CN112702138A - 一种适用于短距离通信系统的椭圆度参量最优化选择方法 - Google Patents

一种适用于短距离通信系统的椭圆度参量最优化选择方法 Download PDF

Info

Publication number
CN112702138A
CN112702138A CN202011342864.3A CN202011342864A CN112702138A CN 112702138 A CN112702138 A CN 112702138A CN 202011342864 A CN202011342864 A CN 202011342864A CN 112702138 A CN112702138 A CN 112702138A
Authority
CN
China
Prior art keywords
oam mode
distance
parameter
free space
receiving probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011342864.3A
Other languages
English (en)
Other versions
CN112702138B (zh
Inventor
王岩坤
白璐
郭雅�
高鹏慧
吕强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202011342864.3A priority Critical patent/CN112702138B/zh
Publication of CN112702138A publication Critical patent/CN112702138A/zh
Application granted granted Critical
Publication of CN112702138B publication Critical patent/CN112702138B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/04Mode multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

本发明属于光通信技术领域,公开了一种适用于短距离通信系统的椭圆度参量最优化选择方法,推导得到椭圆高斯光束经过自由空间传输后在任意距离z平面处的光场分布;将任意距离z平面处的椭圆高斯光场按螺旋谐波展开,得到傅里叶系数模量的平方;根据傅里叶系数模量的平方,计算得到每一个OAM模态的能量含量;将每一个OAM模态的能量含量进行归一化,得到每一个OAM模态经过自由空间传输后的接收概率;运用软件编程实现每一个OAM模态接收概率的计算;将计算出的每一个OAM模态接收概率以Excel文件形式导出,构建与椭圆度参数的关系,达到对椭圆度参数选择的最优化。本发明给出不同距离下椭圆度参数的最优化选择。

Description

一种适用于短距离通信系统的椭圆度参量最优化选择方法
技术领域
本发明属于光通信技术领域,尤其涉及一种适用于短距离通信系统的椭圆度参量最优化选择方法。
背景技术
目前:在基于轨道角动量(OAM)复用光通信系统设计中,已经引入了一种模分复用技术,这意味着OAM光束可以极大的扩展光通信系统的容量。OAM作为光波的一个全新自由度,已经在各个领域被广泛的应用。然而,有关于自由空间光通信系统的设计中,大气湍流效应不可忽视。由于大气湍流随机性的折射率变化,会使OAM光束在传输过程中受到畸变与串扰,这会大大降低传输性能。拉盖尔高斯光束、贝塞尔高斯光束等作为自由空间传输的备选光束,其传输性能与信道容量尚不能满足需求。椭圆高斯光束作为拉盖尔高斯光束不同拓扑荷的有限叠加,其可以大幅提升通道数量与信道容量。然而,由于椭圆度参数的选择,会出现所需通道容量不够大的问题。因此迫切需要一种对于椭圆度参数最优化选择的方法,使得所需通道容量达到最大,在短距离通信系统设计中抗湍流效应更强。
通过上述分析,现有技术存在的问题及缺陷为:由于椭圆度参数的选择,会出现所需通道容量不够大的问题。
解决以上问题及缺陷的难度为:椭圆度参数的选择直接关系到所需通道的容量,如果椭圆度参数选取不得当,会导致OAM的探测概率降低,传输性能下降。
解决以上问题及缺陷的意义为:椭圆度参数的选择最优化后,可使所需通道的容量达到最大,在短距离通信系统中具有更强的抗湍流效应。
发明内容
针对现有技术存在的问题,本发明提供了一种适用于短距离通信系统的椭圆度参量最优化选择方法。
本发明是这样实现的,一种椭圆度参量最优化选择方法,所述椭圆度参量最优化选择方法包括:
基于广义惠更斯-菲涅尔原理,理论推导得到椭圆高斯光束经过自由空间传输后在任意距离z平面处的光场分布;
将任意距离z平面处的椭圆高斯光场按螺旋谐波展开,得到其傅里叶系数模量的平方;
根据傅里叶系数模量的平方,计算得到每一个OAM模态的能量含量;
将每一个OAM模态的能量含量进行归一化,得到每一个OAM模态经过自由空间传输后的接收概率,也即能量分数;
运用软件编程实现每一个OAM模态接收概率的计算;
将计算出的每一个OAM模态接收概率以Excel文件形式导出,构建与椭圆度参数的关系,达到对椭圆度参数选择的最优化。
进一步,椭圆高斯光束在源平面z=0处的光场分布为:
Figure BDA0002799027900000021
进一步,基于广义惠更斯-菲涅尔衍射积分公式,得到椭圆高斯光束在自由空间传输任意距离z平面处的光场:
Figure BDA0002799027900000022
Figure BDA0002799027900000023
其中:
Figure BDA0002799027900000031
Figure BDA0002799027900000032
Figure BDA0002799027900000033
Figure BDA0002799027900000034
Figure BDA0002799027900000035
Figure BDA0002799027900000036
进一步,将自由空间传输任意距离z平面处椭圆高斯光束的光场按螺旋谐波exp(imθ)的形式展开,得到其傅里叶系数模量的平方为:
〈|am(r,z)|2〉=SS*exp[-2r2T]Im-H(2r2T),
其中:
Figure BDA0002799027900000037
Figure BDA0002799027900000038
进一步,每一个OAM模态的能量含量为:
Figure BDA0002799027900000039
进一步,将每一个OAM模态的能量含量进行归一化,得到每一个OAM模态经过自由空间传输后的接收概率,也即能量分数为:
Figure BDA00027990279000000310
本发明的另一目的在于提供一种计算机设备,所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如下步骤:
基于广义惠更斯-菲涅尔原理,理论推导得到椭圆高斯光束经过自由空间传输后在任意距离z平面处的光场分布;
将任意距离z平面处的椭圆高斯光场按螺旋谐波展开,得到其傅里叶系数模量的平方;
根据傅里叶系数模量的平方,计算得到每一个OAM模态的能量含量;
将每一个OAM模态的能量含量进行归一化,得到每一个OAM模态经过自由空间传输后的接收概率,也即能量分数;
运用软件编程实现每一个OAM模态接收概率的计算;
将计算出的每一个OAM模态接收概率以Excel文件形式导出,构建与椭圆度参数的关系,达到对椭圆度参数选择的最优化。
本发明的另一目的在于提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如下步骤:
基于广义惠更斯-菲涅尔原理,理论推导得到椭圆高斯光束经过自由空间传输后在任意距离z平面处的光场分布;
将任意距离z平面处的椭圆高斯光场按螺旋谐波展开,得到其傅里叶系数模量的平方;
根据傅里叶系数模量的平方,计算得到每一个OAM模态的能量含量;
将每一个OAM模态的能量含量进行归一化,得到每一个OAM模态经过自由空间传输后的接收概率,也即能量分数;
运用软件编程实现每一个OAM模态接收概率的计算;
将计算出的每一个OAM模态接收概率以Excel文件形式导出,构建与椭圆度参数的关系,达到对椭圆度参数选择的最优化。
本发明的另一目的在于提供一种短距离光通信系统的信息数据处理终端,所述短距离光通信系统的信息数据处理终端用于实现所述的椭圆度参量最优化选择方法,给出椭圆度参量的最优化选择。
本发明的另一目的在于提供一种实施所述椭圆度参量最优化选择方法的椭圆度参量最优化选择系统,所述椭圆度参量最优化选择系统包括:
光场分布获取模块,用于基于广义惠更斯-菲涅尔原理,理论推导得到椭圆高斯光束经过自由空间传输后在任意距离z平面处的光场分布;
傅里叶系数模量平方获取模块,用于将任意距离z平面处的椭圆高斯光场按螺旋谐波展开,得到其傅里叶系数模量的平方;
能量含量计算模块,用于根据傅里叶系数模量的平方,计算得到每一个OAM模态的能量含量;
接收概率计算模块,用于将每一个OAM模态的能量含量进行归一化,得到每一个OAM模态经过自由空间传输后的接收概率;
每一个接收概率计算模块,用于运用软件编程实现每一个OAM模态接收概率的计算;
椭圆度参数选择优化模块,用于将计算出的每一个OAM模态接收概率以Excel文件形式导出,构建与椭圆度参数的关系,达到对椭圆度参数选择的最优化。
结合上述的所有技术方案,本发明所具备的优点及积极效果为:通过对椭圆高斯光束中椭圆度参数的最优化选择,使得基于椭圆高斯光束的短距离通信系统的通道接收概率最大化,提升传输性能。本发明采用数值模拟方法,将椭圆高斯光束在大气湍流中传输后的OAM分布具体化,并给出不同距离下椭圆度参数的最优化选择。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图做简单的介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的椭圆度参量最优化选择方法流程图。
图2是本发明实施例提供的椭圆度参量最优化选择系统的结构示意图;
图2中:1、光场分布获取模块;2、傅里叶系数模量平方获取模块;3、能量含量计算模块;4、接收概率计算模块;5、每一个接收概率计算模块;6、椭圆度参数选择优化模块。
图3是本发明实施例提供的0≤a≤1的最优化的椭圆参数a的取值示意图。
图4是本发明实施例提供的a>1的最优化的椭圆参数a的取值示意图。
图5是本发明实施例提供的部分数据结果示意图。
图6是本发明实施例提供的奇数阶的高阶椭圆高斯光束的椭圆度参量的最优化选择:(a,b)3阶;(c,d)5阶;(e,f)7阶示意图。
图7是本发明实施例提供的偶数阶的高阶椭圆高斯光束的椭圆度参量的最优化选择:(a,b)4阶;(c,d)6阶示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
针对现有技术存在的问题,本发明提供了一种适用于短距离通信系统的椭圆度参量最优化选择方法,下面结合附图对本发明作详细的描述。
如图1所示,本发明提供的椭圆度参量最优化选择方法包括以下步骤:
S101:基于广义惠更斯-菲涅尔原理,理论推导得到椭圆高斯光束经过自由空间传输后在任意距离z平面处的光场分布;
S102:将任意距离z平面处的椭圆高斯光场按螺旋谐波展开,得到其傅里叶系数模量的平方;
S103:根据傅里叶系数模量的平方,计算得到每一个OAM模态的能量含量;
S104:将每一个OAM模态的能量含量进行归一化,得到每一个OAM模态经过自由空间传输后的接收概率,也即能量分数;
S105:运用软件编程实现每一个OAM模态接收概率的计算;
S106:将计算出的每一个OAM模态接收概率以Excel文件形式导出,构建与椭圆度参数的关系,达到对椭圆度参数选择的最优化。
本发明提供的椭圆度参量最优化选择方法业内的普通技术人员还可以采用其他的步骤实施,图1的本发明提供的椭圆度参量最优化选择方法仅仅是一个具体实施例而已。
如图2所示,本发明提供的椭圆度参量最优化选择系统包括:
光场分布获取模块1,用于基于广义惠更斯-菲涅尔原理,理论推导得到椭圆高斯光束经过自由空间传输后在任意距离z平面处的光场分布;
傅里叶系数模量平方获取模块2,用于将任意距离z平面处的椭圆高斯光场按螺旋谐波展开,得到其傅里叶系数模量的平方;
能量含量计算模块3,用于根据傅里叶系数模量的平方,计算得到每一个OAM模态的能量含量;
接收概率计算模块4,用于将每一个OAM模态的能量含量进行归一化,得到每一个OAM模态经过自由空间传输后的接收概率;
每一个接收概率计算模块5,用于运用软件编程实现每一个OAM模态接收概率的计算;
椭圆度参数选择优化模块6,用于将计算出的每一个OAM模态接收概率以Excel文件形式导出,构建与椭圆度参数的关系,达到对椭圆度参数选择的最优化。
下面结合附图对本发明的技术方案作进一步的描述。
本发明提供的椭圆度参量最优化选择方法具体包括以下步骤:
(1)椭圆高斯光束在源平面z=0处的光场分布为:
Figure BDA0002799027900000071
(2)基于广义惠更斯-菲涅尔衍射积分公式,得到椭圆高斯光束在自由空间传输任意距离z平面处的光场:
Figure BDA0002799027900000081
Figure BDA0002799027900000082
其中:
Figure BDA0002799027900000083
Figure BDA0002799027900000084
Figure BDA0002799027900000085
Figure BDA0002799027900000086
Figure BDA0002799027900000087
Figure BDA0002799027900000088
(3)将自由空间传输任意距离z平面处椭圆高斯光束的光场按螺旋谐波exp(imθ)的形式展开,得到其傅里叶系数模量的平方为:
〈|am(r,z)|2〉=SS*exp[-2r2T]Im-H(2r2T),
其中:
Figure BDA0002799027900000089
Figure BDA00027990279000000810
(4)每一个OAM模态的能量含量为:
Figure BDA00027990279000000811
(5)将每一个OAM模态的能量含量进行归一化,得到每一个OAM模态经过自由空间传输后的接收概率,也即能量分数为:
Figure BDA00027990279000000812
(6)运用Mathematica软件进行编程,计算得到每一个OAM模态接收概率,将计算出的每一个OAM模态接收概率以Excel文件形式导出,构建与椭圆度参数的关系,达到对椭圆度参数选择的最优化。
本发明理论推导了椭圆高斯光束经过自由空间传输后的光场表达式,并将其按螺旋谐波展开并进行归一化,得到了其各个OAM模式的接收概率。通过将椭圆度参数a区分到两个不同的区间,将其对应的OAM模式接收概率进行了最大化,对应传输距离小于2km的短距离通信系统的设计,在两个区间给出了最优的椭圆度参数的取值。
下面结合实验对本发明的技术效果作详细的描述。
(1)算例使用的理论计算软件与基本参数
使用的理论计算软件为Wolfram下的Mathematica软件。
椭圆高斯光束与接收仪器的基本参数为:
拓扑荷数:n=3,光波波长:λ=1550nm,光束束宽:w=0.05m,大气湍流功率谱指数:α=11/3,湍流强度:
Figure BDA0002799027900000091
接收仪器孔径:R=0.05m。
(2)数据结果
由于源平面处的椭圆高斯光束的OAM分布呈现为多模式型,并且其主要能量集中于m=1的模式上,其关于椭圆度参数的分布如图3。将椭圆度参数a划分为0≤a≤1和a>1两个区间,其对应不同的传输距离条件下具有不同的最优取值,如图4。
本发明含义在距离小于2km的短距离通信系统中,有关高阶椭圆高斯光束的椭圆度参数优化直接影响到通信性能,给出了在不同的传输距离下,如何选择椭圆度参数的方案以及其与阶数的对应关系。
如图6和图7所示,本发明可以根据不同的传输距离场景最优地选择参数a。a的值也和阶数有关。对于传输距离小于2km的通信系统,当EGB阶数为奇数时,最优值与阶数的关系为:a=-0.05n+0.5(0≤a≤1)和a=0.5n+2(a>1)。当阶数为偶数时,关系为:a=-0.05n+0.7(0≤a≤1)和a=0.25n+1(a>1)。
综上所述,本发明提出了一种基于椭圆高斯光束的短距离通信系统的椭圆度参量最优化选择。理论推导了椭圆高斯光束经过自由空间传输后的光场表达式,并将其按螺旋谐波展开并进行归一化,得到了其各个OAM模式的接收概率。通过将椭圆度参数a区分到两个不同的区间,将其对应的OAM模式接收概率进行了最大化,对应传输距离小于2km的短距离通信系统的设计,在两个区间给出了最优的椭圆度参数的取值。以上为本发明在此领域的优势,但并非对本发明在使用领域有所限制,依据本发明的技术本质对上所作的任何简单修改、变化与修饰或是单纯的领域替换,均仍属于本发明技术方案的范围内。
应当注意,本发明的实施方式可以通过硬件、软件或者软件和硬件的结合来实现。硬件部分可以利用专用逻辑来实现;软件部分可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域的普通技术人员可以理解上述的设备和方法可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本发明的设备及其模块可以由诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用由各种类型的处理器执行的软件实现,也可以由上述硬件电路和软件的结合例如固件来实现。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种椭圆度参量最优化选择方法,其特征在于,所述椭圆度参量最优化选择方法包括:
基于广义惠更斯-菲涅尔原理,理论推导得到椭圆高斯光束经过自由空间传输后在任意距离z平面处的光场分布;
将任意距离z平面处的椭圆高斯光场按螺旋谐波展开,得到其傅里叶系数模量的平方;
根据傅里叶系数模量的平方,计算得到每一个OAM模态的能量含量;
将每一个OAM模态的能量含量进行归一化,得到每一个OAM模态经过自由空间传输后的接收概率,也即能量分数;
运用软件编程实现每一个OAM模态接收概率的计算;
将计算出的每一个OAM模态接收概率以Excel文件形式导出,构建与椭圆度参数的关系,达到对椭圆度参数选择的最优化。
2.如权利要求1所述的椭圆度参量最优化选择方法,其特征在于,椭圆高斯光束在源平面z=0处的光场分布为:
Figure FDA0002799027890000011
3.如权利要求1所述的椭圆度参量最优化选择方法,其特征在于,基于广义惠更斯-菲涅尔衍射积分公式,得到椭圆高斯光束在自由空间传输任意距离z平面处的光场:
Figure FDA0002799027890000012
其中:
Figure FDA0002799027890000013
H=2p-n,
Figure FDA0002799027890000021
Figure FDA0002799027890000022
Figure FDA0002799027890000023
Figure FDA0002799027890000024
4.如权利要求1所述的椭圆度参量最优化选择方法,其特征在于,将自由空间传输任意距离z平面处椭圆高斯光束的光场按螺旋谐波exp(imθ)的形式展开,得到其傅里叶系数模量的平方为:
<|am(r,z)|2>=SS*exp[-2r2T]Im-H(2r2T),
其中:
Figure FDA0002799027890000025
5.如权利要求1所述的椭圆度参量最优化选择方法,其特征在于,每一个OAM模态的能量含量为:
Figure FDA0002799027890000026
6.如权利要求1所述的椭圆度参量最优化选择方法,其特征在于,将每一个OAM模态的能量含量进行归一化,得到每一个OAM模态经过自由空间传输后的接收概率,也即能量分数为:
Figure FDA0002799027890000027
7.一种计算机设备,其特征在于,所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如下步骤:
基于广义惠更斯-菲涅尔原理,理论推导得到椭圆高斯光束经过自由空间传输后在任意距离z平面处的光场分布;
将任意距离z平面处的椭圆高斯光场按螺旋谐波展开,得到其傅里叶系数模量的平方;
根据傅里叶系数模量的平方,计算得到每一个OAM模态的能量含量;
将每一个OAM模态的能量含量进行归一化,得到每一个OAM模态经过自由空间传输后的接收概率,也即能量分数;
运用软件编程实现每一个OAM模态接收概率的计算;
将计算出的每一个OAM模态接收概率以Excel文件形式导出,构建与椭圆度参数的关系,达到对椭圆度参数选择的最优化。
8.一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如下步骤:
基于广义惠更斯-菲涅尔原理,理论推导得到椭圆高斯光束经过自由空间传输后在任意距离z平面处的光场分布;
将任意距离z平面处的椭圆高斯光场按螺旋谐波展开,得到其傅里叶系数模量的平方;
根据傅里叶系数模量的平方,计算得到每一个OAM模态的能量含量;
将每一个OAM模态的能量含量进行归一化,得到每一个OAM模态经过自由空间传输后的接收概率,也即能量分数;
运用软件编程实现每一个OAM模态接收概率的计算;
将计算出的每一个OAM模态接收概率以Excel文件形式导出,构建与椭圆度参数的关系,达到对椭圆度参数选择的最优化。
9.一种短距离光通信系统的信息数据处理终端,其特征在于,所述短距离光通信系统的信息数据处理终端用于实现权利要求1~6任意一项所述的椭圆度参量最优化选择方法,给出椭圆度参量的最优化选择。
10.一种实施权利要求1~6任意一项所述椭圆度参量最优化选择方法的椭圆度参量最优化选择系统,其特征在于,所述椭圆度参量最优化选择系统包括:
光场分布获取模块,用于基于广义惠更斯-菲涅尔原理,理论推导得到椭圆高斯光束经过自由空间传输后在任意距离z平面处的光场分布;
傅里叶系数模量平方获取模块,用于将任意距离z平面处的椭圆高斯光场按螺旋谐波展开,得到其傅里叶系数模量的平方;
能量含量计算模块,用于根据傅里叶系数模量的平方,计算得到每一个OAM模态的能量含量;
接收概率计算模块,用于将每一个OAM模态的能量含量进行归一化,得到每一个OAM模态经过自由空间传输后的接收概率;
每一个接收概率计算模块,用于运用软件编程实现每一个OAM模态接收概率的计算;
椭圆度参数选择优化模块,用于将计算出的每一个OAM模态接收概率以Excel文件形式导出,构建与椭圆度参数的关系,达到对椭圆度参数选择的最优化。
CN202011342864.3A 2020-11-26 2020-11-26 一种适用于短距离通信系统的椭圆度参量最优化选择方法 Active CN112702138B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011342864.3A CN112702138B (zh) 2020-11-26 2020-11-26 一种适用于短距离通信系统的椭圆度参量最优化选择方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011342864.3A CN112702138B (zh) 2020-11-26 2020-11-26 一种适用于短距离通信系统的椭圆度参量最优化选择方法

Publications (2)

Publication Number Publication Date
CN112702138A true CN112702138A (zh) 2021-04-23
CN112702138B CN112702138B (zh) 2022-08-30

Family

ID=75506167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011342864.3A Active CN112702138B (zh) 2020-11-26 2020-11-26 一种适用于短距离通信系统的椭圆度参量最优化选择方法

Country Status (1)

Country Link
CN (1) CN112702138B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113446984A (zh) * 2021-05-22 2021-09-28 西安电子科技大学 轨道角动量探测概率优化选择方法、系统、介质、终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160146937A1 (en) * 2014-11-21 2016-05-26 Nec Laboratories America, Inc. System and method for remote object sensing
CN106058490A (zh) * 2016-06-01 2016-10-26 电子科技大学 一种产生涡旋电磁波的方法
CN111355530A (zh) * 2020-03-13 2020-06-30 山东师范大学 一种提高无线光通信系统性能的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160146937A1 (en) * 2014-11-21 2016-05-26 Nec Laboratories America, Inc. System and method for remote object sensing
CN106058490A (zh) * 2016-06-01 2016-10-26 电子科技大学 一种产生涡旋电磁波的方法
CN111355530A (zh) * 2020-03-13 2020-06-30 山东师范大学 一种提高无线光通信系统性能的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAIYING LI,FARIDEH HONARY,ZHENSEN WU: "Reflection, Transmission, and Absorption of Vortex Beams Propagation in an Inhomogeneous Magnetized Plasma Slab", 《 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113446984A (zh) * 2021-05-22 2021-09-28 西安电子科技大学 轨道角动量探测概率优化选择方法、系统、介质、终端
CN113446984B (zh) * 2021-05-22 2022-04-19 西安电子科技大学 轨道角动量探测概率优化选择方法、系统、介质、终端

Also Published As

Publication number Publication date
CN112702138B (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
US20200212681A1 (en) Method, apparatus and storage medium for transmission network expansion planning considering extremely large amounts of operation scenarios
CN112702138B (zh) 一种适用于短距离通信系统的椭圆度参量最优化选择方法
CN113382445B (zh) 提高swipt系统安全速率的方法、装置、终端及存储介质
US20220058056A1 (en) Method and machine learning agent for executing machine learning in an edge cloud
Senior Scalar diffraction by a prolate spheroid at low frequencies
US20200220707A1 (en) Method and apparatus for backscatter communication of pattern-based demodulation
Marantos et al. Efficient support vector machines implementation on Intel/Movidius Myriad 2
KR20180097001A (ko) 궤도각운동량을 집속하는 평면형 전자파 발생장치 및 그 방법
CN101098537A (zh) 一种无线通信中绕射损耗计算的方法
Javed et al. Study the dynamic behavior of bifurcation, chaos, time series analysis and soliton solutions to a Hirota model
CN113446984B (zh) 轨道角动量探测概率优化选择方法、系统、介质、终端
Kim et al. Shortest paths for disc obstacles
CN108599840B (zh) 一种基于功率谱检测的lg光两维复用通信的实现方法
Vazquez-Vilar Error probability bounds for gaussian channels under maximal and average power constraints
Hales Some algorithms arising in the proof of the Kepler conjecture
Floris et al. Wilson basis expansions of electromagnetic wavefields: a suitable framework for fiber optics
CN114125900A (zh) 智能表面辅助跳频传输的通信方法、装置、设备及介质
CN111238510B (zh) 一种专用道路类型的确定、引导方法、装置及相关设备
Voelz et al. A brief review of spatially partially coherent beams for FSO communications
CN112861634B (zh) 一种基于神经网络的多模涡旋光束解复用方法
US20230421267A1 (en) Signal detector, carrier phase retrieval apparatus, carrier phase retrieval method and carrier phase retrieval program
CN219475939U (zh) 一种高功率隔离器
CN116527134A (zh) 一种利用偏振特性检测涡旋光束oam模式方法
Gao et al. Output-space branch-and-bound reduction algorithm for generalized linear fractional-multiplicative programming problem
Courtright et al. Automatically mapping the stable regions of frequency combs in microresonators

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant