CN112698212A - 根据电阻抗测量结果的梯度估计电池状态 - Google Patents

根据电阻抗测量结果的梯度估计电池状态 Download PDF

Info

Publication number
CN112698212A
CN112698212A CN202011140716.3A CN202011140716A CN112698212A CN 112698212 A CN112698212 A CN 112698212A CN 202011140716 A CN202011140716 A CN 202011140716A CN 112698212 A CN112698212 A CN 112698212A
Authority
CN
China
Prior art keywords
electrical impedance
series
gradients
electrochemical cell
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011140716.3A
Other languages
English (en)
Other versions
CN112698212B (zh
Inventor
瓦伦汀·博斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novum Engineering GmbH
Original Assignee
Novum Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novum Engineering GmbH filed Critical Novum Engineering GmbH
Publication of CN112698212A publication Critical patent/CN112698212A/zh
Application granted granted Critical
Publication of CN112698212B publication Critical patent/CN112698212B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本申请涉及根据电阻抗测量结果的梯度估计电池状态。一种用于估计电化学电池的电池状态的计算机实现的方法和电池状态估计系统,包括:根据提供的电阻抗测量结果(25)系列来计算(S18)电阻抗梯度,以生成电阻抗梯度(27)系列;以及使用计算装置(22)确定(S22)电化学电池(14)的电池状态,该计算装置(22)被配置为接收至少电阻抗梯度(27)系列作为输入,该计算装置(22)接收并处理至少提供的计算的电阻抗梯度(27)系列,以从中生成表示与电化学电池(14)相关联的电池状态(38)的至少一个输出信号。

Description

根据电阻抗测量结果的梯度估计电池状态
技术领域
本发明涉及一种估计电化学电池的电池状态的计算机实现的方法。此外,本发明涉及一种用于估计电化学电池的电池状态的电池状态估计系统。
例如,计算机可以是微控制器。例如,计算机或微控制器可以包括处理单元、存储器和输入/输出端口。
背景
WO 2005/059579 A1和EP 1702219 B1描述了一种用于通过使用神经网络来估计电池的充电状态的装置和方法。该装置包括用于检测来自电池单元的电流、电压和温度的感测部以及基于从感测部向其传输的电流、电压和温度的数据和当前时间数据执行神经网络算法和学习算法的神经网络。
US 4678998A描述了一种电池状况监测器和监测方法。
JP 2003-249271 A和JP 4038788 B2描述了实时确定电池的劣化状态和残余容量。在一个示例中,作为操作中的电池的操作参数,测量单元可以周期性地测量和采样电池的电压、电流、内部阻抗和温度。电池的内部阻抗是通过向电池添加1kHz和100mA的AC信号来测量的。第一神经网络可以基于来自测量单元的电池的操作参数将劣化状态判定为“正常”、“提醒(caution)”和“劣化”,以及第二神经网络可以基于电池的操作参数和来自第一神经网络的劣化状态判定残余容量。
US 6307378B1描述了一种用于测量电化学池(cell)和电池(battery)阻抗的方法和装置。
WO 03/071617 A2描述了一种用于确定电化学池(诸如电池)的状况参数的方法。在一个示例中,诸如终端电压、电池电压、负载电流、充电电流、环境温度、电池表面温度、终端温度、内部电池温度和阻抗信号的测量结果信号被传递到特征提取处理算法,该算法生成特征向量和特征标志。来自特征向量的数据被传递到用于初始电池容量充电状态估计的神经网络ISOC预测器、以及用于在操作期间连续预测SOC的神经网络CSOC预测器。在另一示例中,包含在特征向量中的信息被神经网络SOH分类器、线性/统计SOH分类器和模糊逻辑SOH分类器用于健康状态分类。
WO 2016/208745 A1及其翻译DE 112016002873 T5描述了一种识别电池的充电状态或放电深度的方法。该方法包括针对多个频率确定电池的正极和负极之间的复阻抗。
WO 2017/110437 A1及其翻译DE 11 2016 003 789 T5描述了一种估计锂离子电池的残余容量的估计设备。
WO 2016/080111 A1及其翻译DE 11 2015 005 201 T5描述了一种用于估计蓄电池的剩余存储电量的估计设备。
US 2013/0307487 A1和US 8994340 B2描述了一种用于在不使用温度传感器的情况下通过测量池(cells)的阻抗并使用该阻抗确定温度,来确定电池组中池的温度的方法和系统。
WO 00/16083和EP 1129343 B1描述了一种在n个离散频率处测量池(cell)或电池的复导抗的实部和虚部的设备。该设备通过评估等效电路模型的组件来确定池/电池的性质。
发明概述
本发明的一个目的是提供一种基于电阻抗测量结果来估计电化学电池的电池状态的新方法。期望的是,该方法使用被包括在关于不同测量频率的电阻抗测量结果系列中的信息。
本发明在独立权利要求中指定。另外的实施例在从属权利要求中指定。
根据本发明的一个方面,提供了一种估计电化学电池的电池状态的计算机实现的方法,该方法包括:
提供电化学电池的电阻抗测量结果系列,每个电阻抗测量结果是在相应测量频率处被测量的,该系列根据该相应测量频率排序,
根据电阻抗测量结果系列计算电阻抗梯度以生成电阻抗梯度系列,
使用计算装置确定电化学电池的电池状态,该计算装置被配置为接收至少电阻抗梯度系列作为输入,
其中,所计算的电阻抗梯度系列被提供给计算装置,
其中,该计算装置接收并处理至少所提供的所述计算的电阻抗梯度系列,以从中生成表示与电化学电池相关联的电池状态的至少一个输出信号。
因此,基于所述提供的电阻抗测量结果系列来构建电阻抗梯度系列。
以及,生成表示与电化学电池相关联的电池状态的输出信号。例如,至少一个输出信号可以表示电池状态的分类和/或估计。
例如,输出信号可以包括可视信号,该可视信号可以被显示。
例如,输出信号可以被传输或传送或输出到用于输出信号的输出单元。
优选地,电化学电池是可充电的电化学电池。
例如对于诸如移动工具的移动器具或诸如车辆的电驱动的移动装置,估计充电状态的形式的电池状态是非常有价值的。
类似地,对健康状态的形式的电池状态的估计对于设备的可靠性是非常重要的。
对于许多应用,特别是可充电电化学电池,电化学电池的电池温度形式的电池状态的知识也是非常重要的。
已经发现,取决于测量结果的系列的索引(且因此,取决于测量频率或其对数)的电阻抗的变换是用于评估电池状态的有价值信息。计算的电阻抗梯度系列被提供给计算装置,用于确定电化学电池的电池状态。梯度强调关于电阻抗变化的信息,该变化取决于测量频率、测量频率的对数、或测量结果的索引。因此,通过提供梯度,提供了用于计算装置进行评估的信息,否则信息将不可用于直接评估。
例如,电阻抗测量结果系列的电阻抗梯度可以相对于测量频率、相对于测量频率的对数、或者相对于测量结果系列的元素的索引来进行计算。也就是说,在测量结果系列中的元素的相应索引处的相应梯度可以被计算为根据测量频率的变化的电阻抗的变化、根据测量频率的对数的变化的电阻抗的变化、或根据测量结果系列的元素的索引的变化的电阻抗的变化。
例如,对于电阻抗测量结果系列的相应元素,可以计算相对应的梯度,以表达在相应的测量频率处、其对数、或在相应的元素索引处,根据测量频率的变化的电阻抗测量结果的值的变化、根据测量频率的对数的变化的电阻抗测量结果的值的变化、或根据元素索引的变化的电阻抗测量结果的值的变化。因此,可以计算关于离散电阻抗测量结果系列的梯度。计算梯度可以对应于相对于测量频率、或者相对于测量频率的对数或者测量结果系列的元素索引将连续的电阻抗曲线进行区分。例如,对于电阻抗测量结果系列的相应元素,可以基于在电阻抗测量结果系列中的该元素和相邻元素之间的差除以元素的相应索引的差或相应测量频率的差来计算相应梯度。
例如,计算电阻抗测量结果系列的梯度可以包括计算电阻抗测量结果系列的实部梯度和虚部梯度。
电阻抗也可以被称为复电阻抗,并且可以是复数,并且可以以电阻的单位(例如欧姆)来被表示。
例如,提供的电阻抗测量结果系列中的每个电阻抗测量结果可以是或包括定义了相应电阻抗的实部和虚部的复数。电阻抗也可以以极性形式表示,定义幅度(或振幅)和角度(或相位)。
例如,提供的电阻抗测量结果系列中的电阻抗测量结果可以是相应复数表示(复数)的形式。或者,例如,电阻抗测量结果均可以是振幅和相位的形式,并且所述提供步骤可以包括将电阻抗测量结果转换成电阻抗测量结果的相应复数表示形式的电阻抗测量结果。电阻抗测量结果的“复数表示”包括复数。例如,电阻抗测量结果的复数表示可以是复数。
本文中,术语“电池”应被理解为包括电池单元。电池可包括一个或更多个电池单元。特别地,术语“电池”包括电池单元以及由多个电池单元组成的电池。
具体而言,电化学电池被理解为限定了由一个或更多个具有外部电连接的电化学池组成的设备。例如,电池可以包括两个外部电连接,用于从一个或更多个电化学池吸取电力,并且在可充电电化学电池的情况下,用于对一个或更多个电化学池进行(再)充电。
例如,相应测量频率可以是输入到电化学电池的信号的频率。例如,信号可以是正弦信号。
优选地,电阻抗梯度系列中的每个电阻抗梯度包括复数,该复数定义了相应电阻抗梯度的实部和虚部。
电阻抗梯度系列的元素被馈送到人工神经网络装置的相对应的输入端。因此,基于电阻抗梯度系列的自动电池状态估计成为可能。
优选地,电阻抗测量结果的系列以数字信号的形式被提供。
优选地,电化学电池的电阻抗测量结果的系列以数字表示的形式被提供。
例如,电阻抗测量结果的系列可以从电阻抗测量单元或电阻抗测量装置接收。
提供电阻抗测量结果的系列可以包括一个接一个地接收该系列中的电阻抗测量结果。
电阻抗测量结果系列可以被传送到电池状态估计系统,该系统包括用于执行该方法步骤的装置。该系统可以被配置用于提供(包括接收)所传送的电阻抗测量结果。
在一个或更多个实施例中,假设测量频率是对数等距间隔的。优选地,测量频率在测量频率范围(测量频率的频率范围)的至少四个十进位(decade)、且更优选地在测量频率范围的至少五个十进位内以对数等距间隔。
优选地,测量频率包括0.1至1.0Hz的范围内的测量频率。
优选地,测量频率包括1kHz至10kHz的范围内的测量频率。
优选地,测量频率包括测量频率范围的每十进位至少4(四)个测量频率,更优选地测量频率范围的每十进位至少五个测量频率。
提供电阻抗测量结果系列的步骤可以包括接收多个电阻抗测量结果,每个电阻抗测量结果在相应测量频率处被测量,并且:
-根据相关联的测量频率排列多个电阻抗测量结果,以提供电阻抗测量结果系列,或者
-提供多个电阻抗测量结果作为电阻抗测量结果系列。
例如,可选地包括相应测量频率的所排列的多个电阻抗测量结果可以被提供作为电阻抗测量结果系列。
多个电阻抗测量结果或电阻抗测量结果系列可以以电阻抗谱的形式被接收。
例如,在电阻抗测量结果系列中,电阻抗测量结果可以包括相应测量频率。例如,每个电阻抗测量结果可以包括电阻抗的测量值和测量频率。然而,电阻抗测量结果也可以是相应电阻抗的形式,表示为相应复数,或者均被表示为振幅和相位。
生成表示与电化学电池相关联的电池状态的输出信号。例如,至少一个输出信号可以表示电池状态的分类和/或估计。
电池状态可以包括以下中的至少一个:电化学电池的充电状态(SoC)、电化学电池的健康状态(SoH)、电化学电池的功能状态(SoF)、电化学电池的容量和电化学电池的温度。
例如,输出信号可以被传输或传送或输出到输出单元,用于输出信号,和/或用于基于输出信号输出可视信号。可视信号可以被显示。
优选地,生成的电阻抗梯度系列具有预定数量的元素。例如,元素的数量可以对应于用于接收电阻抗梯度系列的计算装置的输入端的数量。
在一个或更多个实施例中,该方法可以包括将电阻抗测量结果系列的元素数量或者电阻抗梯度系列的元素数量调整到预定元素数量。
因此,元素数量可以被调整到用于接收电阻抗梯度系列的计算装置的相对应的输入端的数量。
例如,通过将电阻抗测量结果系列的元素数量调整到预定元素数量,可以将电阻抗梯度系列的元素数量调整到预定元素数量。例如,该方法可以包括在计算梯度之前,将电阻抗测量结果系列的元素数量调整到预定元素数量。
例如,调整电阻抗测量结果系列的元素数量或电阻抗梯度系列的元素数量可以包括以下中的至少一个:在电阻抗测量结果/梯度之间进行插值、从电阻抗测量结果/梯度中进行选择、以及外推电阻抗测量结果/梯度。在调整步骤中,可以增加、保持、或减少元素的数量。
优选地,计算装置包括人工神经网络装置,该人工神经网络装置被配置为接收至少电阻抗梯度系列作为输入。
在一个或更多个实施例中,该方法包括:
使用人工神经网络装置确定电化学电池的电池状态,该人工神经网络装置被配置为接收至少电阻抗梯度系列作为输入,
其中,所计算的电阻抗梯度系列被提供给人工神经网络装置,
其中,该人工神经网络装置接收并处理至少所提供的所述计算的电阻抗梯度系列,以从中生成表示与电化学电池相关联的电池状态的至少一个输出信号。
特别地,人工神经网络装置可以接收和处理电阻抗梯度系列,以根据人工神经网络装置的预定处理结构从中生成至少一个输出信号。
例如,计算装置或人工神经网络装置可以接收和处理电阻抗梯度系列,以从中生成表示电化学电池的充电状态的至少一个输出信号。
例如,计算装置或人工神经网络装置可以接收和处理电阻抗梯度系列,以从中生成表示电化学电池的健康状态的至少一个输出信号。
例如,计算装置或人工神经网络装置可以接收和处理电阻抗梯度系列,以从中生成表示电化学电池的功能状态的至少一个输出信号。
例如,计算装置或人工神经网络装置可以接收和处理电阻抗梯度系列,以从中生成表示与电化学电池相关联的温度的至少一个输出信号。
计算装置或人工神经网络装置可以生成一个以上的输出信号,相应输出信号表示电化学电池的相应电池状态。电池状态可以包括一个或更多个上述电池状态。例如,生成的输出信号可以包括表示电化学电池充电状态的输出信号、表示电化学电池健康状态的输出信号、表示电化学电池的功能状态的输出信号和/或表示电化学电池的温度或与电化学电池相关联的温度的输出信号等。
具体地,计算装置或人工神经网络装置可以被配置为接收电阻抗梯度系列作为第一输入,并且被配置为接收电阻抗梯度系列的第二子系列作为第二输入。例如,计算装置或人工神经网络装置的输入(诸如输入向量或输入阵列)可以包括第一输入和第二输入。该方法可包括将电阻抗测量结果系列的元素数量调整到预定的元素数量。
例如,人工神经网络装置可以包括深度神经网络(DNN)。深度神经网络具有输入层、多于一个隐藏层和输出层。
在一个或更多个实施例中,人工神经网络装置包括卷积神经网络(CNN)。
例如,卷积神经网络已知用于对图像进行分类。卷积神经网络具有输入层、至少一个卷积层和输出层。CNN可以是深度神经网络。可以训练CNN来识别电阻抗梯度系列中的模式,并将这些模式与相应的电池状态相关联。
例如,人工神经网络装置可能已经被训练成通过使用针对不同电池电压、针对预定温度范围的温度、以及针对电池的不同健康状态的训练数据,检测电阻抗梯度系列的表征特性,来识别特定化学类型的(可充电)电化学电池的电池状态。
在至少一个实施例中,该方法还包括:
使用电阻抗测量装置,在不同的测量频率下测量电化学电池的电阻抗,以提供电阻抗测量结果系列。
例如,可以基于在不同测量频率处测量的电阻抗来提供电阻抗测量结果系列。
对于相应测量频率,可以以任何顺序和/或同时测量电阻抗测量结果。
例如,电阻抗测量装置可以被配置为向电化学电池输入包括相应频率的信号,并确定相同频率的响应信号的振幅和相位与输入信号的振幅和相位的比率,信号的频率和响应信号的频率对应于测量频率。
例如,电阻抗测量装置可以是电阻抗谱测量装置,其被配置用于在一系列测量频率下测量电化学电池的电阻抗。也就是说,根据电化学阻抗谱的过程测量电化学电池的电阻抗。
使用电化学阻抗谱,电化学电池中的电化学过程通过电测量结果来表征,该电测量结果表征电化学电池对施加的AC信号的AC响应。除了结构配置和连接器配置之外,电池中的化学过程还会导致测量阻抗的特征频率相关性,这包括测量阻抗根据测量频率的特征变化。
在特定测量频率下的电阻抗测量期间,DC偏移信号(偏移电压或偏移电流)或DC偏置信号可被施加到电池,其通过测量频率的AC信号调制。
例如,电阻抗测量结果系列可以从独立的测量电路或电阻抗测量装置接收。然而,用于估计电池状态的系统也可以包括电阻抗测量装置,其用于测量和提供来自电化学电池的电阻抗测量结果系列。
例如,电化学电池可以是锂离子电池或铅酸电池。
根据本发明的一个方面,可以提供一种监测电化学电池的电池状态的计算机实现的方法。该监测方法可以包括估计电池状态的方法的步骤。
例如,该方法可以在用于监测电化学电池的电池状态的电池监测系统中被实现。
例如,该方法可以在用于对可充电电化学电池进行再充电的电池充电系统中被实现。
根据本发明的一个方面,提供了一种用于估计电化学电池的电池状态的电池状态估计系统,该系统包括用于执行所述方法的步骤的装置。
例如,该系统可以是或可以被包括在用于监测电化学电池的电池状态的系统中。
例如,该系统可以是或可以被包括在用于对可充电电化学电池进行再充电的电池充电系统中。
在一个或更多个实施例中,电池状态估计系统还包括:电阻抗测量装置,其被配置用于在不同的测量频率处测量电化学电池的电阻抗,以提供电阻抗测量结果系列。
附图说明
现在将结合附图来描述本发明的优选实施例,其中:
图1是估计可充电电化学电池的电池状态的方法的示意图;
图2是在相应测量频率下测量的可充电电化学电池的电阻抗测量结果系列的示意图;
图3是确定电阻抗梯度的示意图;以及
图4是用于估计可充电电化学电池的电池状态的系统的示意图。
具体实施方式
图1示意性地示出了估计可充电电化学电池(例如,锂离子电池)的电池状态的计算机实现的方法。例如,该方法可以由如下面参考图4进一步描述的电池状态估计系统执行。
步骤S10是使用电阻抗测量装置在不同的测量频率下测量电化学电池的电阻抗的步骤。
在步骤S12中,通过测量电阻抗,电化学电池的电阻抗测量结果系列以数字信号的形式被提供例如作为数据集。该系列根据相应测量频率排序,优选地根据增加的测量频率的顺序来排序。
然而,该方法也可以从提供测量结果的步骤S12开始,该测量结果可以独立于该方法进行测量,并且可以被传送到执行该方法的计算机。
在所提供的电阻抗测量结果还不是复数的形式(表示复阻抗)的情况下,该方法可以包括将所提供的电阻抗测量结果转换成复数的可选步骤S14。
在可选步骤S16中,电阻抗测量结果系列的元素数量被调整到预定的元素数量,例如,调整到21个元素的数量。
图2示例性地示出了在相应测量频率fs下测量的电阻抗测量结果25系列。图2是电阻抗Z的虚部Im(Z)和实部Re(Z)的二维图形形式的奈奎斯特图。为了说明的目的,系列的元素(即,测量阻抗)由一条线连接。根据惯例,虚部以相反的方向显示,其中虚部朝向图2的底部增加。
优选地,测量结果25是在对数进展的测量频率下取得的。优选地,测量结果25系列包括测量频率范围的每十进位至少4(四)个测量结果25。在图2中,电阻抗测量结果25系列的电阻抗测量结果25仅出于说明的目的被示意性地示出,并且范围从测量频率fs=0.10Hz到fs=4.37kHz。图2中示出的测量结果25的数量可能偏离实际使用的测量结果25的数量,并且仅仅是为了说明的目的。
在图2中,箭头fs示出了随着增加的测量频率fs的测量结果25的顺序。
返回图1,在步骤S18中,电阻抗梯度系列是根据电阻抗测量结果25系列计算的。
图3示意性地示出了由一条线连接的电阻抗测量结果25系列的一部分。该系列包括在测量频率fs下取得的第一测量结果25,以及在测量频率fs+1下取得的第二测量结果25,其中s和s+1表示该测量结果系列中的相应索引。测量结果25之间的差的实部和虚部表示为△Rs、△Is
对于相应测量频率fs,电阻抗梯度相对于测量频率被计算如下:电阻抗梯度的实部计算如下:△Rs/(fs+1-fs);电阻抗梯度的虚部计算如下:△Is/(fs+1-fs)。
因此,计算电阻抗测量结果25系列相对于测量频率的梯度,以生成电阻抗梯度系列。
在另一个实施例中,梯度可以相对于测量结果25系列中的元素索引s计算如下:电阻抗梯度的实部可以计算为:△Rs/((s+1)-s)=△Rs;电阻抗梯度的虚部可以计算为:△Is/((s+1)-s)=△Is
在又一个实施例中,梯度可以相对于测量频率的对数计算如下:电阻抗梯度的实部计算如下:△Rs/(logB(fs+1)-logB(fs));电阻抗梯度的虚部计算如下:△Is/(logB(fs+1)-logB(fs));其中logB是以B为底的对数;例如,B=10。
回到图1,在步骤S20中,电阻抗梯度系列被提供给人工神经网络装置形式的计算装置,其被配置为接收电阻抗梯度系列作为输入。
在步骤S22中,人工神经网络装置处理电阻抗梯度系列,以从中生成表示电池状态的输出信号。因此,基于电阻抗梯度系列,确定电化学电池的电池状态。在步骤S24中,输出电池状态。例如,电池状态可以是电池的健康状态。
图4示意性地示出了被配置用于执行图1的方法的电池状态估计系统10的示例,该系统可选地包括电阻抗测量装置12。例如,电池状态估计系统10可以在计算机(诸如微控制器)中实现。例如,包括系统10和可选的电阻抗测量装置12的微控制器可以是用于监测电化学电池14的电池状态的电池监测系统的一部分。
电阻抗测量装置12包括电阻抗测量单元16。电池状态估计系统10还包括预处理单元20和计算装置22。
对于一系列测量频率fs,电阻抗测量单元12向待测量的电化学电池14施加激励信号,例如相应测量频率fs的正弦信号。该信号是以小振幅交流(AC)信号形式的输入,并且测量来自电池14的交流响应。例如,电流信号被输入,并且电压响应信号被测量。可选的,电压信号被输入,并且电流响应信号被测量。在测量期间,可以根据电化学电池14的类型施加直流(DC)偏置电压或DC偏置电流。如大家所知道的,测量设置对应于电化学阻抗谱(EIS)测量设置。根据针对电化学电池14预先确定的测量设置,对于相应测量结果,将测量频率在对数标度上以等距步长排列或增加。
在特定测量频率处测量的电阻抗是AC响应信号的振幅和相位与输入信号的振幅和相位的比率,并且被表示为复数(复阻抗)。例如,测量频率的每十进位可以使用四个不同的测量频率。因此,测量了电阻抗测量结果25系列。
预处理单元20包括标准化装置24,用于提供来自电阻抗测量装置12的电阻抗测量结果25系列,并用于将电阻抗测量结果25系列的元素数量调整到预定元素数量,例如21个元素。例如,可以通过插值该系列的元素来调整元素的数量。在由标准化装置24提供的电阻抗测量结果25系列已经具有预定数量的元素的目标值的情况下,标准化装置24保持元素数量。
预处理单元20还包括梯度计算装置26,其从标准化装置24接收电阻抗测量结果的标准化系列(标记为25’)。梯度计算装置26计算电阻抗测量结果系列25’相对于测量频率的梯度27,以类似于上面参照图3所解释地生成电阻抗梯度27系列。因此,梯度计算装置26根据电阻抗测量结果的标准化系列25’生成电阻抗梯度27系列。
通过标准化装置24调整电阻抗测量结果25系列的元素数量,电阻抗梯度27系列的元素数量也被调整到预定元素数量。
计算装置22包括人工神经网络装置28,其具有第一输入装置30,用于从梯度计算装置26接收电阻抗梯度27系列。
此外,人工神经网络装置28具有第二输入装置32,用于从预处理单元20接收电阻抗测量结果25的标准化系列。
因此,电阻抗测量结果的(标准化)系列25’和电阻抗梯度27系列一起形成人工神经网络装置28的输入阵列。例如,每个系列可以形成输入阵列的一行。
此外,人工神经网络装置28包括输出装置36,其用于输出表示与电化学电池14相关联的电池状态38(例如健康状态)的输出信号。人工神经网络装置28接收并处理电阻抗测量结果的标准化系列25’和电阻抗梯度27系列,并从中生成输出信号。
例如,人工神经网络装置28可以是卷积神经网络(CNN)或者卷积深度神经网络。人工神经网络装置28已经被训练成通过检测标准化电阻抗测量结果的系列25’和电阻抗梯度27系列的表征特性来估计电化学电池14的电池状态38。确定的电池状态38由输出装置36输出。
该系统还可以用仅具有用于接收电阻抗梯度27系列的第一输入装置30的人工神经网络装置28来实现。

Claims (13)

1.一种估计电化学电池的电池状态的计算机实现的方法,所述方法包括:
提供(S12)电化学电池(14)的电阻抗测量结果(25)的系列,每个电阻抗测量结果(25)是在相应测量频率(fs)处被测量的,所述系列根据所述相应测量频率(fs)排序,
根据所述电阻抗测量结果(25)的系列计算(S18)电阻抗梯度以生成电阻抗梯度(27)的系列,
使用计算装置(22)确定(S22)所述电化学电池(14)的电池状态,所述计算装置被配置为接收至少所述电阻抗梯度(27)的系列作为输入,
其中,所计算的电阻抗梯度(27)的系列被提供(S20)给所述计算装置(22),
其中,所述计算装置(22)接收并处理至少所提供的所述计算的电阻抗梯度(27)的系列,以从中生成表示与所述电化学电池(14)相关联的电池状态(38)的至少一个输出信号。
2.根据权利要求1所述的方法,其中,所述电阻抗梯度是相对于以下之一计算出的:所述测量频率(fs)、所述测量频率(fs)的对数、或所述电阻抗测量结果(25)的系列的元素的索引(s)。
3.根据权利要求1或2所述的方法,其中,所述方法还包括:
将所述电阻抗梯度(27)的系列的元素数量调整(S16)到预定元素数量。
4.根据前述权利要求中任一项所述的方法,其中,所述计算装置(22)包括人工神经网络装置(28),所述人工神经网络装置(28)被配置为接收至少所述电阻抗梯度(27)的系列作为输入。
5.根据权利要求4所述的方法,其中,所述人工神经网络装置(28)包括深度神经网络。
6.根据权利要求4或5所述的方法,其中,所述人工神经网络装置(28)包括卷积神经网络。
7.根据前述权利要求中任一项所述的方法,其中,所述计算装置(22)接收并处理所述电阻抗梯度(27)的系列,以从中生成表示所述电化学电池(14)的充电状态的至少一个输出信号。
8.根据前述权利要求中任一项所述的方法,其中,所述计算装置(28)接收并处理所述电阻抗梯度(27)的系列,以从中生成表示所述电化学电池(14)的健康状态的至少一个输出信号。
9.根据前述权利要求中任一项所述的方法,其中,所述计算装置(28)接收并处理所述电阻抗梯度(27)的系列,以从中生成表示所述电化学电池(14)的功能状态的至少一个输出信号。
10.根据前述权利要求中任一项所述的方法,其中,所述计算装置(28)接收并处理所述电阻抗梯度(27)的系列,以从中生成表示与所述电化学电池(14)相关联的温度的至少一个输出信号。
11.根据前述权利要求中任一项所述的方法,其中所述方法还包括:
在不同的测量频率(fs)处测量(S10)电化学电池(14)的电阻抗,以提供所述电阻抗测量结果(25)的系列。
12.一种用于估计电化学电池(14)的电池状态的电池状态估计系统,所述系统包括用于执行根据权利要求1至11中任一项所述的方法的步骤的装置。
13.根据权利要求12所述的电池状态估计系统,所述电池状态估计系统还包括:
电阻抗测量装置(12),所述电阻抗测量装置被配置用于在不同的测量频率(fs)处测量电化学电池(14)的电阻抗,以提供所述电阻抗测量结果(25)的系列。
CN202011140716.3A 2019-10-23 2020-10-22 根据电阻抗测量结果的梯度估计电池状态 Active CN112698212B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19204752.0A EP3812780B1 (en) 2019-10-23 2019-10-23 Estimating a battery state from gradients of electrical impedance measurements
EP19204752.0 2019-10-23

Publications (2)

Publication Number Publication Date
CN112698212A true CN112698212A (zh) 2021-04-23
CN112698212B CN112698212B (zh) 2024-05-07

Family

ID=

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102414569A (zh) * 2009-02-24 2012-04-11 赫利恩公司 确定电化学装置的健康状态的方法
WO2016030075A1 (de) * 2014-08-28 2016-03-03 Volkswagen Aktiengesellschaft Verfahren und vorrichtung zur bestimmung eines state-of-health- und eines state-of-charge-wertes einer batterie
US20180067169A1 (en) * 2016-09-06 2018-03-08 Primearth Ev Energy Co., Ltd. Battery capacity measuring device and battery capacity measuring method
CN109471041A (zh) * 2019-01-08 2019-03-15 常州索维尔电子科技有限公司 动力电池绝缘阻抗在线监测装置及方法
CN109856557A (zh) * 2019-01-21 2019-06-07 合肥国轩高科动力能源有限公司 一种在线监控锂离子电池电化学阻抗测试方法
JP2019117180A (ja) * 2017-12-27 2019-07-18 プライムアースEvエナジー株式会社 電池状態推定装置及び電池状態推定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102414569A (zh) * 2009-02-24 2012-04-11 赫利恩公司 确定电化学装置的健康状态的方法
WO2016030075A1 (de) * 2014-08-28 2016-03-03 Volkswagen Aktiengesellschaft Verfahren und vorrichtung zur bestimmung eines state-of-health- und eines state-of-charge-wertes einer batterie
US20180067169A1 (en) * 2016-09-06 2018-03-08 Primearth Ev Energy Co., Ltd. Battery capacity measuring device and battery capacity measuring method
JP2019117180A (ja) * 2017-12-27 2019-07-18 プライムアースEvエナジー株式会社 電池状態推定装置及び電池状態推定方法
CN109471041A (zh) * 2019-01-08 2019-03-15 常州索维尔电子科技有限公司 动力电池绝缘阻抗在线监测装置及方法
CN109856557A (zh) * 2019-01-21 2019-06-07 合肥国轩高科动力能源有限公司 一种在线监控锂离子电池电化学阻抗测试方法

Also Published As

Publication number Publication date
EP3812780B1 (en) 2022-09-28
US11385294B2 (en) 2022-07-12
US20210123978A1 (en) 2021-04-29
EP3812780A1 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
Wu et al. A novel state of health estimation method of Li-ion battery using group method of data handling
EP3721499B1 (en) Method and system for online assessing state of health of a battery
US11422192B2 (en) Method and apparatus for estimating state of health of battery
CN112698215A (zh) 使用卷积神经网络装置从电阻抗测量结果中估计电池状态
JP7157909B2 (ja) 電池容量の推定方法、および電池容量の推定装置
WO2009025512A2 (en) System and method for estimating long term characteristics of battery
JP7157908B2 (ja) 電池容量の推定方法および電池容量の推定装置
EP2206191A2 (en) System and method for estimating long term characteristics of battery
Deng et al. Battery health evaluation using a short random segment of constant current charging
Gasper et al. Predicting battery capacity from impedance at varying temperature and state of charge using machine learning
US11280841B2 (en) Estimating a temperature of an electrochemical battery
Lee et al. Principle component analysis-based optimized feature extraction merged with nonlinear regression model for improved state-of-health prediction
Kim et al. State of health estimation of li-ion batteries using multi-input lstm with optimal sequence length
CN112698214B (zh) 估计电化学电池的电池状态
CN112698213B (zh) 分析电化学电池的电阻抗测量结果
Nenadic et al. Estimation of state-of-charge and capacity of used lithium-ion cells
CN112698212B (zh) 根据电阻抗测量结果的梯度估计电池状态
CN112698212A (zh) 根据电阻抗测量结果的梯度估计电池状态
JP2006300692A (ja) 二次電池の残存容量演算方式
CN114740389A (zh) 电池健康评估方法、装置、电子设备和可读存储介质
Loechte et al. State estimation of zinc air batteries using neural networks
Jansen et al. Impedance spectra classification for determining the state of charge on a lithium iron phosphate cell using a support vector machine
Aras et al. Parameter Identification of an Electrical Battery Model using DC-IR Data.
Vaidya et al. State of temperature detection of Li-ion batteries by intelligent gray box model
Paul et al. Comparative Study of Different Regression Models for Estimating Lithium Ion Battery Pack Capacity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant