET14iF和SlSWEET14iR进行PCR扩增;
所述SlSWEET14iF引物的核苷酸序列如SEQ ID NO.3所示;
SEQ ID NO.3:5’-CACCGCATCGTGTTTCAAGTGGTTCG-3’;
所述SlSWEET14iR引物的核苷酸序列如SEQ ID NO.4所示;
SEQ ID NO.4:5’-TCTATCGCTGGCTTTGCGTT-3’;
PCR反应体系(20μL):cDNA 2μL,正向引物1μL,反向引物1μL,2×Phusion MasterMix 10μL,dd·H2O 6μL;
PCR反应程序为98℃30s;98℃10s,64℃30s,72℃30s,35个循环;72℃5min;
PCR扩增反应结束后,进行琼脂糖凝胶电泳(电泳条件:胶浓度1%;1×TAE缓冲液;电压120v,30min),电泳后在凝胶成像仪UV灯下观察拍照,然后回收目的片段,获得PCR产物(如图1所示);
(2)采用Gateway技术构建沉默载体:获得的PCR产物利用Gateway技术与中间载体pENTR/D-TOPO连接,获得pENTR/D-TOPO–SlSWEET14载体,测序鉴定正确后与终载体pB7GWIWG2(I)进行LR反应后获得沉默载体的重组质粒。
三、番茄转基因植株的构建;
(1)参照Guo等在文章(Optimization of factors affecting Agrobacterium-mediated transformation of Micro-Tom tomatoes,Genetics&Molecular Research)中建立的番茄遗传再生体系,采用叶盘法将沉默载体利用农杆菌介导转化Micro-Tom番茄,具体过程为:
首先将Micro-Tom种子放入装有蒸馏水的锥形瓶中,在55℃恒温水浴锅温汤浸种20min,再将种子放入消毒水(蒸馏水:84消毒液=1:2)中灭菌20min;用无菌的蒸馏水将消毒过的种子洗干净,用镊子夹取种子送入MS固体培养基(MS+30g·L-1蔗糖+7g·L-1琼脂)中,于25℃暗培养3d后放在光照下培养,培养4d后两片真叶完全展开,获得无菌苗;
在无菌条件下,将番茄子叶切成0.5cm2的小块,正面朝下置于预培养基上(MS+15g·L-1蔗糖+7g·L-1琼脂),25℃暗培养2d后,将预培养的外植体浸入用MS液体培养基稀释的农杆菌悬浮液中5min(浸染浓度OD600=0.6),用无菌滤纸吸去外植体表面多余菌液,放置共培养基(MS+30g·L-1蔗糖+7g·L-1琼脂+20mg·L-1乙酰丁香酮)中,暗培养2d;然后转入生芽培养基(MS+30g·L-1蔗糖+7g·L-1琼脂+1mg·L-1 6-苄基腺嘌呤+0.2mg·L-1 3-吲哚乙酸)中25℃,1800 lx光强的条件下培养两周后,再转入新的生芽培养基继代培养;待培养45天左右,转化的抗性芽长至2-3cm时,将芽切下转入生根培养基(MS+30g·L-1蔗糖+7g·L-1琼脂+0.05mg·L-1α-萘乙酸)中诱导生根,将生根良好的T0代植株移到营养液中(山崎配方)遮荫保湿,炼苗3d,然后将植株种植到基质中,放置25℃,1800lx光强,16h光照/8h黑暗的光照培养室中培养50-60天,获得T1代转基因植株。
四、T1代转基因植株的鉴定
以野生型植株作为阴性对照,编号为1,从T1代转基因植株中选择9株作为沉默阳性植株进行鉴定,分别编号为2、3…10,因为构建的重组质粒上也含有特异基因Bar,但引物方向相反,因此以Bar为筛选标记基因,采用Bar-F和Bar-R引物鉴定沉默阳性植株;
所述Bar-F引物的基因序列如SEQ ID NO.7所示;
SEQ ID NO.7:5'-GAAGTCCAGCTGCCAGAAA-3'
所述Bar-R引物的基因序列如SEQ ID NO.8所示;
SEQ ID NO.8:5'-CACCATCGTCAACCACTACAT-3';
PCR反应程序为94℃5min;94℃30s,58℃30s,72℃1min,35个循环;72℃5min;
取PCR反应产物进行1%琼脂糖凝胶电泳,紫外检测仪检测,结果如图2所示,说明本发明成功构建了T1代转基因植株;
选择5株构建成功的T1代转基因植株,以野生型CK对照组,进行SlSWEET14基因的实时定量分析,分析结果如图3所示,5株转基因阳性植株的SlSWEET14基因的表达量均比对照明显下降,选用表达量下降最明显的14i-2和14i-3进行后续的表型观测与糖含量测定。
五、用番茄SlSWEET14基因构建的沉默载体对T1代转基因植株的影响
取0.5g鲜样采用液相色谱测定法对T1代转基因植株的绿熟期果实及叶片进行果糖、葡萄糖和蔗糖3种糖的测定,液相色谱仪(Waters e 2695,USA)测定条件为进样温度35℃;流速1.0mL·min-1;柱子(Previl Carbohydrate ES5u);蒸发光散射检测器(AlltechELSD2000ES);
如图4所示,转基因株系14i-2和14i-3与对照CK相比较,分别在幼苗期(A)、开花坐果期(B)和果实成熟期(C)的株高均明显高于对照。
如图5所示,对转基因株系14i-2和14i-3开花坐果期的株高(A)的统计结果表明,两个转基因株系的株高比对照CK分别增加了52%和36%;节间长度(B)的统计发现两个转基因株系分别比对照增加了48%和32%;对植株的茎节数(C)统计结果表明转基因两个株系的节数比对照增加0.8~1个节位;从茎粗(D)看,14i-2的茎粗比对照高,而14i-3与对照相比变化不明显。因此,从上述结果可以看出,转基因株系通过增加茎节数和节间长度提高植株的高度。
如图6所示,与野生型(WT)植株相比,转基因植株14i-2和14i-3番茄果实中的果糖、葡萄糖含量均升高,其中果糖增加在34%以上,葡萄糖增加27%。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
序列表
<110> 沈阳农业大学
<>
<120> 一种沉默载体及其在转基因植株中的用途
<>
<160> 8
<>
<170> SIPOSequenceListing 1.0
<>
<210> 1
<211> 888
<212> DNA
<213> 番茄
<>
<400> 1
atgacgactc atttggcttt tgtatttggc ctcctaggaa acattgtctc cttcatggtc 60
taccttgctc cagtgccaac gttttataag atttacaaga agaaatcaac agaagggttc 120
caatcagttc cttacgtcgt tggattattc agtgccatgc tttggattta ctatgcattt 180
cttaaacctg atacaactct tctcattacc attaactctg ttggatgttt tattcaaact 240
ttttatattt gcttcttcct attttacgcc acaaaaaaag ccaagatgga cacgatgaaa 300
ctacttcttt caatgaacgt cgttggtttg ggcttaatca tttttctaac tcaatttttc 360
gcaaaaggat ctaaccgtgc tcaaattgtt ggatggattt gccttatttt ttcattttgt 420
gtcttcgttg cacctttggg tgttctccga caagttataa ggaccaaaag tgtggagtat 480
atgccatttc aactatcatt ttttctaaca ttaagtgccg ttatgtggtt tttatatggt 540
cttctacgta aagattacaa tattgctata ccaaacgtgt tgggatttag ccttggagtg 600
attcaaatga ctctttattt gatttacaag aacgcgaaaa aggtgacgaa agaagtgaaa 660
ttagaagtaa cagaaattgt tgctgatgat aaagagctta agctttctga agaaatacta 720
aaagatcaaa ttattgatgt tgtgaagttg agtgcaattg tgtgttcaga aataattcca 780
atggttactg gtaatgagct gaagaatgaa attaatctgc ctcaacttaa tgtgattatt 840
aatgaagaca tgatgattaa gccaaaggca atcatagagg cctcttaa 888
<>
<210> 2
<211> 295
<212> PRT
<213> 番茄
<>
<400> 2
Met Thr Thr His Leu Ala Phe Val Phe Gly Leu Leu Gly Asn Ile Val
1 5 10 15
Ser Phe Met Val Tyr Leu Ala Pro Val Pro Thr Phe Tyr Lys Ile Tyr
20 25 30
Lys Lys Lys Ser Thr Glu Gly Phe Gln Ser Val Pro Tyr Val Val Gly
35 40 45
Leu Phe Ser Ala Met Leu Trp Ile Tyr Tyr Ala Phe Leu Lys Pro Asp
50 55 60
Thr Thr Leu Leu Ile Thr Ile Asn Ser Val Gly Cys Phe Ile Gln Thr
65 70 75 80
Phe Tyr Ile Cys Phe Phe Leu Phe Tyr Ala Thr Lys Lys Ala Lys Met
85 90 95
Asp Thr Met Lys Leu Leu Leu Ser Met Asn Val Val Gly Leu Gly Leu
100 105 110
Ile Ile Phe Leu Thr Gln Phe Phe Ala Lys Gly Ser Asn Arg Ala Gln
115 120 125
Ile Val Gly Trp Ile Cys Leu Ile Phe Ser Phe Cys Val Phe Val Ala
130 135 140
Pro Leu Gly Val Leu Arg Gln Val Ile Arg Thr Lys Ser Val Glu Tyr
145 150 155 160
Met Pro Phe Gln Leu Ser Phe Phe Leu Thr Leu Ser Ala Val Met Trp
165 170 175
Phe Leu Tyr Gly Leu Leu Arg Lys Asp Tyr Asn Ile Ala Ile Pro Asn
180 185 190
Val Leu Gly Phe Ser Leu Gly Val Ile Gln Met Thr Leu Tyr Leu Ile
195 200 205
Tyr Lys Asn Ala Lys Lys Val Thr Lys Glu Val Lys Leu Glu Val Thr
210 215 220
Glu Ile Val Ala Asp Asp Lys Glu Leu Lys Leu Ser Glu Glu Ile Leu
225 230 235 240
Lys Asp Gln Ile Ile Asp Val Val Lys Leu Ser Ala Ile Val Cys Ser
245 250 255
Glu Ile Ile Pro Met Val Thr Gly Asn Glu Leu Lys Asn Glu Ile Asn
260 265 270
Leu Pro Gln Leu Asn Val Ile Ile Asn Glu Asp Met Met Ile Lys Pro
275 280 285
Lys Ala Ile Ile Glu Ala Ser
290 295
<210> 3
<211> 26
<212> DNA
<213> 人工合成
<>
<400> 3
caccgcatcg tgtttcaagt ggttcg 26<>
<>
<210> 4
<211> 20
<212> DNA
<213> 人工合成
<>
<400> 4
tctatcgctg gctttgcgtt 20<>
<>
<210> 5
<211> 21
<212> DNA
<213> 人工合成
<>
<400> 5
tatgacgact catttggctt t 21<>
<>
<210> 6
<211> 20
<212> DNA
<213> 人工合成
<>
<400> 6
cacacacaat cagacctatg 20<>
<>
<210> 7
<211> 19
<212> DNA
<213> 人工合成
<>
<400> 7
gaagtccagc tgccagaaa 19<>
<>
<210> 8
<211> 21
<212> DNA
<213> 人工合成
<>
<400> 8
caccatcgtc aaccactaca t 21<>
<>
<>
<>

Claims (10)

1.一种沉默载体,其特征在于,所述沉默载体的构建过程为:通过引物SlSWEET14iF和SlSWEET14iR引物扩增番茄SlSWEET14基因的特异cDNA序列,获得PCR产物,然后将PCR产物与中间载体pENTR/D-TOPO连接,获得pENTR/D-TOPO-SlSWEET14载体,然后将pENTR/D-TOPO–SlSWEET14载体与终载体pB7GWIWG2(I)进行LR反应后获得沉默载体的重组质粒;
所述番茄SlSWEET14核苷酸序列如SEQ ID NO.1所示,其氨基酸序列如SEQ ID NO.2所示;
所述SlSWEET14iF引物的核苷酸序列如SEQ ID NO.3所示;
所述SlSWEET14iR引物的核苷酸序列如SEQ ID NO.4所示。
2.如权利要求1所述的沉默载体在转基因植株中的用途。
3.如权利要求2所述的沉默载体在转基因植株中的用途,其特征在于,所述转基因植株的构建步骤如下:
S1,构建沉默载体;
S2,将沉默载体转化农杆菌LBA4404,然后用MS液体培养基稀释获得农杆菌悬浮液;
S3,将番茄种子于55℃温汤浸种20min,然后置于消毒水中灭菌20min,捞出,洗净后于MS固体培养基中25℃暗培养3d后进行光照培养4d,获得无菌苗;
S4,将番茄子叶切成0.5cm2的小块,置于预培养基上25℃暗培养2d,然后将预培养的外植体浸入OD600为0.6的农杆菌悬浮液中浸染5min,然后吸去外植体表面多余菌液,备用;
S5,将S4中获得的外植体于共培养基中暗培养2d,转入生芽培养基中于25℃,1 800lx光强的条件下培养两周,再转入新的生芽培养基继代培养40-50天,待转化的抗性芽长至2-3cm时,将芽切下转入生根培养基中诱导生根,将生根良好的T0代植株移到营养液中遮荫保湿,炼苗3d,然后将植株种植到基质中,于25℃,1800lx光强,16h光照/8h黑暗的条件中培养50-60天,获得T1代转基因植株;
所述营养液配方为山崎配方。
4.如权利要求3所述的沉默载体在转基因植株中的用途,其特征在于,S3中,所述消毒水由蒸馏水和84消毒液按照体积比1:2组成。
5.如权利要求3所述的沉默载体在转基因植株中的用途,其特征在于,S5中,每升所述预培养基配方为:MS+15g·L-1蔗糖+7g·L-1琼脂。
6.如权利要求5所述的沉默载体在转基因植株中的用途,其特征在于,S5中,每升所述共培养基配方为:MS+30g·L-1蔗糖+7g·L-1琼脂+20mg·L-1乙酰丁香酮。
7.如权利要求6所述的沉默载体在转基因植株中的用途,其特征在于,S5中,每升所述生芽培养基配方为:MS+30g·L-1蔗糖+7g·L-1琼脂+1mg·L-1 6-苄基腺嘌呤+0.2 mg·L-13-吲哚乙酸。
8.如权利要求7所述的沉默载体在转基因植株中的用途,其特征在于,S5中,每升所述生根培养基配方为:MS+30g·L-1蔗糖+7g·L-1琼脂+0.05mg·L-1α-萘乙酸。
9.如权利要求8所述的沉默载体在转基因植株中的用途,其特征在于,S5中,所述基质由泥炭、珍珠岩和蛭石按照体积比1:1:1混合而成。
10.如权利要求2所述的沉默载体在转基因植株中的用途,其特征在于,所述沉默载体能够促进苗期植株生长、节间的伸长、株高增高以及促进果实糖分积累。
CN202110070237.7A 2021-01-18 2021-01-18 一种沉默载体及其在转基因植株中的用途 Active CN112725375B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110070237.7A CN112725375B (zh) 2021-01-18 2021-01-18 一种沉默载体及其在转基因植株中的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110070237.7A CN112725375B (zh) 2021-01-18 2021-01-18 一种沉默载体及其在转基因植株中的用途

Publications (2)

Publication Number Publication Date
CN112725375A true CN112725375A (zh) 2021-04-30
CN112725375B CN112725375B (zh) 2024-02-13

Family

ID=75592429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110070237.7A Active CN112725375B (zh) 2021-01-18 2021-01-18 一种沉默载体及其在转基因植株中的用途

Country Status (1)

Country Link
CN (1) CN112725375B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024125590A1 (zh) * 2022-12-15 2024-06-20 中国农业科学院农业基因组研究所 多核苷酸、蛋白质、生物材料及其在提升植物果实品质中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105848471A (zh) * 2013-12-27 2016-08-10 丰田自动车株式会社 转化植物、使用转化植物的含糖溢泌物的制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105848471A (zh) * 2013-12-27 2016-08-10 丰田自动车株式会社 转化植物、使用转化植物的含糖溢泌物的制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XINSHENG ZHANG等: "Plasma membrane-localized SlSWEET7a and SlSWEET14 regulate sugar transport and storage in tomato fruits" *
程杰: "SlSWEET12c和SlSWEET14在番茄果实成熟期糖转运与积累中的作用" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024125590A1 (zh) * 2022-12-15 2024-06-20 中国农业科学院农业基因组研究所 多核苷酸、蛋白质、生物材料及其在提升植物果实品质中的应用

Also Published As

Publication number Publication date
CN112725375B (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
CN110699361B (zh) 水稻抗盐胁迫相关基因Os16及其编码蛋白与应用
CN105420248A (zh) 花青苷调控基因PyMYB10.2及其应用
CN104611359B (zh) ZmSPL1蛋白及其编码基因在调控玉米籽粒发育中的应用
CN107058342A (zh) 调控番茄果实苹果酸积累的关键基因SlALMT9的克隆及应用
Chen et al. Enhance sucrose accumulation in strawberry fruits by eliminating the translational repression of FabZIPs1. 1
CN109762828B (zh) 苹果果实己糖转运蛋白基因MdHT2.2及其应用
CN112725375B (zh) 一种沉默载体及其在转基因植株中的用途
EP2963117B1 (en) Plant type related protein, and coding gene and application thereof
CN109880830B (zh) 桃多肽激素合成基因PpRGF1及其应用
CN113563439B (zh) 一种果形发育相关蛋白及其编码基因与应用
CN115058433B (zh) 一种烟叶落黄调控基因NtMYB2、蛋白及其应用
CN113264992B (zh) 一种梨形番茄材料的制备方法
CN112279904B (zh) 蛋白质gl12.2在调控水稻产量中的应用
CN112029777B (zh) 一种降低水稻结实率的OsALIS4基因及其编码得到的蛋白和应用
CN104945493B (zh) 一种影响植物生育期的大豆蛋白GmIDD及其编码基因与应用
CN107573411A (zh) 小麦TaZIM1‑7A蛋白在调控作物抽穗期中的应用
CN107630021A (zh) 芦笋耐盐基因AoSOS2及其编码的蛋白与应用
CN113337522A (zh) 棉花GhNFYC4基因在促进植物开花中的应用
CN109879945B (zh) 甘蓝型油菜抗裂角基因BnIND的功能及应用
CN103044533A (zh) 与己糖转运相关的蛋白及其编码基因与应用
CN107653252B (zh) 棉花GbSLR1基因在植物根和分枝发育中的应用
CN112225790A (zh) 水稻抗盐胁迫相关基因onac103及编码蛋白与应用
CN105734064B (zh) OsCCT6基因在控制水稻产量、开花期和株高的应用
CN112391403B (zh) Tgw10基因在用于改良农作物粒型性状中的应用
CN113968899B (zh) 一种长果番茄材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant