CN112703189B - Novel compound and organic light emitting device comprising the same - Google Patents
Novel compound and organic light emitting device comprising the same Download PDFInfo
- Publication number
- CN112703189B CN112703189B CN201980059738.6A CN201980059738A CN112703189B CN 112703189 B CN112703189 B CN 112703189B CN 201980059738 A CN201980059738 A CN 201980059738A CN 112703189 B CN112703189 B CN 112703189B
- Authority
- CN
- China
- Prior art keywords
- added
- mmol
- compound
- layer
- stirred
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 161
- 239000000126 substance Substances 0.000 claims description 47
- 239000011368 organic material Substances 0.000 claims description 42
- 125000003118 aryl group Chemical group 0.000 claims description 28
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 14
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 13
- 229910052805 deuterium Inorganic materials 0.000 claims description 10
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 235000010290 biphenyl Nutrition 0.000 claims description 4
- 239000004305 biphenyl Chemical group 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 161
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 152
- 239000012044 organic layer Substances 0.000 description 108
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 99
- 238000002360 preparation method Methods 0.000 description 63
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 62
- 239000000203 mixture Substances 0.000 description 57
- 238000006243 chemical reaction Methods 0.000 description 44
- 239000007787 solid Substances 0.000 description 44
- -1 triethylsilyl group Chemical group 0.000 description 44
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 38
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 38
- 239000000706 filtrate Substances 0.000 description 38
- 239000000463 material Substances 0.000 description 38
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 38
- 239000011541 reaction mixture Substances 0.000 description 38
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 33
- 238000002347 injection Methods 0.000 description 32
- 239000007924 injection Substances 0.000 description 32
- 239000012299 nitrogen atmosphere Substances 0.000 description 30
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 27
- 239000000741 silica gel Substances 0.000 description 27
- 229910002027 silica gel Inorganic materials 0.000 description 27
- 230000032258 transport Effects 0.000 description 23
- 238000003756 stirring Methods 0.000 description 22
- 229910000027 potassium carbonate Inorganic materials 0.000 description 19
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 19
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 238000001914 filtration Methods 0.000 description 16
- 150000003839 salts Chemical class 0.000 description 16
- MXQOYLRVSVOCQT-UHFFFAOYSA-N palladium;tritert-butylphosphane Chemical compound [Pd].CC(C)(C)P(C(C)(C)C)C(C)(C)C.CC(C)(C)P(C(C)(C)C)C(C)(C)C MXQOYLRVSVOCQT-UHFFFAOYSA-N 0.000 description 14
- 125000001424 substituent group Chemical group 0.000 description 14
- 239000000758 substrate Substances 0.000 description 14
- 125000004432 carbon atom Chemical group C* 0.000 description 13
- 230000005525 hole transport Effects 0.000 description 13
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 125000000623 heterocyclic group Chemical group 0.000 description 10
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 10
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 9
- 238000000151 deposition Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 230000000903 blocking effect Effects 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 125000003342 alkenyl group Chemical group 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 125000000753 cycloalkyl group Chemical group 0.000 description 7
- 229910052763 palladium Inorganic materials 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000010406 cathode material Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- WTAPZWXVSZMMDG-UHFFFAOYSA-N 1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].C=1C=CC=CC=1C=CC(=O)C=CC1=CC=CC=C1 WTAPZWXVSZMMDG-UHFFFAOYSA-N 0.000 description 5
- 150000001335 aliphatic alkanes Chemical class 0.000 description 5
- 239000010405 anode material Substances 0.000 description 5
- 150000004982 aromatic amines Chemical class 0.000 description 5
- IPWKHHSGDUIRAH-UHFFFAOYSA-N bis(pinacolato)diboron Chemical compound O1C(C)(C)C(C)(C)OB1B1OC(C)(C)C(C)(C)O1 IPWKHHSGDUIRAH-UHFFFAOYSA-N 0.000 description 5
- 229940125904 compound 1 Drugs 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 235000011056 potassium acetate Nutrition 0.000 description 5
- WLPUWLXVBWGYMZ-UHFFFAOYSA-N tricyclohexylphosphine Chemical compound C1CCCCC1P(C1CCCCC1)C1CCCCC1 WLPUWLXVBWGYMZ-UHFFFAOYSA-N 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 125000004185 ester group Chemical group 0.000 description 4
- HXITXNWTGFUOAU-RALIUCGRSA-N (2,3,4,5,6-pentadeuteriophenyl)boronic acid Chemical compound [2H]C1=C([2H])C([2H])=C(B(O)O)C([2H])=C1[2H] HXITXNWTGFUOAU-RALIUCGRSA-N 0.000 description 3
- GGTUVWGMCFXUAS-UHFFFAOYSA-N (5-chloro-2-fluorophenyl)boronic acid Chemical compound OB(O)C1=CC(Cl)=CC=C1F GGTUVWGMCFXUAS-UHFFFAOYSA-N 0.000 description 3
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 3
- DDGPPAMADXTGTN-UHFFFAOYSA-N 2-chloro-4,6-diphenyl-1,3,5-triazine Chemical compound N=1C(Cl)=NC(C=2C=CC=CC=2)=NC=1C1=CC=CC=C1 DDGPPAMADXTGTN-UHFFFAOYSA-N 0.000 description 3
- IMLDYQBWZHPGJA-UHFFFAOYSA-N 2-phenyl-9h-carbazole Chemical compound C1=CC=CC=C1C1=CC=C2C3=CC=CC=C3NC2=C1 IMLDYQBWZHPGJA-UHFFFAOYSA-N 0.000 description 3
- MHYZYLQHHQNSPV-UHFFFAOYSA-N 4-phenyl-9h-carbazole Chemical compound C1=CC=CC=C1C1=CC=CC2=C1C1=CC=CC=C1N2 MHYZYLQHHQNSPV-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 125000002877 alkyl aryl group Chemical group 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- 125000001769 aryl amino group Chemical group 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 125000001072 heteroaryl group Chemical group 0.000 description 3
- 238000004770 highest occupied molecular orbital Methods 0.000 description 3
- 125000005462 imide group Chemical group 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- AOSZTAHDEDLTLQ-AZKQZHLXSA-N (1S,2S,4R,8S,9S,11S,12R,13S,19S)-6-[(3-chlorophenyl)methyl]-12,19-difluoro-11-hydroxy-8-(2-hydroxyacetyl)-9,13-dimethyl-6-azapentacyclo[10.8.0.02,9.04,8.013,18]icosa-14,17-dien-16-one Chemical compound C([C@@H]1C[C@H]2[C@H]3[C@]([C@]4(C=CC(=O)C=C4[C@@H](F)C3)C)(F)[C@@H](O)C[C@@]2([C@@]1(C1)C(=O)CO)C)N1CC1=CC=CC(Cl)=C1 AOSZTAHDEDLTLQ-AZKQZHLXSA-N 0.000 description 2
- SZUVGFMDDVSKSI-WIFOCOSTSA-N (1s,2s,3s,5r)-1-(carboxymethyl)-3,5-bis[(4-phenoxyphenyl)methyl-propylcarbamoyl]cyclopentane-1,2-dicarboxylic acid Chemical compound O=C([C@@H]1[C@@H]([C@](CC(O)=O)([C@H](C(=O)N(CCC)CC=2C=CC(OC=3C=CC=CC=3)=CC=2)C1)C(O)=O)C(O)=O)N(CCC)CC(C=C1)=CC=C1OC1=CC=CC=C1 SZUVGFMDDVSKSI-WIFOCOSTSA-N 0.000 description 2
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 2
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 2
- IWZSHWBGHQBIML-ZGGLMWTQSA-N (3S,8S,10R,13S,14S,17S)-17-isoquinolin-7-yl-N,N,10,13-tetramethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-amine Chemical compound CN(C)[C@H]1CC[C@]2(C)C3CC[C@@]4(C)[C@@H](CC[C@@H]4c4ccc5ccncc5c4)[C@@H]3CC=C2C1 IWZSHWBGHQBIML-ZGGLMWTQSA-N 0.000 description 2
- ONBQEOIKXPHGMB-VBSBHUPXSA-N 1-[2-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)propan-1-one Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=CC(O)=C1C(=O)CCC1=CC=C(O)C=C1 ONBQEOIKXPHGMB-VBSBHUPXSA-N 0.000 description 2
- UNILWMWFPHPYOR-KXEYIPSPSA-M 1-[6-[2-[3-[3-[3-[2-[2-[3-[[2-[2-[[(2r)-1-[[2-[[(2r)-1-[3-[2-[2-[3-[[2-(2-amino-2-oxoethoxy)acetyl]amino]propoxy]ethoxy]ethoxy]propylamino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-1-oxopropan-2-yl Chemical compound O=C1C(SCCC(=O)NCCCOCCOCCOCCCNC(=O)COCC(=O)N[C@@H](CSC[C@@H](COC(=O)CCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC)C(=O)NCC(=O)N[C@H](CO)C(=O)NCCCOCCOCCOCCCNC(=O)COCC(N)=O)CC(=O)N1CCNC(=O)CCCCCN\1C2=CC=C(S([O-])(=O)=O)C=C2CC/1=C/C=C/C=C/C1=[N+](CC)C2=CC=C(S([O-])(=O)=O)C=C2C1 UNILWMWFPHPYOR-KXEYIPSPSA-M 0.000 description 2
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- QNGVEVOZKYHNGL-UHFFFAOYSA-N 2-chloro-4,6-diphenylpyrimidine Chemical compound N=1C(Cl)=NC(C=2C=CC=CC=2)=CC=1C1=CC=CC=C1 QNGVEVOZKYHNGL-UHFFFAOYSA-N 0.000 description 2
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 2
- QENGPZGAWFQWCZ-UHFFFAOYSA-N 3-Methylthiophene Chemical compound CC=1C=CSC=1 QENGPZGAWFQWCZ-UHFFFAOYSA-N 0.000 description 2
- IAWRFMPNMXEJCK-UHFFFAOYSA-N 3-phenyl-9h-carbazole Chemical compound C1=CC=CC=C1C1=CC=C(NC=2C3=CC=CC=2)C3=C1 IAWRFMPNMXEJCK-UHFFFAOYSA-N 0.000 description 2
- MJDDVTZXYXHTRY-UHFFFAOYSA-N 4-chloro-2,6-diphenylpyrimidine Chemical compound N=1C(Cl)=CC(C=2C=CC=CC=2)=NC=1C1=CC=CC=C1 MJDDVTZXYXHTRY-UHFFFAOYSA-N 0.000 description 2
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- OJRUSAPKCPIVBY-KQYNXXCUSA-N C1=NC2=C(N=C(N=C2N1[C@H]3[C@@H]([C@@H]([C@H](O3)COP(=O)(CP(=O)(O)O)O)O)O)I)N Chemical compound C1=NC2=C(N=C(N=C2N1[C@H]3[C@@H]([C@@H]([C@H](O3)COP(=O)(CP(=O)(O)O)O)O)O)I)N OJRUSAPKCPIVBY-KQYNXXCUSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 229940126657 Compound 17 Drugs 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 238000006069 Suzuki reaction reaction Methods 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- LNUFLCYMSVYYNW-ZPJMAFJPSA-N [(2r,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[[(3s,5s,8r,9s,10s,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-disulfo Chemical compound O([C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1C[C@@H]2CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)[C@H]1O[C@H](COS(O)(=O)=O)[C@@H](OS(O)(=O)=O)[C@H](OS(O)(=O)=O)[C@H]1OS(O)(=O)=O LNUFLCYMSVYYNW-ZPJMAFJPSA-N 0.000 description 2
- ZEEBGORNQSEQBE-UHFFFAOYSA-N [2-(3-phenylphenoxy)-6-(trifluoromethyl)pyridin-4-yl]methanamine Chemical compound C1(=CC(=CC=C1)OC1=NC(=CC(=C1)CN)C(F)(F)F)C1=CC=CC=C1 ZEEBGORNQSEQBE-UHFFFAOYSA-N 0.000 description 2
- ABRVLXLNVJHDRQ-UHFFFAOYSA-N [2-pyridin-3-yl-6-(trifluoromethyl)pyridin-4-yl]methanamine Chemical compound FC(C1=CC(=CC(=N1)C=1C=NC=CC=1)CN)(F)F ABRVLXLNVJHDRQ-UHFFFAOYSA-N 0.000 description 2
- 125000003282 alkyl amino group Chemical group 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 125000005264 aryl amine group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 229940125773 compound 10 Drugs 0.000 description 2
- 229940125797 compound 12 Drugs 0.000 description 2
- 229940126543 compound 14 Drugs 0.000 description 2
- 229940125758 compound 15 Drugs 0.000 description 2
- 229940126142 compound 16 Drugs 0.000 description 2
- 229940125782 compound 2 Drugs 0.000 description 2
- 229940125810 compound 20 Drugs 0.000 description 2
- 229940126214 compound 3 Drugs 0.000 description 2
- 229940125898 compound 5 Drugs 0.000 description 2
- 150000002219 fluoranthenes Chemical class 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- JAXFJECJQZDFJS-XHEPKHHKSA-N gtpl8555 Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)N[C@H](B1O[C@@]2(C)[C@H]3C[C@H](C3(C)C)C[C@H]2O1)CCC1=CC=C(F)C=C1 JAXFJECJQZDFJS-XHEPKHHKSA-N 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 125000005241 heteroarylamino group Chemical group 0.000 description 2
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 125000002971 oxazolyl group Chemical group 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229960003540 oxyquinoline Drugs 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- WJDZZXIDQYKVDG-UHFFFAOYSA-N (3-chloro-4-fluorophenyl)boronic acid Chemical compound OB(O)C1=CC=C(F)C(Cl)=C1 WJDZZXIDQYKVDG-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000006218 1-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006023 1-pentenyl group Chemical group 0.000 description 1
- FBTOLQFRGURPJH-UHFFFAOYSA-N 1-phenyl-9h-carbazole Chemical compound C1=CC=CC=C1C1=CC=CC2=C1NC1=CC=CC=C12 FBTOLQFRGURPJH-UHFFFAOYSA-N 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- ZVFJWYZMQAEBMO-UHFFFAOYSA-N 1h-benzo[h]quinolin-10-one Chemical compound C1=CNC2=C3C(=O)C=CC=C3C=CC2=C1 ZVFJWYZMQAEBMO-UHFFFAOYSA-N 0.000 description 1
- MKHDDTWHDFVYDQ-UHFFFAOYSA-N 2,4-dibromo-1-fluorobenzene Chemical compound FC1=CC=C(Br)C=C1Br MKHDDTWHDFVYDQ-UHFFFAOYSA-N 0.000 description 1
- RURFAZNYUZFHSC-UHFFFAOYSA-N 2,4-dichloro-6-(3-phenylphenyl)-1,3,5-triazine Chemical compound ClC1=NC(Cl)=NC(C=2C=C(C=CC=2)C=2C=CC=CC=2)=N1 RURFAZNYUZFHSC-UHFFFAOYSA-N 0.000 description 1
- JYPGHMDTTDKUEL-UHFFFAOYSA-N 2,4-dichloro-6-(4-phenylphenyl)-1,3,5-triazine Chemical compound ClC1=NC(Cl)=NC(C=2C=CC(=CC=2)C=2C=CC=CC=2)=N1 JYPGHMDTTDKUEL-UHFFFAOYSA-N 0.000 description 1
- AMEVJOWOWQPPJQ-UHFFFAOYSA-N 2,4-dichloro-6-phenyl-1,3,5-triazine Chemical compound ClC1=NC(Cl)=NC(C=2C=CC=CC=2)=N1 AMEVJOWOWQPPJQ-UHFFFAOYSA-N 0.000 description 1
- NWLCIOKUOGGKKK-UHFFFAOYSA-N 2,7-diphenyl-9h-carbazole Chemical compound C1=CC=CC=C1C1=CC=C2C3=CC=C(C=4C=CC=CC=4)C=C3NC2=C1 NWLCIOKUOGGKKK-UHFFFAOYSA-N 0.000 description 1
- INJYATWDDJSOIP-UHFFFAOYSA-N 2-bromo-4,6-diphenylpyridine Chemical compound N=1C(Br)=CC(C=2C=CC=CC=2)=CC=1C1=CC=CC=C1 INJYATWDDJSOIP-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000006176 2-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005916 2-methylpentyl group Chemical group 0.000 description 1
- 125000006024 2-pentenyl group Chemical group 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- DMEVMYSQZPJFOK-UHFFFAOYSA-N 3,4,5,6,9,10-hexazatetracyclo[12.4.0.02,7.08,13]octadeca-1(18),2(7),3,5,8(13),9,11,14,16-nonaene Chemical compound N1=NN=C2C3=CC=CC=C3C3=CC=NN=C3C2=N1 DMEVMYSQZPJFOK-UHFFFAOYSA-N 0.000 description 1
- PCMKGEAHIZDRFL-UHFFFAOYSA-N 3,6-diphenyl-9h-carbazole Chemical compound C1=CC=CC=C1C1=CC=C(NC=2C3=CC(=CC=2)C=2C=CC=CC=2)C3=C1 PCMKGEAHIZDRFL-UHFFFAOYSA-N 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000006027 3-methyl-1-butenyl group Chemical group 0.000 description 1
- DDTHMESPCBONDT-UHFFFAOYSA-N 4-(4-oxocyclohexa-2,5-dien-1-ylidene)cyclohexa-2,5-dien-1-one Chemical compound C1=CC(=O)C=CC1=C1C=CC(=O)C=C1 DDTHMESPCBONDT-UHFFFAOYSA-N 0.000 description 1
- 125000004920 4-methyl-2-pentyl group Chemical group CC(CC(C)*)C 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical group N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- OSCBARYHPZZEIS-RALIUCGRSA-N C1(=C(C(=C(C(=C1[2H])[2H])[2H])[2H])[2H])OB(O)O Chemical compound C1(=C(C(=C(C(=C1[2H])[2H])[2H])[2H])[2H])OB(O)O OSCBARYHPZZEIS-RALIUCGRSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 241001082241 Lythrum hyssopifolia Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical class C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- HAQFCILFQVZOJC-UHFFFAOYSA-N anthracene-9,10-dione;methane Chemical compound C.C.C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 HAQFCILFQVZOJC-UHFFFAOYSA-N 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 150000008425 anthrones Chemical class 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 150000003974 aralkylamines Chemical group 0.000 description 1
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 125000003609 aryl vinyl group Chemical group 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 125000003943 azolyl group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229950011260 betanaphthol Drugs 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- UFVXQDWNSAGPHN-UHFFFAOYSA-K bis[(2-methylquinolin-8-yl)oxy]-(4-phenylphenoxy)alumane Chemical compound [Al+3].C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC([O-])=CC=C1C1=CC=CC=C1 UFVXQDWNSAGPHN-UHFFFAOYSA-K 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- XOYLJNJLGBYDTH-UHFFFAOYSA-M chlorogallium Chemical compound [Ga]Cl XOYLJNJLGBYDTH-UHFFFAOYSA-M 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- IURRXCRWRKQLGC-UHFFFAOYSA-N copper;quinolin-8-ol Chemical compound [Cu].C1=CN=C2C(O)=CC=CC2=C1.C1=CN=C2C(O)=CC=CC2=C1 IURRXCRWRKQLGC-UHFFFAOYSA-N 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000004210 cyclohexylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004851 cyclopentylmethyl group Chemical group C1(CCCC1)C* 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 125000002720 diazolyl group Chemical group 0.000 description 1
- 150000004826 dibenzofurans Chemical class 0.000 description 1
- 125000005509 dibenzothiophenyl group Chemical group 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- YLQWCDOCJODRMT-UHFFFAOYSA-N fluoren-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C2=C1 YLQWCDOCJODRMT-UHFFFAOYSA-N 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 150000002240 furans Chemical class 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005549 heteroarylene group Chemical group 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- SKEDXQSRJSUMRP-UHFFFAOYSA-N lithium;quinolin-8-ol Chemical compound [Li].C1=CN=C2C(O)=CC=CC2=C1 SKEDXQSRJSUMRP-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- AMTZBMRZYODPHS-UHFFFAOYSA-N manganese;quinolin-8-ol Chemical compound [Mn].C1=CN=C2C(O)=CC=CC2=C1.C1=CN=C2C(O)=CC=CC2=C1 AMTZBMRZYODPHS-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical group [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 150000002964 pentacenes Chemical class 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- WSRHMJYUEZHUCM-UHFFFAOYSA-N perylene-1,2,3,4-tetracarboxylic acid Chemical class C=12C3=CC=CC2=CC=CC=1C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C2=C1C3=CC=C2C(=O)O WSRHMJYUEZHUCM-UHFFFAOYSA-N 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 150000002987 phenanthrenes Chemical class 0.000 description 1
- 125000004625 phenanthrolinyl group Chemical group N1=C(C=CC2=CC=C3C=CC=NC3=C12)* 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 125000001484 phenothiazinyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 1
- XPPWLXNXHSNMKC-UHFFFAOYSA-N phenylboron Chemical group [B]C1=CC=CC=C1 XPPWLXNXHSNMKC-UHFFFAOYSA-N 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 150000003220 pyrenes Chemical class 0.000 description 1
- 125000001725 pyrenyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 229940083082 pyrimidine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- DLJHXMRDIWMMGO-UHFFFAOYSA-N quinolin-8-ol;zinc Chemical compound [Zn].C1=CN=C2C(O)=CC=CC2=C1.C1=CN=C2C(O)=CC=CC2=C1 DLJHXMRDIWMMGO-UHFFFAOYSA-N 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 150000003413 spiro compounds Chemical class 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- IBBLKSWSCDAPIF-UHFFFAOYSA-N thiopyran Chemical compound S1C=CC=C=C1 IBBLKSWSCDAPIF-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- LALRXNPLTWZJIJ-UHFFFAOYSA-N triethylborane Chemical group CCB(CC)CC LALRXNPLTWZJIJ-UHFFFAOYSA-N 0.000 description 1
- WXRGABKACDFXMG-UHFFFAOYSA-N trimethylborane Chemical group CB(C)C WXRGABKACDFXMG-UHFFFAOYSA-N 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- MXSVLWZRHLXFKH-UHFFFAOYSA-N triphenylborane Chemical group C1=CC=CC=C1B(C=1C=CC=CC=1)C1=CC=CC=C1 MXSVLWZRHLXFKH-UHFFFAOYSA-N 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D407/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
- C07D407/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/12—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
- C07D487/14—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
- C07D491/044—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
- C07D491/048—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/22—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/22—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D498/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D498/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D498/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D513/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
- C07D513/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
- C07D513/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D519/00—Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/622—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/626—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/656—Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6574—Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6576—Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/40—Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/90—Multiple hosts in the emissive layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Plural Heterocyclic Compounds (AREA)
- Led Devices (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Abstract
The present disclosure provides novel compounds and organic light emitting devices comprising the same.
Description
Technical Field
Cross Reference to Related Applications
The present application claims priority or equity from korean patent application No. 10-2018-0148563, which was filed on the date of 2018, 11, 27, and korean patent application No. 10-2019-0153522, which was filed on the date of 2019, 11, 26, to the korean intellectual property office, the disclosures of which are incorporated herein by reference in their entirety.
The present disclosure relates to novel compounds and organic light emitting devices comprising the same.
Background
In general, an organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy by using an organic material. An organic light emitting device using the organic light emitting phenomenon has characteristics such as a wide viewing angle, excellent contrast, a fast response time, excellent brightness, driving voltage, and response speed, and thus many researches have been conducted.
The organic light emitting device generally has a structure including an anode, a cathode, and an organic material layer interposed between the anode and the cathode. The organic material layer generally has a multi-layered structure including different materials to improve efficiency and stability of the organic light emitting device, for example, the organic material layer may be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like. In the structure of the organic light emitting device, if a voltage is applied between two electrodes, holes are injected from an anode into an organic material layer and electrons are injected from a cathode into the organic material layer, excitons are formed when the injected holes and electrons meet each other, and light is emitted when the excitons fall to a ground state again.
There is a continuing need to develop new materials for organic materials used in organic light emitting devices as described above.
[ Prior Art literature ]
[ patent literature ]
(patent document 1) Korean unexamined patent publication No. 10-2000-0051826
Disclosure of Invention
Technical problem
It is an object of the present disclosure to provide novel compounds and organic light emitting devices comprising the same.
Technical proposal
In one aspect of the present disclosure, there is provided a compound represented by the following chemical formula 1:
[ chemical formula 1]
Wherein, in the chemical formula 1,
X 1 to X 6 Each independently CH or N, provided that X 1 To X 6 At least one of which is N,
Ar 1 to Ar 4 Each independently is a substituted or unsubstituted C 6-60 Aryl, provided that Ar 1 To Ar 4 At least one of them is C containing deuterium as a substituent 6-60 An aryl group,
R 1 is hydrogen; deuterium; substituted or unsubstituted C 6-60 An aryl group; or substituted or unsubstituted C comprising any one or more selected from N, O and S 2-60 Heteroaryl, and
n is an integer from 0 to 8.
In another aspect of the present disclosure, there is provided an organic light emitting device including: a first electrode; a second electrode disposed opposite to the first electrode; and one or more organic material layers disposed between the first electrode and the second electrode, wherein one or more of the organic material layers includes a compound represented by chemical formula 1.
Advantageous effects
The compound represented by chemical formula 1 described above may be used as a material of an organic material layer of an organic light emitting device, and may improve efficiency, achieve a low driving voltage, and/or improve lifetime characteristics in the organic light emitting device. In particular, the compound represented by chemical formula 1 may be used as a hole injecting material, a hole transporting material, a hole injecting and transporting material, a light emitting material, an electron transporting material, or an electron injecting material.
Drawings
Fig. 1 shows an example of an organic light emitting device including a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
Fig. 2 shows an example of an organic light emitting device including a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron blocking layer 7, a light emitting layer 3, an electron transport layer 8, an electron injection layer 9, and a cathode 4.
Detailed Description
Hereinafter, embodiments of the present disclosure will be described in more detail to aid understanding of the present invention.
An embodiment of the present invention provides a compound represented by chemical formula 1.
As used herein, a symbolMeaning a bond to another substituent.
As used herein, the term "substituted or unsubstituted" means unsubstituted or substituted with one or more substituents selected from the group consisting of: deuterium; a halogen group; a nitrile group; a nitro group; a hydroxyl group; a carbonyl group; an ester group; an imide group; an amino group; a phosphine oxide group; an alkoxy group; an aryloxy group; alkylthio; arylthio; an alkylsulfonyl group; arylsulfonyl; a silyl group; a boron base; an alkyl group; cycloalkyl; alkenyl groups; an aryl group; an aralkyl group; aralkenyl; alkylaryl groups; an alkylamino group; an aralkylamine group; heteroaryl amine groups; an arylamine group; aryl phosphino; or a heterocyclic group comprising at least one of N, O and S atoms, or a substituent which is unsubstituted or linked via two or more of the substituents exemplified above. For example, a "substituent in which two or more substituents are linked" may be a biphenyl group. That is, biphenyl may also be aryl and may be interpreted as a substituent to which two phenyl groups are linked.
In the present specification, the number of carbon atoms of the carbonyl group is not particularly limited, but is preferably 1 to 40. Specifically, the carbonyl group may be a group having the following structural formula, but is not limited thereto.
In the present specification, the ester group may have a structure in which oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms, or an aryl group having 6 to 25 carbon atoms. Specifically, the ester group may be a group having the following structural formula, but is not limited thereto.
In the present specification, the number of carbon atoms of the imide group is not particularly limited, but is preferably 1 to 25. Specifically, the imide group may be a group having the following structural formula, but is not limited thereto.
In the present specification, the silyl group specifically includes, but is not limited to, trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, and the like.
In the present specification, the boron group specifically includes trimethylboron group, triethylboron group, t-butyldimethylboroyl group, triphenylboron group and phenylboron group, but is not limited thereto.
In the present specification, examples of the halogen group include fluorine, chlorine, bromine, or iodine.
In the present specification, the alkyl group may be straight or branched, and the number of carbon atoms thereof is not particularly limited, but is preferably 1 to 40. According to one embodiment, the alkyl group has a carbon number of 1 to 20. According to another embodiment, the alkyl group has a carbon number of 1 to 10. According to another embodiment, the alkyl group has a carbon number of 1 to 6. Specific examples of the alkyl group include, but are not limited to, methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3-dimethylbutyl, 2-ethylbutyl, heptyl, n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2-dimethylheptyl, 1-ethyl-propyl, 1-dimethyl-propyl, isohexyl, 4-methylhexyl, 5-methylhexyl and the like.
In the present specification, the alkenyl group may be straight or branched, and the number of carbon atoms thereof is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another embodiment, the alkenyl group has a carbon number of 2 to 10. According to yet another embodiment, the alkenyl group has a carbon number of 2 to 6. Specific examples thereof include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-methyl-1-butenyl, 1, 3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-diphenylvinyl-1-yl, 2-phenyl-2- (naphthalen-1-yl) vinyl-1-yl, 2-bis (diphenyl-1-yl) vinyl-1-yl, stilbene, styryl and the like, but are not limited thereto.
In the present specification, the cycloalkyl group is not particularly limited, but the number of carbon atoms thereof is preferably 3 to 60. According to one embodiment, the cycloalkyl group has a carbon number of 3 to 30. According to another embodiment, the cycloalkyl group has a number of carbon atoms of 3 to 20. According to yet another embodiment, the cycloalkyl group has a number of carbon atoms of 3 to 6. Specific examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2, 3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2, 3-dimethylcyclohexyl, 3,4, 5-trimethylcyclohexyl, 4-t-butylcyclohexyl, cycloheptyl, cyclooctyl and the like, but are not limited thereto.
In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has a carbon number of 6 to 30. According to one embodiment, the aryl group has 6 to 20 carbon atoms. As the monocyclic aryl group, an aryl group may be phenyl, biphenyl, terphenyl, or the like, but is not limited thereto. Examples of polycyclic aryl groups include naphthyl, anthryl, phenanthryl, pyrenyl, perylenyl,A radical, a fluorenyl radical, etc., but is not limited thereto.
In the present specification, the fluorenyl group may be substituted, and two substituents may be linked to each other to form a spiro structure. In the case where the fluorenyl group is substituted, it may be formed Etc. However, the structure is not limited thereto.
In this specification, the heterocyclic group is a heterocyclic group containing one or more of O, N, si and S as a heteroatom, and the number of carbon atoms thereof is not particularly limited, but is preferably 2 to 60. Examples of heterocyclyl groups include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl,Azolyl, (-) -and (II) radicals>Diazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyrazinyl, isoquinolinyl, indolyl, carbazolyl, benzo->Oxazolyl, benzimidazolyl, benzothiazolyl, benzocarbazolyl, benzothienyl, dibenzothiophenyl, benzofuranyl, phenanthrolinyl, and i ∈ ->Oxazolyl, thiadiazolyl, benzothiazinyl, phenothiazinyl, dibenzofuranyl, and the like, but are not limited thereto.
In this specification, the aryl groups in the aralkyl group, the aralkenyl group, the alkylaryl group, and the arylamine group are the same as those of the foregoing examples of the aryl groups. In this specification, the alkyl groups in the aralkyl group, alkylaryl group, and alkylamino group are the same as those of the aforementioned examples of the alkyl group. In this specification, the heteroaryl group in the heteroarylamine group may be used as described for the aforementioned heterocyclic group. In this specification, alkenyl groups in aralkenyl groups are the same as the aforementioned examples of alkenyl groups. In the present specification, the foregoing description of aryl groups may be applied, except that arylene groups are divalent groups. In the present specification, the foregoing description of the heterocyclic group may be applied, except that the heteroarylene group is a divalent group. In the present specification, the foregoing description of aryl or cycloalkyl can be applied, except that the hydrocarbon ring is not a monovalent group but is formed by combining two substituents. In this specification, the foregoing description of the heterocyclic group may be applied, except that the heterocyclic ring is not a monovalent group but is formed by combining two substituents.
Preferably X 1 To X 6 Can each independently be CH or N, provided that X 1 To X 3 At least one of which may be N and X 4 To X 6 At least one of which may be N.
Preferably X 4 To X 6 Each may be N.
More preferably X 1 To X 3 Can each independently be CH or N, provided that X 1 To X 3 At least one of which may be N, and X 4 To X 6 Each may be N.
Preferably Ar 1 To Ar 4 May each independently be a substituted or unsubstituted C 6-20 Aryl, provided that Ar 1 To Ar 4 At least one of them may be C comprising deuterium as a substituent 6-20 Aryl groups.
Preferably Ar 1 To Ar 4 At least one of which may be a phenyl group substituted with five deuterium groups.
More preferably Ar 1 To Ar 4 May each independently be a substituted or unsubstituted C 6-20 Aryl, provided that Ar 1 To Ar 4 At least one of which may be a phenyl group substituted with five deuterium groups.
Most preferably Ar 1 To Ar 4 May each independently be phenyl, biphenyl, or phenyl substituted with five deuterium, provided that Ar 1 To Ar 4 At least one of which may be a phenyl group substituted with five deuterium groups.
Preferably, R 1 May be hydrogen; deuterium; substituted or unsubstituted C 6-20 An aryl group; or substituted or unsubstituted C comprising any one or more selected from N, O and S 2-20 Heteroaryl groups.
More preferably, R 1 May be hydrogen or phenyl.
Preferably, n may be an integer of 0 to 2.
Preferably, chemical formula 1 may be represented by any one of the following chemical formulas 1-1 to 1-7:
[ chemical formula 1-1]
[ chemical formulas 1-2]
[ chemical formulas 1-3]
[ chemical formulas 1-4]
[ chemical formulas 1-5]
[ chemical formulas 1-6]
[ chemical formulas 1-7]
Wherein, in chemical formulas 1-1 to 1-7,
X 1 to X 6 、Ar 1 To Ar 4 And R is 1 The same as those defined in chemical formula 1.
Representative examples of the compound represented by chemical formula 1 are as follows:
the compound represented by chemical formula 1 may be prepared, for example, according to a preparation method as shown in reaction scheme 1 or reaction scheme 2 below, and other remaining compounds may be prepared in a similar manner.
Reaction scheme 1
Reaction scheme 2
In schemes 1 and 2, X 1 To X 6 、Ar 1 To Ar 4 、R 1 And n is the same as that defined in chemical formula 1, Y 1 And Y 2 Each independently is halogen, and preferably Y 1 And Y 2 Each independently is chlorine or bromine.
Reaction scheme 1 is an amine substitution reaction, which is preferably carried out in the presence of a palladium catalyst and a base, and the reactive groups for the amine substitution reaction may be modified as known in the art. Furthermore, reaction scheme 2 is a Suzuki coupling reaction, which is preferably carried out in the presence of a palladium catalyst and a base, and the reactive groups for the Suzuki coupling reaction may be modified as known in the art. The above preparation method may be further embodied in the preparation examples described below.
Another embodiment of the present disclosure provides an organic light emitting device including the compound represented by chemical formula 1 above. As an example, there is provided an organic light emitting device including: a first electrode; a second electrode disposed opposite to the first electrode; and one or more organic material layers disposed between the first electrode and the second electrode, wherein one or more of the organic material layers includes a compound represented by chemical formula 1.
The organic material layer of the organic light emitting device of the present disclosure may have a single layer structure, or it may have a multi-layer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present disclosure may have a structure including a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like as an organic material layer. However, the structure of the organic light emitting device is not limited thereto, and it may include a smaller number of organic material layers.
Further, the organic material layer may include a light emitting layer, wherein the light emitting layer may include a compound represented by chemical formula 1. In particular, the compounds according to the present disclosure may be used as hosts for light emitting layers.
Further, the organic material layer may include a hole transporting layer, a hole injecting layer, or a layer for simultaneously performing hole transport and hole injection, wherein the hole transporting layer, the hole injecting layer, or the layer for simultaneously performing hole transport and hole injection may include a compound represented by chemical formula 1.
Further, the organic material layer may include an electron transport layer, an electron injection layer, and a layer for simultaneously performing electron transport and electron injection, wherein the electron transport layer, the electron injection layer, and the layer for simultaneously performing electron transport and electron injection may include a compound represented by chemical formula 1.
Further, the organic material layer includes a light emitting layer and a hole transporting layer, wherein the light emitting layer and the hole transporting layer may include a compound represented by chemical formula 1.
Further, the organic light emitting device according to the present disclosure may be a normal organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. Further, the organic light emitting device according to the present disclosure may be an inverted organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate. For example, fig. 1 and 2 illustrate the structure of an organic light emitting device according to one embodiment of the present disclosure.
Fig. 1 shows an example of an organic light emitting device including a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4. In such a structure, the compound represented by chemical formula 1 may be included in the light emitting layer.
Fig. 2 shows an example of an organic light emitting device including a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron blocking layer 7, a light emitting layer 3, an electron transport layer 8, an electron injection layer 9, and a cathode 4. In such a structure, the compound represented by chemical formula 1 may be included in one or more of a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, an electron transport layer, and an electron injection layer.
The organic light emitting device according to the present disclosure may be manufactured by materials and methods known in the art, except that one or more of the organic material layers include a compound represented by chemical formula 1. In addition, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
For example, an organic light emitting device according to the present disclosure may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate. In this case, the organic light emitting device may be manufactured by: a metal, a metal oxide having conductivity, or an alloy thereof is deposited on a substrate using a PVD (physical vapor deposition) method such as a sputtering method or an electron beam evaporation method to form an anode, an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer is formed on the anode, and then a material that can function as a cathode is deposited on the organic material layer. In addition to such a method, the organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
In addition, in manufacturing an organic light emitting device, the compound represented by chemical formula 1 may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method. Here, the solution coating method means spin coating, dip coating, knife coating, ink jet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
In addition to such a method, the organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate (international publication WO 2003/012890). However, the manufacturing method is not limited thereto.
As an example, the first electrode is an anode and the second electrode is a cathode, or alternatively, the first electrode is a cathode and the second electrode is an anode.
As the anode material, it is generally preferable to use a material having a large work function so that holes can be smoothly injected into the organic material layer. Specific examples of the anode material include: metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; metal oxides such as zinc oxide, indium Tin Oxide (ITO), and Indium Zinc Oxide (IZO); combinations of metals and oxides, e.g. ZnO, al or SnO 2 Sb; conductive polymers, e.g. poly (3-methylthiophene), poly [3,4- (ethylene-1, 2-dioxy) thiophene ](PEDOT), polypyrrole and polyaniline; etc., but is not limited thereto.
As the cathode material, it is generally preferable to use a material having a small work function so that electrons can be easily injected into the organic material layer. Specific examples of the cathode material include: metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; multilayer structural materials, e.g. LiF/Al or LiO 2 Al; etc., but is not limited thereto.
The hole injection layer is a layer for injecting holes from the electrode, and the hole injection material is preferably a compound of: it has a capability of transporting holes, and thus has an effect of injecting holes in an anode and has an excellent hole injection effect to a light emitting layer or a light emitting material, prevents excitons generated in the light emitting layer from moving to an electron injection layer or an electron injection material, and has an excellent capability of forming a thin film. Preferably, the HOMO (highest occupied molecular orbital) of the hole injection material is between the work function of the anode material and the HOMO of the surrounding organic material layer. Specific examples of the hole injection material include metalloporphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazabenzophenanthrene-based organic material, quinacridone-based organic material, perylene-based organic material, anthraquinone, polyaniline-based and polythiophene-based conductive polymer, and the like, but are not limited thereto.
The hole transporting layer is a layer that receives holes from the hole injecting layer and transports the holes to the light emitting layer, and it is suitably a material having a large hole mobility that can receive holes from the anode or the hole injecting layer and transfer the holes to the light emitting layer. Specific examples thereof include an arylamine-based organic material, a conductive polymer, a block copolymer in which a conjugated moiety and a non-conjugated moiety are simultaneously present, and the like, but are not limited thereto.
The electron blocking layer is a layer provided between the hole transport layer and the light emitting layer to prevent electrons injected from the cathode from being transferred to the hole transport layer without being recombined in the light emitting layer, and may also be referred to as an electron suppressing layer. The electron blocking layer is preferably a material having a smaller electron affinity than the electron transport layer.
The luminescent material is preferably such a material: which can receive holes and electrons respectively transferred from the hole transport layer and the electron transport layer and combine the holes and electrons to emit light in the visible light region and have good quantum efficiency for fluorescence or phosphorescence. Specific examples of the light emitting material include: 8-hydroxy-quinoline aluminum complex (Alq 3 ) The method comprises the steps of carrying out a first treatment on the surface of the Carbazole-based compounds; a dimeric styryl compound; BAlq; 10-hydroxybenzoquinoline-metal compounds; based on benzo Azole and benzene basedBenzothiazole and benzimidazole-based compounds; poly (p-phenylene vinylene) (PPV) based polymers; a spiro compound; polyfluorene; rubrene; etc., but is not limited thereto.
The light emitting layer may include a host material and a dopant material. The host material may be a fused aromatic ring derivative, a heterocyclic ring-containing compound, or the like. Specific examples of the condensed aromatic ring derivative include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, and the like. Examples of the heterocycle-containing compound include carbazole derivatives, dibenzofuran derivatives, ladder-type furan compounds, pyrimidine derivatives, and the like, but are not limited thereto. Preferably, the compound represented by chemical formula 1 may be included as a host material.
Examples of dopant materials include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, metal complexes, and the like. Specifically, the aromatic amine derivative is a substituted or unsubstituted fused aromatic ring derivative having an arylamino group, and examples thereof include pyrene, anthracene having an arylamino group,Bisindenopyrene, and the like. Styrylamine compounds are compounds in which at least one arylvinyl group is substituted in a substituted or unsubstituted arylamine, wherein one or two or more substituents selected from the group consisting of aryl, silyl, alkyl, cycloalkyl, and arylamino groups are substituted or unsubstituted. Specific examples thereof include styrylamine, styrylenediamine, styrylenetriamine, styrylenetetramine, and the like, but are not limited thereto. Further, the metal complex includes iridium complex, platinum complex, and the like, but is not limited thereto.
The electron transport layer is a layer that receives electrons from the electron injection layer and transports the electrons to the light emitting layer, and the electron transport material is suitably such a material: which can well receive electrons from the cathode and transfer the electrons to the light emitting layer, and has a large electron mobility. Specific examples of the electron transport material include: al complexes of 8-hydroxyquinoline; comprising Alq 3 Is a complex of (a) and (b); an organic radical compound; hydroxyflavone-metal complexes; etc., but is not limited thereto. The electron transport layer may be used with any desired cathode material as used according to the related art. In particular, suitable examples of cathode materials are typical materials having a low work function followed by an aluminum layer or a silver layer. Specific examples thereof include cesium, barium, calcium, ytterbium and samarium, in each case followed by an aluminum layer or a silver layer.
The electron injection layer is a layer that injects electrons from an electrode, and is preferably a compound that: it has an ability to transport electrons, an effect of injecting electrons from a cathode and an excellent effect of injecting electrons into a light emitting layer or a light emitting material, prevents excitons generated by the light emitting layer from moving to a hole injecting layer, and also has an excellent ability to form a thin film. Specific examples of the electron injection layer include fluorenone, anthraquinone dimethane, diphenoquinone, thiopyran dioxide, Azole,/->Diazoles, triazoles, imidazoles, perylenetetracarboxylic acids, fluorenylenemethanes, anthrones, and the like, and derivatives thereof; a metal complex compound; a nitrogen-containing 5-membered ring derivative; etc., but is not limited thereto.
Examples of the metal complex compound include, but are not limited to, lithium 8-hydroxyquinoline, zinc bis (8-hydroxyquinoline), copper bis (8-hydroxyquinoline), manganese bis (8-hydroxyquinoline), aluminum tris (2-methyl-8-hydroxyquinoline), gallium tris (8-hydroxyquinoline), beryllium bis (10-hydroxybenzo [ h ] quinoline), zinc bis (2-methyl-8-quinoline) chlorogallium, gallium bis (2-methyl-8-quinoline) (o-cresol), aluminum bis (2-methyl-8-quinoline) (1-naphthol), gallium bis (2-methyl-8-quinoline) (2-naphthol), and the like.
The organic light emitting device according to the present disclosure may be of a front-side emission type, a rear-side emission type, or a double-side emission type, depending on the materials used.
In addition, the compound represented by chemical formula 1 may be contained in an organic solar cell or an organic transistor in addition to the organic light emitting device.
Hereinafter, embodiments will be described in more detail to aid understanding of the present invention. However, the following examples are provided for illustrative purposes only and are not intended to limit the scope of the present disclosure.
Preparation example
Preparation example 1: preparation of intermediate compounds T-1 to T-4
1) Preparation of intermediate compound T-1
Cyanuric chloride (50 g,273.3 mmol) and (phenyl-d 5) boric acid (34.7 g,273.3 mmol) were added to 1000ml of tetrahydrofuran under nitrogen, and the mixture was stirred and refluxed. Then, potassium carbonate (113.3 g,820 mmol) was dissolved in 113ml of water, added to the mixture and stirred well, and then tetrakis triphenylphosphine palladium (9.5 g,8.2 mmol) was added. After 3 hours of reaction, the reaction mixture was cooled to room temperature, the organic layer and the aqueous layer were separated, and then the organic layer was distilled. It was added to 1515ml of chloroform, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound T-1 (42.4 g, yield: 56%, MS: [ m+h ] +=278.1) as a white solid.
2) Preparation of intermediate compound T-2
2, 4-dichloro-6-phenyl-1, 3, 5-triazine (50 g,222.2 mmol) and (phenyl-d 5) boronic acid (28.2 g,222.2 mmol) were added to 1000ml of tetrahydrofuran under nitrogen atmosphere and the mixture was stirred and refluxed. Then, potassium carbonate (92.1 g,666.7 mmol) was dissolved in 92ml of water, and it was added to the mixture with stirring sufficiently, followed by the addition of tetrakis triphenylphosphine-palladium (7.7 g,6.7 mmol). After 1 hour of reaction, the reaction mixture was cooled to room temperature, the organic layer and the aqueous layer were separated, and then the organic layer was distilled. It was added to 1209ml of chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound T-2 (44.1 g, yield: 73%, MS: [ m+h ] +=273.1) as a white solid.
3) Preparation of intermediate compound T-3
2- ([ 1,1' -biphenyl ] -4-yl) -4, 6-dichloro-1, 3, 5-triazine (50 g,166.1 mmol) and (phenyl-d 5) boronic acid (21.1 g,166.1 mmol) were added to 1000ml of tetrahydrofuran under nitrogen atmosphere and the mixture was stirred and refluxed. Then, potassium carbonate (68.9 g,498.3 mmol) was dissolved in 69ml of water, added to the mixture and stirred well, and then tetrakis triphenylphosphine palladium (5.8 g,5 mmol) was added. After 3 hours of reaction, the reaction mixture was cooled to room temperature, the organic layer and the aqueous layer were separated, and then the organic layer was distilled. It was added to 1156ml of chloroform, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound T-3 (43.4 g, yield: 75%, MS: [ m+h ] +=349.1) as a white solid.
4) Preparation of intermediate compound T-4
2- ([ 1,1' -biphenyl ] -3-yl) -4, 6-dichloro-1, 3, 5-triazine (50 g,166.1 mmol) and (phenyl-d 5) boronic acid (21.1 g,166.1 mmol) were added to 1000ml of tetrahydrofuran under nitrogen atmosphere and the mixture was stirred and refluxed. Then, potassium carbonate (68.9 g,498.3 mmol) was dissolved in 69ml of water, added to the mixture and stirred well, and then tetrakis triphenylphosphine palladium (5.8 g,5 mmol) was added. After 3 hours of reaction, the reaction mixture was cooled to room temperature, the organic layer and the aqueous layer were separated, and then the organic layer was distilled. It was added to 1156ml of chloroform, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound T-4 (44.5 g, yield: 77%, MS: [ m+h ] +=349.1) as a white solid.
Preparation example 2: preparation of intermediate compound sub 1
2-chloro-4, 6-diphenyl-1, 3, 5-triazine (30 g,112.3 mmol) and (3-chloro-4-fluorophenyl) boronic acid (19.5 g,112.3 mmol) were added to 600ml of tetrahydrofuran under a nitrogen atmosphere and the mixture was stirred and refluxed. Then, potassium carbonate (46.6 g,337 mmol) was dissolved in 47ml of water, which was added to the mixture and stirred well, followed by the addition of tetra-triphenylphosphine palladium (3.9 g,3.4 mmol). After 1 hour of reaction, the reaction mixture was cooled to room temperature, the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was added to 811ml of chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound 1-1 (26.4 g, yield: 65%, MS: [ m+h ] +=362.1) as a white solid.
Compound 1-1 (20 g,55.4 mmol) and bis (pinacolato) diboron (28.2 g,110.8 mmol) are added to 400ml of diboron under a nitrogen atmosphereThe mixture was stirred and refluxed with alkane. Then, potassium acetate (16 g,166.2 mmol) was added thereto with sufficient stirring, and palladium dibenzylidene acetone palladium (1 g,1.7 mmol) and tricyclohexylphosphine (0.9 g,3.3 mmol) were then added. After 7 hours of reaction, the reaction mixture was cooled to room temperature, then the organic layer was subjected to filtration treatment to remove salts, and then the filtered organic layer was distilled. It was added to 251ml of chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethanol to obtain white solid compound 1-2 (22.3 g, yield: 89%, MS: [ M+H) ]+=454.2)。/>
Compound 1-2 (30 g,66.2 mmol) and compound T-2 (18 g,66.2 mmol) were added to 600ml of tetrahydrofuran under nitrogen, and the mixture was stirred and refluxed. Then, potassium carbonate (27.4 g,198.6 mmol) was dissolved in 27ml of water, added to the mixture and stirred well, and then tetrakis triphenylphosphine palladium (2.3 g,2 mmol) was added. After 3 hours of reaction, the reaction mixture was cooled to room temperature, the organic layer and the aqueous layer were separated, and the organic layer was distilled. It was added to 746ml of chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give a white solid compound sub 1 (20.5 g, yield: 55%, MS: [ m+h ] += 564.2).
Preparation example 3: preparation of intermediate compound sub 2
2-chloro-4, 6-diphenyl-1, 3, 5-triazine (30 g,112.3 mmol) and (5-chloro-2-fluorophenyl) boronic acid (19.5 g,112.3 mmol) were added to 600ml of tetrahydrofuran under a nitrogen atmosphere and the mixture was stirred and refluxed. Then, potassium carbonate (46.6 g,337 mmol) was dissolved in 47ml of water, which was added to the mixture and stirred well, followed by the addition of tetra-triphenylphosphine palladium (3.9 g,3.4 mmol). After 1 hour of reaction, the reaction mixture was cooled to room temperature, the organic layer and the aqueous layer were separated, and the organic layer was distilled. This was added to 811ml of chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound 2-1 (30.8 g, yield: 76%, MS: [ m+h ] +=362.1) as a white solid.
Compound 2-1 (20 g,55.4 mmol) and 9H-carbazole (9.3 g,55.4 mmol) were added to 400ml of xylene under nitrogen, and the mixture was stirred and refluxed. Then, sodium t-butoxide (16 g,166.2 mmol) was added thereto with sufficient stirring, and bis (tri-t-butylphosphine) palladium (0.8 g,1.7 mmol) was then added thereto. After 5 hours of reaction, the reaction mixture was cooled to room temperature, and then the resulting solid was filtered. The solid was added to 844ml chloroform, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound 2-2 (20.8 g, yield: 74%, MS: [ m+h ] +=509.2) as a white solid.
Compound 2-2 (20 g,39.4 mmol) and bis (pinacolato) diboron (20 g,78.7 mmol) are added to 400ml of di under nitrogen atmosphereThe mixture was stirred and refluxed with alkane. Then, potassium acetate (11.3 g,118.1 mmol) was added thereto with sufficient stirring, and palladium dibenzylidene acetone palladium (0.7 g,1.2 mmol) and tricyclohexylphosphine (0.7 g,2.4 mmol) were then added. After 7 hours of reaction, the reaction mixture was cooled to room temperature, then the organic layer was subjected to filtration treatment to remove salts, and then the filtered organic layer was distilled. It was added to 178ml chloroform, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethanol to obtain white solid compound sub 2 (14.4 g, yield: 81%, MS: [ M+H ]+=454.2)。
Preparation example 4: preparation of intermediate compound sub 3
2, 4-dibromo-1-fluorobenzene (50 g,98.4 mmol) and bis (pinacolato) diboron (50 g,196.8 mmol) were added to 1000ml of di under nitrogen atmosphereThe mixture was stirred and refluxed with alkane. Then, potassium acetate (28.4 g,295.2 mmol) was added thereto with sufficient stirring, and palladium dibenzylidene acetone palladium (1.7 g,3 mmol) and tricyclohexylphosphine (1.7 g,5.9 mmol) were then added. After 3 hours of reaction, the reaction mixture was cooled to room temperature, then the organic layer was subjected to filtration treatment to remove salts, and then the filtered organic layer was distilled. It was added to 343ml of chloroform, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethanol to obtain white solid compound 3-1 (30.2 g, yield: 88%, MS: [ M+H)]+=349.2)。/>
Compound 3-1 (30 g,86.2 mmol) and compound T-1 (23.9 g,86.2 mmol) were added to 600ml of tetrahydrofuran under nitrogen, and the mixture was stirred and refluxed. Then, potassium carbonate (35.7 g,258.5 mmol) was dissolved in 36ml of water, which was added to the mixture and stirred well, and then tetrakis-triphenylphosphine palladium (3 g,2.6 mmol) was added. After 1 hour of reaction, the reaction mixture was cooled to room temperature, the organic layer and the aqueous layer were separated, and then the organic layer was distilled. It was added to 997ml of chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give a white solid compound sub 3 (34.4 g, yield: 69%, MS: [ m+h ] +=579.3).
Preparation example 5: preparation of intermediate compound sub 4
Compound T-2 (50 g,183.8 mmol) and (5-chloro-2-fluorophenyl) boronic acid (32 g,183.8 mmol) were added to 1000ml of tetrahydrofuran under a nitrogen atmosphere and the mixture was stirred and refluxed. Then, potassium carbonate (76.2 g,551.3 mmol) was dissolved in 76ml of water, and it was added to the mixture with stirring well, and then tetrakis triphenylphosphine palladium (6.4 g,5.5 mmol) was added. After 3 hours of reaction, the reaction mixture was cooled to room temperature, the organic layer and the aqueous layer were separated, and then the organic layer was distilled. This was added to 1346ml of chloroform, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound 4-1 (41.7 g, yield: 62%, MS: [ m+h ] += 367.1) as a white solid.
Compound 4-1 (20 g,54.6 mmol) and 2-phenyl-9H-carbazole (20.0 g,54.6 mmol) were added to 400ml of xylene under nitrogen, and the mixture was stirred and refluxed. Then, sodium t-butoxide (15.8 g,163.9 mmol) was added thereto with sufficient stirring, and bis (tri-t-butylphosphine) palladium (0.8 g,1.6 mmol) was then added thereto. After 1 hour of reaction, the reaction mixture was cooled to room temperature, and then the resultant solid was filtered. The solid was added to 966ml chloroform, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound 4-2 (21.9 g, yield: 68%, MS: [ m+h ] += 590.2) as a white solid.
Compound 4-2 (20 g,33.9 mmol) and bis (pinacolato) diboron (17.3 g,67.9 mmol) are added to 400ml of diboron under a nitrogen atmosphereThe mixture was stirred and refluxed with alkane. Then, potassium acetate (9.8 g,101.8 mmol) was added thereto with sufficient stirring, and palladium dibenzylidene acetone palladium (0.6 g,1 mmol) and tricyclohexylphosphine (0.6 g,2 mmol) were then added. After 7 hours of reaction, the reaction mixture was cooled to room temperature, then the organic layer was subjected to filtration treatment to remove salts, and then the filtered organic layer was distilled. It was added to 231ml chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethanol to obtain white solid compound sub 4 (12.3 g, yield: 53%, MS: [ M+H]+=682.4)。
Preparation example 6: preparation of intermediate compound sub 5
Compound T-1 (50 g,180.4 mmol) and (5-chloro-2-fluorophenyl) boronic acid (31.4 g,180.4 mmol) were added to 1000ml of tetrahydrofuran under a nitrogen atmosphere and the mixture was stirred and refluxed. Then, potassium carbonate (74.8 g,541.3 mmol) was dissolved in 75ml of water, and it was added to the mixture with stirring sufficiently, followed by the addition of tetrakis-triphenylphosphine palladium (6.3 g,5.4 mmol). After 3 hours of reaction, the reaction mixture was cooled to room temperature, the organic layer and the aqueous layer were separated, and then the organic layer was distilled. It was added to 1339ml of chloroform, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound 5-1 (39.5 g, yield: 59%, MS: [ m+h ] +=372.1) as a white solid.
Compound 5-1 (30 g,80.8 mmol) and 4-phenyl-9H-carbazole (30 g,80.8 mmol) were added to 600ml of xylene under nitrogen, and the mixture was stirred and refluxed. Then, sodium t-butoxide (23.3 g,242.5 mmol) was added thereto with sufficient stirring, and bis (tri-t-butylphosphine) palladium (1.2 g,2.4 mmol) was then added thereto. After 1 hour of reaction, the reaction mixture was cooled to room temperature, and then the resultant solid was filtered. The solid was added to 1441ml chloroform, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound 5-2 (31.2 g, yield: 65%, MS: [ m+h ] += 595.2) as a white solid.
Compound 5-2 (20 g,33.7 mmol) and bis (pinacolato) diboron (17.1 g,67.3 mmol) are added to 400ml of diboron under a nitrogen atmosphereThe mixture was stirred and refluxed with alkane. Then, potassium acetate (9.7 g,101 mmol) was added thereto with sufficient stirring, and palladium dibenzylidene acetone palladium (0.6 g,1 mmol) and tricyclohexylphosphine (0.6 g,2 mmol) were then added. After 5 hours of reaction, the reaction mixture was cooled to room temperature, then the organic layer was subjected to filtration treatment to remove salts, and then the filtered organic layer was distilled. It was added to 231ml chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethanol to obtain white solid compound sub 5 (13.4 g, yield: 58%, MS: [ M+H) ]+=687.4)。
Preparation example 7: preparation of Compound 1
Compound sub 1 (10 g,17.8 mmol) and 9H-carbazole (3 g,17.8 mmol) were added to 200ml dimethylformamide under nitrogen atmosphere and the mixture was stirred and refluxed. Then, sodium t-butoxide (11.3 g,53.3 mmol) was added thereto with sufficient stirring, and bis (tri-t-butylphosphine) palladium (0.3 g,0.5 mmol) was then added thereto. After 6 hours of reaction, the reaction mixture was cooled to room temperature, then the organic layer was subjected to filtration treatment to remove salts, and then the filtered organic layer was distilled. It was added to 126ml of chloroform, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to obtain yellow solid compound 1 (7.2 g, yield: 57%, MS: [ m+h ] += 711.3).
Preparation example 8: preparation of Compound 2
Compound sub 1 (10 g,17.8 mmol) and 1-phenyl-9H-carbazole (4.3 g,17.8 mmol) were added to 200ml dimethylformamide under nitrogen atmosphere and the mixture was stirred and refluxed. Then, sodium t-butoxide (11.3 g,53.3 mmol) was added thereto with sufficient stirring, and bis (tri-t-butylphosphine) palladium (0.3 g,0.5 mmol) was then added thereto. After 7 hours of reaction, the reaction mixture was cooled to room temperature, then the organic layer was subjected to filtration treatment to remove salts, and then the filtered organic layer was distilled. It was added to 140ml of chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound 2 (7.7 g, yield: 55%, MS: [ m+h ] +=787.3) as a yellow solid.
Preparation example 9: preparation of Compound 3
Compound sub 1 (10 g,17.8 mmol) and 2-phenyl-9H-carbazole (8.9 g,17.8 mmol) were added to 200ml dimethylformamide under nitrogen atmosphere and the mixture was stirred and refluxed. Then, sodium t-butoxide (11.3 g,53.3 mmol) was added thereto with sufficient stirring, and bis (tri-t-butylphosphine) palladium (0.3 g,0.5 mmol) was then added thereto. After 4 hours of reaction, the reaction mixture was cooled to room temperature, then the organic layer was subjected to filtration treatment to remove salts, and then the filtered organic layer was distilled. It was added to 140ml of chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound 3 (10.9 g, yield: 78%, MS: [ m+h ] +=787.3) as a yellow solid.
Preparation example 10: preparation of Compound 4
Compound sub 1 (10 g,17.8 mmol) and 3-phenyl-9H-carbazole (10.7 g,17.8 mmol) were added to 200ml dimethylformamide under nitrogen atmosphere and the mixture was stirred and refluxed. Then, sodium t-butoxide (11.3 g,53.3 mmol) was added thereto with sufficient stirring, and bis (tri-t-butylphosphine) palladium (0.3 g,0.5 mmol) was then added thereto. After 6 hours of reaction, the reaction mixture was cooled to room temperature, then the organic layer was subjected to filtration treatment to remove salts, and then the filtered organic layer was distilled. It was added to 140ml of chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound 4 (8 g, yield: 57%, MS: [ m+h ] +=787.3) as a yellow solid.
Preparation example 11: preparation of Compound 5
Compound sub 1 (10 g,17.8 mmol) and 4-phenyl-9H-carbazole (12.4 g,17.8 mmol) were added to 200ml dimethylformamide under nitrogen atmosphere and the mixture was stirred and refluxed. Then, sodium t-butoxide (11.3 g,53.3 mmol) was added thereto with sufficient stirring, and bis (tri-t-butylphosphine) palladium (0.3 g,0.5 mmol) was then added thereto. After 5 hours of reaction, the reaction mixture was cooled to room temperature, then the organic layer was subjected to filtration treatment to remove salts, and then the filtered organic layer was distilled. It was added to 160ml of chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound 5 (11.5 g, yield: 72%, MS: [ m+h ] +=901) as a yellow solid.
Preparation example 12: preparation of Compound 6
Compound sub 1 (10 g,17.8 mmol) and 2, 7-diphenyl-9H-carbazole (5.7 g,17.8 mmol) were added to 200ml dimethylformamide under nitrogen atmosphere and the mixture was stirred and refluxed. Then, sodium t-butoxide (11.3 g,53.3 mmol) was added thereto with sufficient stirring, and bis (tri-t-butylphosphine) palladium (0.3 g,0.5 mmol) was then added thereto. After 3 hours of reaction, the reaction mixture was cooled to room temperature, then the organic layer was subjected to filtration treatment to remove salts, and then the filtered organic layer was distilled. It was added to 153ml chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to obtain yellow solid compound 6 (11.6 g, yield: 76%, MS: [ m+h ] +=863.4).
Preparation example 13: preparation of Compound 7
Compound sub 1 (10 g,17.8 mmol) and 3, 6-diphenyl-9H-carbazole (5.7 g,17.8 mmol) were added to 200ml dimethylformamide under nitrogen atmosphere and the mixture was stirred and refluxed. Then, sodium t-butoxide (11.3 g,53.3 mmol) was added thereto with sufficient stirring, and bis (tri-t-butylphosphine) palladium (0.3 g,0.5 mmol) was then added thereto. After 3 hours of reaction, the reaction mixture was cooled to room temperature, then the organic layer was subjected to filtration treatment to remove salts, and then the filtered organic layer was distilled. It was added to 153ml chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound 7 (10.9 g, yield: 71%, MS: [ m+h ] +=863.4) as a yellow solid.
Preparation example 14: preparation of Compound 8
Compound sub 2 (50 g,83.3 mmol) and compound T-2 (22.7 g,83.3 mmol) were added to 1000ml of tetrahydrofuran under nitrogen atmosphere and the mixture was stirred and refluxed. Then, potassium carbonate (34.5 g,249.9 mmol) was dissolved in 35ml of water, which was added to the mixture and stirred well, and then tetrakis-triphenylphosphine palladium (2.9 g,2.5 mmol) was added. After 3 hours of reaction, the reaction mixture was cooled to room temperature, the organic layer and the aqueous layer were separated, and then the organic layer was distilled. It was added to 1183ml of chloroform, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound 8 (39.6 g, yield: 67%, MS: [ M+H) as a white solid ] + =711.3)。
Preparation example 15: preparation of Compound 9
Compound sub 2 (50 g,83.3 mmol) and compound T-3 (29 g,83.3 mmol) were added to 1000ml of tetrahydrofuran under nitrogen, and the mixture was stirred and refluxed. Then, potassium carbonate (34.5 g,249.9 mmol) was dissolved in 35ml of water, which was added to the mixture and stirred well, and then tetrakis-triphenylphosphine palladium (2.9 g,2.5 mmol) was added. After 3 hours of reaction, the reaction mixture was cooled to room temperature, the organic layer and the aqueous layer were separated, and then the organic layer was distilled. It was added to 1310ml of chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound 9 (43.2 g, yield: 66%, MS: [ m+h ] +=787.3) as a white solid.
Preparation example 16: preparation of Compound 10
Compound sub 2 (50 g,83.3 mmol) and compound T-4 (29 g,83.3 mmol) were added to 1000ml of tetrahydrofuran under nitrogen, and the mixture was stirred and refluxed. Then, potassium carbonate (34.5 g,249.9 mmol) was dissolved in 35ml of water, which was added to the mixture and stirred well, and then tetrakis-triphenylphosphine palladium (2.9 g,2.5 mmol) was added. After 3 hours of reaction, the reaction mixture was cooled to room temperature, the organic layer and the aqueous layer were separated, and then the organic layer was distilled. It was added to 1310ml of chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound 10 (51.7 g, yield: 79%, MS: [ m+h ] +=787.3) as a white solid.
Preparation example 17: preparation of Compound 11
Compound sub 3 (10 g,17.3 mmol) and 9H-carbazole (2.9 g,17.3 mmol) were added to 200ml dimethylformamide under nitrogen atmosphere and the mixture was stirred and refluxed. Then, sodium t-butoxide (11 g,51.9 mmol) was added thereto with sufficient stirring, and bis (tri-t-butylphosphine) palladium (0.3 g,0.5 mmol) was then added thereto. After 6 hours of reaction, the reaction mixture was cooled to room temperature, then the organic layer was subjected to filtration treatment to remove salts, and then the filtered organic layer was distilled. It was added to 149ml of chloroform, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound 11 (7.6 g, yield: 51%, MS: [ m+h ] +=863.4) as a yellow solid.
Preparation example 18: preparation of Compound 12
Compound sub 3 (10 g,17.3 mmol) and 2-phenyl-9H-carbazole (4.2 g,17.3 mmol) were added to 200ml dimethylformamide under nitrogen atmosphere and the mixture was stirred and refluxed. Then, sodium t-butoxide (11 g,51.9 mmol) was added thereto with sufficient stirring, and bis (tri-t-butylphosphine) palladium (0.3 g,0.5 mmol) was then added thereto. After 5 hours of reaction, the reaction mixture was cooled to room temperature, then the organic layer was subjected to filtration treatment to remove salts, and then the filtered organic layer was distilled. It was added to 139ml of chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to obtain compound 12 (7.8 g, yield: 56%, MS: [ m+h ] +=802.4) as a yellow solid.
Preparation example 19: preparation of Compound 13
Compound sub 3 (10 g,17.3 mmol) and 3-phenyl-9H-carbazole (4.2 g,17.3 mmol) were added to 200ml dimethylformamide under nitrogen atmosphere and the mixture was stirred and refluxed. Then, sodium t-butoxide (11 g,51.9 mmol) was added thereto with sufficient stirring, and bis (tri-t-butylphosphine) palladium (0.3 g,0.5 mmol) was then added thereto. After 7 hours of reaction, the reaction mixture was cooled to room temperature, then the organic layer was subjected to filtration treatment to remove salts, and then the filtered organic layer was distilled. It was added to 139ml of chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to obtain yellow solid compound 13 (10.4 g, yield: 75%, MS: [ m+h ] +=802.4).
Preparation example 20: preparation of Compound 14
Compound sub 3 (10 g,17.3 mmol) and 4-phenyl-9H-carbazole (4.2 g,17.3 mmol) were added to 200ml dimethylformamide under nitrogen atmosphere and the mixture was stirred and refluxed. Then, sodium t-butoxide (11 g,51.9 mmol) was added thereto with sufficient stirring, and bis (tri-t-butylphosphine) palladium (0.3 g,0.5 mmol) was then added thereto. After 6 hours of reaction, the reaction mixture was cooled to room temperature, then the organic layer was subjected to filtration treatment to remove salts, and then the filtered organic layer was distilled. It was added to 139ml of chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified by a silica gel column using chloroform and ethyl acetate to give compound 14 (10.3 g, yield: 74%, MS: [ m+h ] +=802.4) as a yellow solid.
Preparation example 21: preparation of Compound 15
Compound sub 4 (10 g,14.7 mmol) and 2-bromo-4, 6-diphenylpyridine (4.5 g,14.7 mmol) were added to 200ml of tetrahydrofuran under nitrogen atmosphere and the mixture was stirred and refluxed. Then, potassium carbonate (6.1 g,44 mmol) was dissolved in 6ml of water, added to the mixture and stirred well, and then tetrakis-triphenylphosphine palladium (0.5 g,0.4 mmol) was added. After 2 hours of reaction, the reaction mixture was cooled to room temperature, the organic layer and the aqueous layer were separated, and then the organic layer was distilled. It was added to 230ml chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to obtain yellow solid compound 15 (8.9 g, yield: 77%, MS: [ m+h ] += 785.3).
Preparation example 22: preparation of Compound 16
Compound sub 4 (10 g,14.7 mmol) and 2-chloro-4, 6-diphenylpyrimidine (3.9 g,14.7 mmol) were added to 200ml tetrahydrofuran under nitrogen atmosphere and the mixture was stirred and refluxed. Then, potassium carbonate (6.1 g,44 mmol) was dissolved in 6ml of water, added to the mixture and stirred well, and then tetrakis-triphenylphosphine palladium (0.5 g,0.4 mmol) was added. After 3 hours of reaction, the reaction mixture was cooled to room temperature, the organic layer and the aqueous layer were separated, and then the organic layer was distilled. It was added to 230ml chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to obtain yellow solid compound 16 (8.5 g, yield: 74%, MS: [ m+h ] += 786.3).
Preparation example 23: preparation of Compound 17
Compound sub 4 (10 g,14.7 mmol) and 4-chloro-2, 6-diphenylpyrimidine (3.9 g,14.7 mmol) were added to 200ml tetrahydrofuran under nitrogen atmosphere and the mixture was stirred and refluxed. Then, potassium carbonate (6.1 g,44 mmol) was dissolved in 6ml of water, added to the mixture and stirred well, and then tetrakis-triphenylphosphine palladium (0.5 g,0.4 mmol) was added. After 1 hour of reaction, the reaction mixture was cooled to room temperature, the organic layer and the aqueous layer were separated, and then the organic layer was distilled. It was added to 230ml chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to obtain yellow solid compound 17 (9 g, yield: 78%, MS: [ m+h ] += 786.3).
Preparation example 24: preparation of Compound 18
Compound sub 5 (10 g,14.6 mmol) and 2-chloro-4, 6-diphenyl-1, 3, 5-triazine (3.9 g,14.6 mmol) were added to 200ml tetrahydrofuran under nitrogen atmosphere and the mixture was stirred and refluxed. Then, potassium carbonate (6 g,43.7 mmol) was dissolved in 6ml of water, which was added to the mixture and stirred well, and then tetrakis-triphenylphosphine palladium (0.5 g,0.4 mmol) was added. After 3 hours of reaction, the reaction mixture was cooled to room temperature, the organic layer and the aqueous layer were separated, and then the organic layer was distilled. It was added to 231ml chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to obtain yellow solid compound 18 (8.5 g, yield: 74%, MS: [ m+h ] += 792.4).
Preparation example 25: preparation of Compound 19
Compound sub 5 (10 g,14.6 mmol) and 4-chloro-2, 6-diphenylpyrimidine (3.9 g,14.6 mmol) were added to 200ml tetrahydrofuran under nitrogen atmosphere and the mixture was stirred and refluxed. Then, potassium carbonate (6 g,43.7 mmol) was dissolved in 6ml of water, which was added to the mixture and stirred well, and then tetrakis-triphenylphosphine palladium (0.5 g,0.4 mmol) was added. After 2 hours of reaction, the reaction mixture was cooled to room temperature, the organic layer and the aqueous layer were separated, and then the organic layer was distilled. It was added to 230ml chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to obtain yellow solid compound 19 (8.6 g, yield: 75%, MS: [ m+h ] += 791.4).
Preparation example 26: preparation of Compound 20
Compound sub 5 (10 g,14.6 mmol) and 2-chloro-4, 6-diphenylpyrimidine (3.9 g,14.6 mmol) were added to 200ml tetrahydrofuran under nitrogen atmosphere and the mixture was stirred and refluxed. Then, potassium carbonate (6 g,43.7 mmol) was dissolved in 6ml of water, which was added to the mixture and stirred well, and then tetrakis-triphenylphosphine palladium (0.5 g,0.4 mmol) was added. After 1 hour of reaction, the reaction mixture was cooled to room temperature, the organic layer and the aqueous layer were separated, and then the organic layer was distilled. It was added to 230ml chloroform again, dissolved and washed twice with water. The organic layer was then separated, anhydrous magnesium sulfate was added thereto, stirred, and then filtered. The filtrate was distilled under reduced pressure. The concentrated compound was recrystallized from chloroform and ethyl acetate to obtain yellow solid compound 20 (9.2 g, yield: 80%, MS: [ m+h ] += 791.4).
Examples (example)
Example 1
Coated with a coating having a thickness ofThe glass substrate as a thin film was put into distilled water in which a cleaning agent was dissolved, and subjected to ultrasonic cleaning. At this time, a product manufactured by Fischer co. Was used as a detergent, and as distilled water, distilled water filtered twice using a filter manufactured by Millipore co. After washing the ITO for 30 minutes, ultrasonic washing was repeated twice using distilled water for 10 minutes. After the washing with distilled water was completed, the substrate was ultrasonically washed with isopropyl alcohol, acetone and methanol solvents, dried, and then transferred to a plasma washer. In addition, the substrate was cleaned using oxygen plasma for 5 minutes and then transferred to a vacuum depositor.
On the ITO transparent electrode thus prepared, the following compounds HI-1 to HI were thermally vacuum depositedTo form a hole injection layer. Thermal vacuum deposition of the following compounds HT-1 to +.>To form a hole transport layer, and vacuum depositing the following compounds HT-2 to +.>To form an electron blocking layer. Compound 1, the following compound YGH-1, and the following phosphorescent dopant YGD-1 prepared in the previous preparation example 7 were co-deposited on the HT-2 deposition layer at a weight ratio of 44:44:12 to form a thickness +. >Is provided. Vacuum depositing the following compounds ET-1 to->To form an electron transport layer, and vacuum depositing the following compounds ET-2 and Li on the electron transport layer in a weight ratio of 98:2 to form a thickness +.>Electron injection layer of (a) is provided. Depositing aluminum on the electron injection layer to +.>To form a cathode. />
In the above process, the vapor deposition rate of the organic material is maintained atTo-> The deposition rate of aluminum is kept at +.>And the vacuum degree during deposition is maintained at 1×10 -7 To 5X 10 -8 And (5) a bracket.
Examples 2 to 20
An organic light-emitting device was manufactured in the same manner as in example 1, except that the compound shown in table 1 below was used instead of the compound 1 of preparation example 7 in example 1.
Comparative examples 1 and 2
An organic light-emitting device was manufactured in the same manner as in example 1, except that the compound shown in table 1 below was used instead of the compound 1 of preparation example 7 in example 1. In table 1, compounds CE1 and CE2 are as follows.
Experimental example
At 10mA/cm 2 The voltage and efficiency of the organic light emitting devices manufactured in examples and comparative examples were measured at a current density of 50mA/cm 2 The lifetime is measured at the current density of (2). The results are shown in table 1 below. At this time, LT 95 Meaning the time required for the brightness to decrease to 95% of the original brightness.
TABLE 1
As shown in table 1 above, when the compound of the present disclosure was used as a light-emitting layer material, it was determined that it exhibited excellent efficiency and lifetime compared to the comparative example. This is thought to be due to deuterium further substituting the derivative, thereby improving the orbital stability for electron transport in the molecule.
On the other hand, when examples 1 to 4 and example 5, or examples 11 to 13 and example 14 were compared, it was confirmed that in the case where the organic light-emitting device included the compound having the substituent at the position 4 of the parent carbazole as a main body, the lifetime characteristics were significantly improved. It can be inferred from this that when position 4 of carbazole is substituted, the orbital stability is significantly improved and the lifetime characteristics are improved.
[ reference numerals ]
1: substrate 2: anode
3: light emitting layer 4: cathode electrode
5: hole injection layer 6: hole transport layer
7: electron blocking layer 8: electron transport layer
9: electron injection layer
Claims (7)
1. A compound represented by the following chemical formula 1:
[ chemical formula 1]
Wherein, in the chemical formula 1,
X 1 to X 6 Each independently CH or N, provided that X 1 To X 3 At least one of which is N and X 4 To X 6 At least one of which is N,
Ar 1 to Ar 4 Each independently is C 6-30 Aryl, provided that Ar 1 To Ar 4 At least one of which is phenyl substituted with five deuterium,
R 1 is hydrogen; deuterium; or C 6-30 Aryl, and
n is an integer of 0 to 2,
with the proviso that the following compounds are excluded:
2. the compound according to claim 1, wherein
X 4 To X 6 Each is N.
3. The compound according to claim 1, wherein
Ar 1 To Ar 4 Each independently is phenyl, biphenyl, or phenyl substituted with five deuterium, provided that Ar 1 To Ar 4 At least one of which is a phenyl group substituted with five deuterium groups.
4. The compound according to claim 1, wherein
R 1 Is hydrogen or phenyl.
5. The compound according to claim 1, wherein
The chemical formula 1 is represented by any one of the following chemical formulas 1-1 to 1-7:
[ chemical formula 1-1]
[ chemical formulas 1-2]
[ chemical formulas 1-3]
[ chemical formulas 1-4]
[ chemical formulas 1-5]
[ chemical formulas 1-6]
[ chemical formulas 1-7]
Wherein, in chemical formulas 1-1 to 1-7, X 1 To X 6 、Ar 1 To Ar 4 And R is 1 As defined in claim 1.
6. The compound according to claim 1, wherein
The compound represented by chemical formula 1 is any one selected from the group consisting of:
7. an organic light emitting device comprising: a first electrode; a second electrode disposed opposite to the first electrode; and one or more organic material layers disposed between the first electrode and the second electrode, wherein one or more of the organic material layers comprises the compound according to any one of claims 1 to 6.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20180148563 | 2018-11-27 | ||
KR10-2018-0148563 | 2018-11-27 | ||
KR1020190153522A KR102341767B1 (en) | 2018-11-27 | 2019-11-26 | Novel compound and organic light emitting device comprising the same |
KR10-2019-0153522 | 2019-11-26 | ||
PCT/KR2019/016488 WO2020111780A1 (en) | 2018-11-27 | 2019-11-27 | Novel compound and organic light emitting device comprising same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112703189A CN112703189A (en) | 2021-04-23 |
CN112703189B true CN112703189B (en) | 2023-10-31 |
Family
ID=71080723
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980063552.8A Active CN112771033B (en) | 2018-11-27 | 2019-11-12 | Novel compound and organic light emitting device comprising the same |
CN201980060932.6A Active CN112739693B (en) | 2018-11-27 | 2019-11-12 | Novel compound and organic light emitting device comprising the same |
CN201980063285.4A Active CN112789273B (en) | 2018-11-27 | 2019-11-12 | Compound and organic light emitting device comprising the same |
CN201980059133.7A Active CN112673005B (en) | 2018-11-27 | 2019-11-14 | Novel compound and organic light emitting device comprising the same |
CN201980059132.2A Active CN112673004B (en) | 2018-11-27 | 2019-11-14 | Novel compound and organic light emitting device comprising the same |
CN201980060834.2A Pending CN112714763A (en) | 2018-11-27 | 2019-11-15 | Novel compound and organic light emitting device comprising the same |
CN201980067110.0A Active CN112839939B (en) | 2018-11-27 | 2019-11-22 | Novel compound and organic light emitting device comprising the same |
CN201980059738.6A Active CN112703189B (en) | 2018-11-27 | 2019-11-27 | Novel compound and organic light emitting device comprising the same |
Family Applications Before (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980063552.8A Active CN112771033B (en) | 2018-11-27 | 2019-11-12 | Novel compound and organic light emitting device comprising the same |
CN201980060932.6A Active CN112739693B (en) | 2018-11-27 | 2019-11-12 | Novel compound and organic light emitting device comprising the same |
CN201980063285.4A Active CN112789273B (en) | 2018-11-27 | 2019-11-12 | Compound and organic light emitting device comprising the same |
CN201980059133.7A Active CN112673005B (en) | 2018-11-27 | 2019-11-14 | Novel compound and organic light emitting device comprising the same |
CN201980059132.2A Active CN112673004B (en) | 2018-11-27 | 2019-11-14 | Novel compound and organic light emitting device comprising the same |
CN201980060834.2A Pending CN112714763A (en) | 2018-11-27 | 2019-11-15 | Novel compound and organic light emitting device comprising the same |
CN201980067110.0A Active CN112839939B (en) | 2018-11-27 | 2019-11-22 | Novel compound and organic light emitting device comprising the same |
Country Status (6)
Country | Link |
---|---|
US (3) | US20210355128A1 (en) |
EP (2) | EP3854792A4 (en) |
JP (1) | JP7088446B2 (en) |
KR (8) | KR102331904B1 (en) |
CN (8) | CN112771033B (en) |
TW (2) | TWI706948B (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12022730B2 (en) | 2018-11-27 | 2024-06-25 | Lg Chem, Ltd. | Compound and organic light emitting device comprising the same |
KR102331904B1 (en) | 2018-11-27 | 2021-11-26 | 주식회사 엘지화학 | Novel compound and organic light emitting device comprising the same |
WO2020111602A1 (en) | 2018-11-27 | 2020-06-04 | 주식회사 엘지화학 | Novel compound and organic light-emitting element including same |
CN112724125B (en) * | 2019-10-28 | 2023-03-24 | 广州华睿光电材料有限公司 | Nitrogen-containing organic compound and application thereof |
TW202124389A (en) * | 2019-12-27 | 2021-07-01 | 日商日鐵化學材料股份有限公司 | Material for organic electroluminescence element, and organic electroluminescence element |
JPWO2021131770A1 (en) * | 2019-12-27 | 2021-07-01 | ||
CN117384166A (en) * | 2021-06-18 | 2024-01-12 | 陕西莱特迈思光电材料有限公司 | Nitrogen-containing compound, organic electroluminescent device and electronic device comprising same |
WO2023277645A1 (en) * | 2021-07-01 | 2023-01-05 | Samsung Display Co., Ltd. | Organic molecules for optoelectronic devices |
CN115703759B (en) * | 2021-08-10 | 2024-06-07 | 江苏三月科技股份有限公司 | Compound containing triazine and pyrimidine groups and organic electroluminescent device containing same |
US20230122972A1 (en) * | 2021-09-08 | 2023-04-20 | Samsung Sdi Co., Ltd. | Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device, and display device |
CN113735793B (en) * | 2021-09-24 | 2022-12-13 | 长春海谱润斯科技股份有限公司 | Compound containing benzo five-membered heterocycle and organic electroluminescent device thereof |
WO2023149635A1 (en) * | 2022-02-02 | 2023-08-10 | Samsung Display Co., Ltd. | Organic molecules for optoelectronic devices |
KR20240067826A (en) * | 2022-11-09 | 2024-05-17 | 주식회사 엘지화학 | Compound and organic light emitting device comprising the same |
KR20240094080A (en) * | 2022-11-23 | 2024-06-25 | 주식회사 엘지화학 | Novel compound and organic light emitting device comprising the same |
CN117756786A (en) * | 2023-01-11 | 2024-03-26 | 陕西莱特光电材料股份有限公司 | Organic compound, composition, organic electroluminescent device, and electronic device |
CN117603192B (en) * | 2023-01-11 | 2024-08-06 | 陕西莱特光电材料股份有限公司 | Organic compound, composition, organic electroluminescent device, and electronic device |
WO2024196207A1 (en) * | 2023-03-17 | 2024-09-26 | 주식회사 엘지화학 | Novel compound and organic light-emitting element comprising same |
WO2024204430A1 (en) * | 2023-03-27 | 2024-10-03 | 株式会社Kyulux | Organic light emitting element |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180047306A (en) * | 2016-10-31 | 2018-05-10 | 성균관대학교산학협력단 | Delayed fluorescence material and organic light emitting device having the delayed fluorescence material |
CN112533900A (en) * | 2018-10-26 | 2021-03-19 | 株式会社Lg化学 | Deuterium-containing compound and organic light-emitting device comprising same |
Family Cites Families (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5233631Y2 (en) | 1971-04-22 | 1977-08-01 | ||
KR100430549B1 (en) | 1999-01-27 | 2004-05-10 | 주식회사 엘지화학 | New organomattalic complex molecule for the fabrication of organic light emitting diodes |
DE10135513B4 (en) | 2001-07-20 | 2005-02-24 | Novaled Gmbh | Light-emitting component with organic layers |
CN100366703C (en) | 2002-03-22 | 2008-02-06 | 出光兴产株式会社 | Material for organic electroluminescent device and organic electroluminescent device using the same |
KR101420608B1 (en) * | 2004-12-24 | 2014-07-18 | 미쓰비시 가가꾸 가부시키가이샤 | Organic compound, charge-transporting material, and organic electroluminescent element |
DE102007024850A1 (en) * | 2007-05-29 | 2008-12-04 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
JP5317470B2 (en) * | 2007-12-27 | 2013-10-16 | 出光興産株式会社 | Material for organic electroluminescence device and organic electroluminescence device using the same |
JP5317471B2 (en) * | 2007-12-27 | 2013-10-16 | 出光興産株式会社 | Material for organic electroluminescence device and organic electroluminescence device using the same |
JP5371312B2 (en) | 2008-07-28 | 2013-12-18 | ケミプロ化成株式会社 | Novel dicarbazolylphenyl derivative, host material using the same, and organic electroluminescence device |
US8759818B2 (en) | 2009-02-27 | 2014-06-24 | E I Du Pont De Nemours And Company | Deuterated compounds for electronic applications |
KR101801048B1 (en) * | 2009-06-08 | 2017-11-28 | 에스에프씨 주식회사 | Indolocarbazole derivatives and organoelectroluminescent device using the same |
EP2461390B1 (en) * | 2009-07-31 | 2018-05-23 | UDC Ireland Limited | Organic electroluminescent element |
JP4474493B1 (en) * | 2009-07-31 | 2010-06-02 | 富士フイルム株式会社 | Organic electroluminescence device |
JP4590020B1 (en) | 2009-07-31 | 2010-12-01 | 富士フイルム株式会社 | Charge transport material and organic electroluminescent device |
EP2492987B1 (en) | 2009-10-23 | 2018-01-24 | Nippon Steel & Sumikin Chemical Co., Ltd. | Organic electroluminescent device |
JP4751955B1 (en) | 2010-07-09 | 2011-08-17 | 富士フイルム株式会社 | Organic electroluminescence device |
JP4729642B1 (en) | 2010-07-09 | 2011-07-20 | 富士フイルム株式会社 | Organic electroluminescence device |
KR101256205B1 (en) | 2010-09-30 | 2013-04-19 | (주)씨에스엘쏠라 | Organic light emitting compound and organic light emitting device comprising the same |
KR20130130757A (en) * | 2010-11-24 | 2013-12-02 | 메르크 파텐트 게엠베하 | Materials for organic electroluminescent devices |
KR20120109744A (en) | 2011-03-25 | 2012-10-09 | 롬엔드하스전자재료코리아유한회사 | Novel compounds for organic electronic material and organic electroluminescence device using the same |
KR101396171B1 (en) | 2011-05-03 | 2014-05-27 | 롬엔드하스전자재료코리아유한회사 | Novel organic electroluminescent compounds and an organic electroluminescent device using the same |
KR20130020398A (en) | 2011-08-19 | 2013-02-27 | 제일모직주식회사 | Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode |
KR101401639B1 (en) | 2012-07-27 | 2014-06-02 | (주)피엔에이치테크 | Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same |
TWI599570B (en) | 2012-09-28 | 2017-09-21 | 新日鐵住金化學股份有限公司 | Compounds for organic electroluminescent devices and organic electroluminescent devices |
JP6249150B2 (en) | 2013-01-23 | 2017-12-20 | 株式会社Kyulux | Luminescent material and organic light emitting device using the same |
KR101627748B1 (en) * | 2013-05-27 | 2016-06-07 | 제일모직 주식회사 | COMPOUND, ORGANIC LiGHT EMITTING DIODE INCLUDING THE SAME AND DISPLAY INCLUDING THE ORGANIC LiGHT EMITTING DIODE |
KR20150061174A (en) * | 2013-11-26 | 2015-06-04 | 주식회사 두산 | Organic compounds and organic electro luminescence device comprising the same |
KR101773936B1 (en) * | 2014-03-05 | 2017-09-01 | 주식회사 스킨앤스킨 | New organic electroluminescent compounds and organic electroluminescent device comprising the same |
US9773982B2 (en) * | 2014-03-07 | 2017-09-26 | Kyulux, Inc. | Light-emitting material, organic light-emitting device, and compound |
KR101754715B1 (en) | 2014-04-08 | 2017-07-10 | 롬엔드하스전자재료코리아유한회사 | Multi-component host material and organic electroluminescence device comprising the same |
KR101729660B1 (en) * | 2014-05-09 | 2017-04-26 | (주)씨엠디엘 | Novel compoung for organic electroluminescent device, organic electroluminescent device including the same and electric apparatus |
US10461260B2 (en) | 2014-06-03 | 2019-10-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
KR102273047B1 (en) | 2014-06-30 | 2021-07-06 | 삼성디스플레이 주식회사 | Organic light-emitting device |
KR101820932B1 (en) * | 2014-10-08 | 2018-01-22 | 주식회사 알파켐 | New host material and organic electroluminescent device using the same |
KR102154878B1 (en) * | 2014-12-02 | 2020-09-10 | 두산솔루스 주식회사 | Organic compounds and organic electro luminescence device comprising the same |
US11758808B2 (en) | 2015-03-27 | 2023-09-12 | Samsung Display Co., Ltd. | Ortho-substituted thermally activated delayed fluorescence material and organic light-emitting device comprising same |
KR102388726B1 (en) | 2015-04-29 | 2022-04-21 | 삼성디스플레이 주식회사 | Organic light emitting device |
US10403826B2 (en) | 2015-05-07 | 2019-09-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
KR102146446B1 (en) * | 2015-05-08 | 2020-08-20 | 코니카 미놀타 가부시키가이샤 | π conjugated compounds, organic electroluminescent device materials, luminescent materials, luminescent thin films, organic electroluminescent devices, display devices and lighting devices |
JP6813876B2 (en) | 2015-10-27 | 2021-01-13 | 国立大学法人山形大学 | Pyrimidine derivative, light emitting material made of it, and organic EL device using it |
KR102430017B1 (en) | 2015-10-28 | 2022-08-08 | 엘티소재주식회사 | Hetero-cyclic compound and organic light emitting device using the same |
KR20170060836A (en) * | 2015-11-25 | 2017-06-02 | 에스케이케미칼주식회사 | Compound for organic electroluminescent device and organic electroluminescent device comprising the same |
KR102510282B1 (en) * | 2015-12-24 | 2023-03-16 | 솔루스첨단소재 주식회사 | Organic light-emitting compound and organic electroluminescent device using the same |
CN105399696B (en) | 2015-12-25 | 2019-12-24 | 上海天马有机发光显示技术有限公司 | Organic electroluminescent compounds and organic photoelectric devices using the same |
KR102577041B1 (en) | 2015-12-30 | 2023-09-08 | 엘지디스플레이 주식회사 | Organic compound, and Organic light emitting diode and Organic light emitting diode display device including the same |
KR20170097820A (en) | 2016-02-18 | 2017-08-29 | 삼성디스플레이 주식회사 | Organic light emitting device |
KR101956425B1 (en) | 2016-03-25 | 2019-03-11 | 단국대학교 산학협력단 | TADF Material and OLED Having the Same |
KR101850245B1 (en) | 2016-04-12 | 2018-04-19 | 주식회사 엘지화학 | Compound and organic electronic device comprising the same |
CN109071501B (en) | 2016-05-04 | 2021-07-09 | 辛诺拉有限公司 | Organic molecules, in particular for organic opto-electronic devices |
DE102016112377B4 (en) | 2016-07-06 | 2020-06-04 | Cynora Gmbh | Organic molecules, in particular for use in organic optoelectronic devices |
CN107880028B (en) | 2016-09-30 | 2021-03-02 | 中节能万润股份有限公司 | Compound with aza-benzene as core and organic electroluminescent device |
US10833276B2 (en) | 2016-11-21 | 2020-11-10 | Universal Display Corporation | Organic electroluminescent materials and devices |
KR20180063708A (en) | 2016-12-02 | 2018-06-12 | (주)피엔에이치테크 | An electroluminescent compound and an electroluminescent device comprising the same |
KR102055973B1 (en) | 2016-12-07 | 2019-12-13 | 주식회사 엘지화학 | Hetero-cyclic compound and organic light emitting device comprising the same |
KR102533792B1 (en) | 2016-12-09 | 2023-05-19 | 롬엔드하스전자재료코리아유한회사 | Organic Electroluminescent Compound and Organic Electroluminescent Device Comprising the Same |
KR20180092035A (en) * | 2017-02-08 | 2018-08-17 | 주식회사 두산 | Organic compound and organic electroluminescent device using the same |
KR20180098809A (en) | 2017-02-27 | 2018-09-05 | 삼성전자주식회사 | Condensed cyclic compound and organic light emitting device comprising the same |
JP6747642B2 (en) | 2017-03-27 | 2020-08-26 | エルジー・ケム・リミテッド | Benzocarbazole compound and organic light emitting device containing the same |
KR102366506B1 (en) | 2017-04-06 | 2022-02-23 | 덕산네오룩스 주식회사 | Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof |
WO2018237385A1 (en) * | 2017-06-23 | 2018-12-27 | Kyulux, Inc. | Composition of matter for use in organic light-emitting diodes |
CN114702480B (en) * | 2017-07-14 | 2024-10-18 | 三星显示有限公司 | Organic molecules, in particular for optoelectronic devices |
WO2019076844A1 (en) | 2017-10-18 | 2019-04-25 | Cynora Gmbh | Organic molecules, in particular for use in optoelectronic devices |
EP3476915A1 (en) | 2017-10-30 | 2019-05-01 | Cynora Gmbh | Organic molecules, in particular for use in optoelectronic devices |
CN107954922A (en) | 2017-11-28 | 2018-04-24 | 上海道亦化工科技有限公司 | A kind of two carbazole derivates of xenyl and application thereof and organic electroluminescence device |
CN107935914A (en) * | 2017-11-28 | 2018-04-20 | 上海道亦化工科技有限公司 | A kind of two carbazole benzene derivatives and application thereof and organic electroluminescence device |
CN107987009A (en) * | 2017-11-28 | 2018-05-04 | 上海道亦化工科技有限公司 | A kind of carbazole derivates and application thereof and organic electroluminescence device |
WO2019121112A1 (en) | 2017-12-21 | 2019-06-27 | Cynora Gmbh | Organic molecules for use in optoelectronic devices |
KR101926771B1 (en) * | 2018-03-02 | 2018-12-07 | 주식회사 진웅산업 | Organic light emitting diode comprising phosphorescence green host materials having thermally activated delayed fluorescence properties |
KR102331904B1 (en) | 2018-11-27 | 2021-11-26 | 주식회사 엘지화학 | Novel compound and organic light emitting device comprising the same |
-
2019
- 2019-11-06 KR KR1020190140736A patent/KR102331904B1/en active IP Right Grant
- 2019-11-08 KR KR1020190142729A patent/KR102311642B1/en active IP Right Grant
- 2019-11-08 KR KR1020190142730A patent/KR102341766B1/en active IP Right Grant
- 2019-11-08 KR KR1020190142728A patent/KR102341765B1/en active IP Right Grant
- 2019-11-12 CN CN201980063552.8A patent/CN112771033B/en active Active
- 2019-11-12 US US17/282,071 patent/US20210355128A1/en active Pending
- 2019-11-12 CN CN201980060932.6A patent/CN112739693B/en active Active
- 2019-11-12 CN CN201980063285.4A patent/CN112789273B/en active Active
- 2019-11-13 KR KR1020190145261A patent/KR102265929B1/en active IP Right Grant
- 2019-11-14 CN CN201980059133.7A patent/CN112673005B/en active Active
- 2019-11-14 KR KR1020190145978A patent/KR102352825B1/en active IP Right Grant
- 2019-11-14 CN CN201980059132.2A patent/CN112673004B/en active Active
- 2019-11-15 US US17/278,406 patent/US12098156B2/en active Active
- 2019-11-15 CN CN201980060834.2A patent/CN112714763A/en active Pending
- 2019-11-21 KR KR1020190150702A patent/KR102340254B1/en active IP Right Grant
- 2019-11-22 US US17/281,335 patent/US12037337B2/en active Active
- 2019-11-22 EP EP19889808.2A patent/EP3854792A4/en active Pending
- 2019-11-22 JP JP2021516672A patent/JP7088446B2/en active Active
- 2019-11-22 CN CN201980067110.0A patent/CN112839939B/en active Active
- 2019-11-25 TW TW108142716A patent/TWI706948B/en active
- 2019-11-26 KR KR1020190153522A patent/KR102341767B1/en active IP Right Grant
- 2019-11-27 EP EP19889605.2A patent/EP3842428A4/en active Pending
- 2019-11-27 TW TW108143153A patent/TWI707943B/en active
- 2019-11-27 CN CN201980059738.6A patent/CN112703189B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180047306A (en) * | 2016-10-31 | 2018-05-10 | 성균관대학교산학협력단 | Delayed fluorescence material and organic light emitting device having the delayed fluorescence material |
CN112533900A (en) * | 2018-10-26 | 2021-03-19 | 株式会社Lg化学 | Deuterium-containing compound and organic light-emitting device comprising same |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112703189B (en) | Novel compound and organic light emitting device comprising the same | |
CN109661450B (en) | Organic light emitting device | |
CN112055705B (en) | Novel compound and organic light emitting device comprising the same | |
CN111094277B (en) | Novel compound and organic light emitting device comprising the same | |
CN112041315B (en) | Compound and organic light emitting device comprising the same | |
CN112424183B (en) | Novel compound and organic light emitting device comprising the same | |
CN112888683B (en) | Novel compound and organic light emitting device comprising the same | |
CN110520419B (en) | Novel heterocyclic compound and organic light-emitting device comprising same | |
CN110753687B (en) | Novel heterocyclic compound and organic light-emitting device comprising same | |
CN110573498B (en) | Novel heterocyclic compound and organic light-emitting device comprising same | |
CN111655683B (en) | Novel heterocyclic compound and organic light-emitting device comprising same | |
CN111989326B (en) | Novel heterocyclic compound and organic light-emitting device comprising same | |
CN112204034A (en) | Novel compound and organic light emitting device comprising the same | |
CN112533914A (en) | Novel compound and organic light emitting device comprising the same | |
CN112449639B (en) | Compound and organic light emitting device comprising the same | |
CN112119081B (en) | Novel compound and organic light emitting device comprising the same | |
CN111971281B (en) | Novel heterocyclic compound and organic light-emitting device comprising same | |
CN111902407B (en) | Compound and organic light emitting device comprising the same | |
CN112135828B (en) | Novel compound and organic light emitting device comprising the same | |
CN111630038B (en) | Novel compound and organic light emitting device comprising the same | |
CN117616025A (en) | Novel compound and organic light emitting device comprising the same | |
CN113260608B (en) | Novel compound and organic light emitting device comprising the same | |
CN112739694B (en) | Compound and organic light emitting device comprising the same | |
CN112424190B (en) | Compound and organic light emitting device comprising the same | |
CN111868053B (en) | Novel compound and organic light emitting device comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |