CN112698625B - 一种面向联动轨迹误差预测的五轴机床数字孪生建模方法 - Google Patents

一种面向联动轨迹误差预测的五轴机床数字孪生建模方法 Download PDF

Info

Publication number
CN112698625B
CN112698625B CN202011441655.4A CN202011441655A CN112698625B CN 112698625 B CN112698625 B CN 112698625B CN 202011441655 A CN202011441655 A CN 202011441655A CN 112698625 B CN112698625 B CN 112698625B
Authority
CN
China
Prior art keywords
axis
coordinate system
machine tool
transformation matrix
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011441655.4A
Other languages
English (en)
Other versions
CN112698625A (zh
Inventor
吕盾
罗世有
张会杰
刘辉
赵万华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202011441655.4A priority Critical patent/CN112698625B/zh
Publication of CN112698625A publication Critical patent/CN112698625A/zh
Application granted granted Critical
Publication of CN112698625B publication Critical patent/CN112698625B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种面向联动轨迹误差预测的五轴机床数字孪生建模方法,先建立从插补指令位置到刀具中心位置的正运动变换矩阵,将各轴插补指令位置输入得到在工件坐标系下的理想刀具中心位置,并将其合成指令轨迹;再建立各轴从插补指令位置到光栅检测位置的传递函数,将各轴指令位置输入,实现对实际位置的预测;然后建立五轴机床几何误差表征模型;再建立从预测光栅位置到刀具中心位置的正运动变换矩阵,将预测的实际位置和机床几何误差表征模型输入到正运动变换矩阵,得到在工件坐标系下的实际刀具中心位置,并将其合成实际轨迹;集成模型建立五轴数控机床的数字孪生模型,实现五轴联动轨迹误差的预测,保证加工精度、提高加工效率。

Description

一种面向联动轨迹误差预测的五轴机床数字孪生建模方法
技术领域
本发明属于数控机床技术领域,具体涉及一种面向联动轨迹误差预测的五轴机床数字孪生建模方法。
技术背景
在五轴机床加工研究中,复杂曲面零件的轮廓误差控制一直是难点问题,而保证零件轮廓误差的核心是保证五轴机床的联动轨迹误差。零件加工过程中的轨迹精度在加工前往往是未知的,所加工零件也难以判断能否满足轮廓误差的要求,从而在现场加工时往往只能以极低的进给速度来满足零件轮廓误差精度要求,这大大影响了加工效率。
目前,国内外对轨迹误差预测方法的研究相对较少,常用的方法是基于数控机床的动力学模型和运动学模型来实现对轨迹误差的估算。现有的预测模型通常是以机床刀位文件数据作为输入数据,模型需要不断对刀位文件数据进行正逆运动学变换来实现工件坐标系与机床坐标系之间的转换,计算较为复杂;而且建立数控机床的高精度动力学模型需考虑结合部刚度和阻尼等非线性参数,建模过程复杂。
当前,在数控机床加工领域,数字孪生模型和应用主要面向几何层面,基于三维CAD模型及OpenGL等语言,数控机床数字孪生模型可以高保真镜像物理实体的几何结构,实现物理实体的同步运动。然而,在数控机床层级,数字孪生模型仍然缺乏对精度等深层运动控制机理及行为的刻画。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提出了一种面向联动轨迹误差预测的五轴机床数字孪生建模方法,将轨迹误差的预测方法视为数控机床的数字孪生模型,针对具体机床建立面向联动轨迹误差预测的数字孪生模型,实现具体数控机床加工具体零件时的联动轨迹误差预测。
为了达到上述目的,本发明采取的技术方案为:
一种面向联动轨迹误差预测的五轴机床数字孪生建模方法,包括以下步骤:
步骤1,对于所选定的五轴数控机床,建立其数字孪生模型;
步骤2,对于加工零件,将其G代码输入所选定的五轴数控机床;在加工中或加工前读取数控系统插补输出的指令位置,将指令位置输入步骤1建立的数字孪生模型,得到理想刀具中心位置和实际刀具中心位置;
步骤3,将理想刀具中心位置合成指令轨迹,将实际刀具中心位置合成实际轨迹,并计算实际轨迹相对于指令轨迹的偏差,得到刀尖位置轨迹误差和刀轴姿态轨迹误差,实现对五轴联动轨迹误差的预测。
所述的步骤1中数字孪生模型建立的具体方法如下:
1)建立从插补指令位置到刀具中心位置的正运动变换矩阵
Figure BDA0002830458660000021
根据机床运动学结构,建立正运动变换矩阵
Figure BDA0002830458660000022
将各轴插补指令位置输入正运动学变换矩阵
Figure BDA0002830458660000023
后,将各轴在机床坐标系下的指令位置转换到工件坐标系下,得到在工件坐标系下的理想刀具中心位置,并将理想刀具中心位置合成指令轨迹;
2)建立各轴从插补指令位置到光栅检测位置的传递函数:运用辨识方法,用公式(2)对各轴伺服进给系统进行辨识,建立各轴伺服进给系统传递函数,式中,B(z)-1为光栅尺反馈位置;A(z)-1为插补指令位置;bi和aj分别为离散传递函数分子及分母的系数,na和nb分别为离散传递函数分子及分母的阶数;之后将各轴插补指令位置输入建立的传递函数,预测出各轴光栅检测的实际位置;
Figure BDA0002830458660000031
3)建立五轴机床41项几何误差表征模型:将位置相关的30项几何误差表征成以各轴位置为变量的高阶多项式函数,如公式(4)所示,将位置无关的11项几何误差表征为常量,如公式(5)所示;
Figure BDA0002830458660000032
Figure BDA0002830458660000033
式中,f1,f2,…f30为30项位置相关几何误差的高阶多项式函数,m表示各个轴的不同位置,对平动轴来说是移动的位置,对转轴是转动的角度;n表示多项式阶次;a11…a1n表示f1函数各阶次系数,同理,a30,1…a30,n表示f30函数各阶次系数;f31,f32,…f41为11项位置无关几何误差,c1,c2,…c11为误差常量;
4)建立从光栅位置到刀具中心位置的正运动变换矩阵
Figure BDA0002830458660000034
先在步骤1)中所建立的正运动变换矩阵
Figure BDA0002830458660000035
基础上,引入机床的几何误差项,建立考虑了几何误差的正运动变换矩阵
Figure BDA0002830458660000036
然后,将步骤2)中预测出各轴光栅检测的实际位置和步骤3)得到的机床几何误差表征模型输入到正运动变换矩阵
Figure BDA0002830458660000037
如式(7)所示;将各轴在机床坐标系下的实际位置转换到工件坐标系下,得到在工件坐标系下考虑了几何误差影响的实际刀具中心位置,并将实际刀具中心位置合成实际轨迹;
Figure BDA0002830458660000038
式中:W为工件坐标系,R为机床坐标系,S为主轴坐标系,T为刀具坐标系,C、A、X、Y、Z分别为机床各轴坐标系;定义
Figure BDA0002830458660000041
为考虑机床几何误差影响后,a坐标系与b坐标系的齐次变换矩阵;
Figure BDA0002830458660000042
为工件坐标系与C轴坐标系的齐次变换矩阵;
Figure BDA0002830458660000043
为C轴坐标系与A轴坐标系的齐次变换矩阵;
Figure BDA0002830458660000044
为A轴坐标系与机床坐标系的齐次变换矩阵;
Figure BDA0002830458660000045
为机床坐标系与Y轴坐标系的齐次变换矩阵;
Figure BDA0002830458660000046
为Y轴坐标系与X轴坐标系的齐次变换矩阵;
Figure BDA0002830458660000047
为X轴坐标系与Z轴坐标系的齐次变换矩阵;
Figure BDA0002830458660000048
为Z轴坐标系与主轴坐标系的齐次变换矩阵;
Figure BDA0002830458660000049
为主轴坐标系与刀具坐标系的齐次变换矩阵;
5)集成步骤1)~4)所建立的正运动变换矩阵、传递函数和几何误差表征模型,建立五轴数控机床的数字孪生模型,对通过数字孪生模型得到的零件指令轨迹和实际轨迹进行误差求解,实现对五轴联动轨迹误差的预测。
本发明具有以下有益效果:
本发明预测模型直接以数控系统的插补指令作为输入数据,只需对插补数据进行正运动变换,计算相对简单;采用传递函数辨识方法代替复杂的动力学建模过程,辨识过程简单;通过构建五轴数控机床数字孪生模型,将零件加工中数控系统插补指令数据实时输入数字孪生模型,进行五轴机床加工零件轨迹误差的预测,实现以物理实体(数控机床)实时数据为驱动的零件加工轨迹误差的预测,为分析联动轨迹误差的成因提供依据,对保证加工精度、提高加工效率具有重要意义。
附图说明
图1为本发明实施例机床运动学结构示意图。
图2为本发明合成指令轨迹流程图。
图3为本发明X轴指令位置到光栅位置的传递函数示意图。
图4为本发明Y轴位置相关几何误差示意图。
图5为本发明合成实际轨迹流程图。
图6为本发明联动轨迹误差预测流程图。
图7为本发明实施例S试件轨迹合成图。
图8为本发明轮廓误差示意图。
图9中(a)为本发明实施例刀尖位置轨迹误差;(b)为本发明实施例刀轴姿态轨迹误差。
具体实施方式
下面结合附图和实施例对本发明做详细描述。
一种面向联动轨迹误差预测的五轴机床数字孪生建模方法,包括以下步骤:
步骤1,对于所选定的五轴数控机床,建立其数字孪生模型;
1.1)建立从插补指令位置到刀具中心位置的正运动变换矩阵
Figure BDA0002830458660000055
参照图1,本实施例以AC双转台五轴机床为例,该五轴机床共有两个开环运动链,分别为刀具运动链和工件运动链,两个开环运动链构成了从工件到刀具的整体运动链,其中工件运动链从机床坐标系开始,依次到A轴、C轴,工件最终固定在C轴的工作台上;刀具运动链从机床坐标系开始到Y轴、X轴、Z轴,刀具最终固定在Z轴上;整体运动链则是从工件开始,依次到C轴、A轴、机床坐标系、Y轴、X轴,最后到Z轴和刀具;
参照图2,建立从插补指令位置到刀具中心位置的正运动变换矩阵
Figure BDA0002830458660000051
根据图1所示的AC双转台五轴机床运动学结构,建立正运动变换矩阵如式(1)所示;定义
Figure BDA0002830458660000052
为a坐标系与b坐标系的齐次变换矩阵,将各轴插补指令位置输入正运动学变换矩阵
Figure BDA0002830458660000053
把各轴在机床坐标系下的指令位置转换到工件坐标系下,得到在工件坐标系下的理想刀具中心位置,并将理想刀具中心位置合成指令轨迹;
Figure BDA0002830458660000054
1.2)建立各轴从插补指令位置到光栅检测位置的传递函数:
建立各轴从插补指令位置到光栅检测位置的传递函数,以X轴为例,参照图3,为X轴的传动环节示意图,X轴插补指令经过位置、速度、电流的三环控制,控制电机转子转动,带动丝杠,进而带动机械环节运动;运用辨识方法对X轴伺服进给系统进行辨识,建立从数控系统的插补指令位置到光栅检测位置的传递函数,将插补指令位置输入辨识出的传递函数,实现对光栅检测位置的预测;
具体过程如下:对X轴进行将光栅反馈和指令位置作为数据驱动,运用辨识方法,辨识出从X轴指令位置到光栅反馈位置的传递函数;为充分激励起机床各个进给轴的动态特性,选用变幅值M的激励信号生成G代码;将G代码输入到机床数控系统,使各轴做激励运动;采集激励运动中的插补指令位置、光栅尺反馈位置以及采样频率等数据,采用公式(2)对各轴伺服进给系统进行辨识,建立各轴伺服进给系统传递函数,本实施例辨识出的各轴传递函数如公式(3)所示,通过将各轴指令位置输入建立的传递函数,预测出各轴光栅检测的实际位置;
Figure BDA0002830458660000061
Figure BDA0002830458660000062
1.3)建立五轴机床41项几何误差表征模型:
五轴机床有41项几何误差,分为位置有关几何误差和位置无关几何误差两类,参照图4,以Y轴为例,为6项位置相关几何误差示意图,将位置相关的30项几何误差表征成以各轴位置为变量的高阶多项式函数,如公式(4)所示,将位置无关的11项几何误差表征为常量,如公式(5)所示,本实施例以C轴为例,其C轴的6项位置相关几何误差的高阶多项式函数如式(6)所示;
Figure BDA0002830458660000071
Figure BDA0002830458660000072
Figure BDA0002830458660000073
式(4)、(5)中,f1,f2,…f30为30项位置相关几何误差的高阶多项式函数,m表示各个轴的不同位置,对平动轴来说是移动的位置,对转轴是转动的角度;n表示多项式阶次;a11…a1n表示f1函数各阶次系数,同理,a30,1…a30,n表示f30函数各阶次系数;f31,f32,…f41为11项位置无关几何误差,c1,c2,…c11为误差常量;式(6)中,δxc、δyc、δzc、εxc、εyc、εzc分别为C轴的6项位置相关几何误差函数,c为转轴C在不同位置的角度值;
1.4)建立从预测光栅位置到刀具中心位置的正运动变换矩阵
Figure BDA0002830458660000074
参照图5,建立从预测光栅位置到刀具中心位置的正运动变换矩阵
Figure BDA0002830458660000075
先在步骤1.1)中所建立的正运动变换矩阵
Figure BDA0002830458660000081
基础上,引入机床的几何误差项,建立考虑了几何误差的正运动变换矩阵
Figure BDA0002830458660000082
如式(7)所示:定义
Figure BDA0002830458660000083
为考虑机床几何误差影响后,a坐标系与b坐标系的齐次变换矩阵,将步骤1.2)中预测出各轴光栅检测的实际位置和步骤1.3)得到的机床几何误差表征模型输入到正运动变换矩阵
Figure BDA0002830458660000084
得到在工件坐标系下的实际刀具中心位置,并将实际刀具中心位置合成实际轨迹;
Figure BDA0002830458660000085
式中:W为工件坐标系,R为机床坐标系,S主轴坐标系,C、A、X、Y、Z分别为机床各轴坐标系;定义
Figure BDA0002830458660000086
为考虑机床几何误差影响后,a坐标系与b坐标系的齐次变换矩阵;
Figure BDA0002830458660000087
为工件坐标系与C轴坐标系的齐次变换矩阵;
Figure BDA0002830458660000088
为C轴坐标系与A轴坐标系的齐次变换矩阵;
Figure BDA0002830458660000089
为A轴坐标系与机床坐标系的齐次变换矩阵;
Figure BDA00028304586600000810
为机床坐标系与Y轴坐标系的齐次变换矩阵;
Figure BDA00028304586600000811
为Y轴坐标系与X轴坐标系的齐次变换矩阵;
Figure BDA00028304586600000812
为X轴坐标系与Z轴坐标系的齐次变换矩阵;
Figure BDA00028304586600000813
为Z轴坐标系与主轴坐标系的齐次变换矩阵;
Figure BDA00028304586600000814
为主轴坐标系与刀具坐标系的齐次变换矩阵;
1.5)参照图6,集成步骤1.1)~1.4)所建立的正运动变换矩阵、传递函数和几何误差表征模型,建立五轴数控机床的数字孪生模型;
步骤2,对于加工零件,将其G代码输入所选定的五轴数控机床;在加工中或加工前读取数控系统插补输出的指令位置,将指令位置输入步骤1建立的数字孪生模型,得到理想刀具中心位置和实际刀具中心位置;
步骤3,将理想刀具中心位置合成指令轨迹,将实际刀具中心位置合成实际轨迹,并计算实际轨迹相对于指令轨迹的偏差,得到刀尖位置轨迹误差和刀轴姿态轨迹误差,实现对五轴联动轨迹误差的预测。
参照图7,图7为本实施例通过数字孪生模型得到的S试件指令轨迹和实际轨迹;参照图8,图8为本实施例计算实际轨迹相对于指令轨迹的偏差的示意图,零件加工的联动轨迹误差包含刀尖位置轨迹误差和刀轴姿态轨迹误差两部分,刀尖位置误差εp是指Pa和Pc之间的矢量,即计算指令轨迹上离实际轨迹刀尖位置Pa最近点Pc的距离;刀轴姿态轨迹误差εo是实际刀轴方向矢量Oa和指令轨迹上离实际刀尖位置最近的轮廓位姿矢量Oc之间夹角,即计算矢量Oa和Oc之间的夹角;参照图9,图9为本实施例所求结果,分别为五轴联动刀尖位置轨迹误差和刀轴姿态轨迹误差,根据误差图显示,预测得到的刀尖位置轨迹误差变化范围大约在(-1.2~1.5)mm,刀轴姿态轨迹误差的变化范围大约在(-4.5×10-3~4×10-3)rad,由此实现对五轴联动轨迹误差的预测。

Claims (1)

1.一种面向联动轨迹误差预测的五轴机床数字孪生建模方法,其特征在于,包括以下步骤:
步骤1,对于所选定的五轴数控机床,建立其数字孪生模型;
步骤2,对于加工零件,将其G代码输入所选定的五轴数控机床;在加工中或加工前读取数控系统插补输出的指令位置,将指令位置输入步骤1建立的数字孪生模型,得到理想刀具中心位置和实际刀具中心位置;
步骤3,将理想刀具中心位置合成指令轨迹,将实际刀具中心位置合成实际轨迹,并计算实际轨迹相对于指令轨迹的偏差,得到刀尖位置轨迹误差和刀轴姿态轨迹误差,实现对五轴联动轨迹误差的预测;
所述的步骤1中数字孪生模型建立的具体方法如下:
1)建立从插补指令位置到刀具中心位置的正运动变换矩阵
Figure FDA0003376043220000011
根据机床运动学结构,建立正运动变换矩阵
Figure FDA0003376043220000012
将各轴插补指令位置输入正运动学变换矩阵
Figure FDA0003376043220000013
后,将各轴在机床坐标系下的指令位置转换到工件坐标系下,得到在工件坐标系下的理想刀具中心位置,并将理想刀具中心位置合成指令轨迹;
2)建立各轴从插补指令位置到光栅检测位置的传递函数:运用辨识方法,用公式(2)对各轴伺服进给系统进行辨识,建立各轴伺服进给系统传递函数,式中,B(z)-1为光栅尺反馈位置;A(z)-1为插补指令位置;bi和aj分别为离散传递函数分子及分母的系数,na和nb分别为离散传递函数分子及分母的阶数;之后将各轴插补指令位置输入建立的传递函数,预测出各轴光栅检测的实际位置;
Figure FDA0003376043220000021
3)建立五轴机床41项几何误差表征模型:将位置相关的30项几何误差表征成以各轴位置为变量的高阶多项式函数,如公式(4)所示,将位置无关的11项几何误差表征为常量,如公式(5)所示;
Figure FDA0003376043220000022
Figure FDA0003376043220000023
式中,f1,f2,…f30为30项位置相关几何误差的高阶多项式函数,m表示各个轴的不同位置,对平动轴来说是移动的位置,对转轴是转动的角度;n表示多项式阶次;a11…a1n表示f1函数各阶次系数,同理,a30,1…a30,n表示f30函数各阶次系数;f31,f32,…f41为11项位置无关几何误差,c1,c2,…c11为误差常量;
4)建立从光栅位置到刀具中心位置的正运动变换矩阵
Figure FDA0003376043220000024
先在步骤1)中所建立的正运动变换矩阵
Figure FDA0003376043220000025
基础上,引入机床的几何误差项,建立考虑了几何误差的正运动变换矩阵
Figure FDA0003376043220000026
然后,将步骤2)中预测出各轴光栅检测的实际位置和步骤3)得到的机床几何误差表征模型输入到正运动变换矩阵
Figure FDA0003376043220000027
如式(7)所示;将各轴在机床坐标系下的实际位置转换到工件坐标系下,得到在工件坐标系下考虑了几何误差影响的实际刀具中心位置,并将实际刀具中心位置合成实际轨迹;
Figure FDA0003376043220000028
式中:W为工件坐标系,R为机床坐标系,S主轴坐标系,C、A、X、Y、Z分别为机床各轴坐标系;定义
Figure FDA0003376043220000031
为考虑机床几何误差影响后,a坐标系与b坐标系的齐次变换矩阵;
Figure FDA0003376043220000032
为工件坐标系与C轴坐标系的齐次变换矩阵;
Figure FDA0003376043220000033
为C轴坐标系与A轴坐标系的齐次变换矩阵;
Figure FDA0003376043220000034
为A轴坐标系与机床坐标系的齐次变换矩阵;
Figure FDA0003376043220000035
为机床坐标系与Y轴坐标系的齐次变换矩阵;
Figure FDA0003376043220000036
为Y轴坐标系与X轴坐标系的齐次变换矩阵;
Figure FDA0003376043220000037
为X轴坐标系与Z轴坐标系的齐次变换矩阵;
Figure FDA0003376043220000038
为Z轴坐标系与主轴坐标系的齐次变换矩阵;
Figure FDA0003376043220000039
为主轴坐标系与刀具坐标系的齐次变换矩阵;
5)集成步骤1)~4)所建立的正运动变换矩阵、传递函数和几何误差表征模型,建立五轴数控机床的数字孪生模型,对通过数字孪生模型得到的零件指令轨迹和实际轨迹进行误差求解,实现对五轴联动轨迹误差的预测。
CN202011441655.4A 2020-12-11 2020-12-11 一种面向联动轨迹误差预测的五轴机床数字孪生建模方法 Active CN112698625B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011441655.4A CN112698625B (zh) 2020-12-11 2020-12-11 一种面向联动轨迹误差预测的五轴机床数字孪生建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011441655.4A CN112698625B (zh) 2020-12-11 2020-12-11 一种面向联动轨迹误差预测的五轴机床数字孪生建模方法

Publications (2)

Publication Number Publication Date
CN112698625A CN112698625A (zh) 2021-04-23
CN112698625B true CN112698625B (zh) 2022-03-22

Family

ID=75507710

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011441655.4A Active CN112698625B (zh) 2020-12-11 2020-12-11 一种面向联动轨迹误差预测的五轴机床数字孪生建模方法

Country Status (1)

Country Link
CN (1) CN112698625B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406928B (zh) * 2021-06-04 2022-05-31 华中科技大学 一种五轴加工刀位进给速度控制方法及系统
CN113778018B (zh) * 2021-08-25 2023-04-07 西安交通大学 一种基于R-test的五轴机床刀轴矢量误差测量方法
CN113741342B (zh) * 2021-08-31 2023-04-07 西安交通大学 一种五轴联动轨迹误差溯源方法
CN113687659B (zh) * 2021-10-26 2022-01-25 武汉鼎元同立科技有限公司 一种基于数字孪生的最优轨迹生成方法及系统
CN114273981B (zh) * 2022-03-04 2022-05-20 苏州古田自动化科技有限公司 一种具有异常构件排查功能的卧式五轴数控加工中心
CN115752321A (zh) * 2022-11-09 2023-03-07 中山大学 医疗机器人运动轨迹测量比对方法及计算机可读存储介质
CN117021118B (zh) * 2023-10-08 2023-12-15 中北大学 一种并联机器人数字孪生轨迹误差动态补偿方法
CN117434889A (zh) * 2023-11-28 2024-01-23 清华大学 五轴联动数控机床联动误差预测方法、装置、设备及介质
CN117644431B (zh) * 2024-01-29 2024-04-02 南京航空航天大学 基于数字孪生模型的cnc机床加工质量分析方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106502203A (zh) * 2016-10-08 2017-03-15 西南交通大学 一种数控机床几何误差建模方法
CN108107841A (zh) * 2017-12-26 2018-06-01 山东大学 一种数控机床数字孪生建模方法
CN110968038A (zh) * 2019-12-18 2020-04-07 大连理工大学 一种基于数字孪生的数控机床进给轴热误差监测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5149421B2 (ja) * 2011-05-20 2013-02-20 ファナック株式会社 加工時間予測部および加工誤差予測部を有する数値制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106502203A (zh) * 2016-10-08 2017-03-15 西南交通大学 一种数控机床几何误差建模方法
CN108107841A (zh) * 2017-12-26 2018-06-01 山东大学 一种数控机床数字孪生建模方法
CN110968038A (zh) * 2019-12-18 2020-04-07 大连理工大学 一种基于数字孪生的数控机床进给轴热误差监测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Virtual CNC system. Part II. High speed contouring application;Kaan Erkorkmaz.etc;《International Journal of Machine Tools》;20061231;P1124-1138 *
五轴机床加工零件轮廓误差预测方法;吕盾等;《西安交通大学学报》;20200229(第2期);第9-15页 *

Also Published As

Publication number Publication date
CN112698625A (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
CN112698625B (zh) 一种面向联动轨迹误差预测的五轴机床数字孪生建模方法
Lyu et al. Dynamic error of CNC machine tools: a state-of-the-art review
Sencer et al. Modeling and control of contouring errors for five-axis machine tools—part I: modeling
Li et al. Dual sliding mode contouring control with high accuracy contour error estimation for five-axis CNC machine tools
Yuwen et al. Path, feedrate and trajectory planning for free-form surface machining: A state-of-the-art review
CN102591257B (zh) 面向参数曲线刀具轨迹的数控系统轮廓误差控制方法
Wang et al. Trajectory planning and optimization for robotic machining based on measured point cloud
JP5399624B2 (ja) 数値制御方法及び数値制御装置
CN109709892B (zh) 一种多轴联动数控机床空间误差在线补偿方法
CN103176428B (zh) 基于球坐标的cnc系统插补算法及实现该算法的装置
CN104210302A (zh) 三维立体雕刻机、方法及系统
CN109960215B (zh) 一种四轴车床加工轨迹轮廓误差离线补偿方法
Li et al. Dual NURBS path smoothing for 5-axis linear path of flank milling
Wang et al. Kinematic analysis and feedrate optimization in six-axis NC abrasive belt grinding of blades
My Integration of CAM systems into multi-axes computerized numerical control machines
Liang et al. A combined 3D linear and circular interpolation technique for multi-axis CNC machining
Li et al. Interpolation-based contour error estimation and component-based contouring control for five-axis CNC machine tools
Nakamoto et al. Recent advances in multiaxis control and multitasking machining
JP6961128B1 (ja) シミュレーション装置、工作機械システム、シミュレーション方法および加工方法
Yang et al. Kinematics model and trajectory interpolation algorithm for CNC turning of non-circular profiles
Patel et al. Modelling, simulation and control of incremental sheet metal forming process using CNC machine tool
CN116088425A (zh) 一种数控加工的伺服控制方法、装置、设备和存储介质
Hermana et al. A Comparative Study: The Precision of CNC Machines Using a Sliding Mode Controller (SMC) and a Wi-Fi ESP32
Song et al. Postprocessor algorithm and feedrate optimization for nine-axis milling machine tool with twin cutters
CN113946922A (zh) 一种五轴联动铣削过程的动力学集成建模和加工精度预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant