CN112695518B - 剪切增稠流体用分散相粒子、制备方法和应用 - Google Patents

剪切增稠流体用分散相粒子、制备方法和应用 Download PDF

Info

Publication number
CN112695518B
CN112695518B CN202011480135.4A CN202011480135A CN112695518B CN 112695518 B CN112695518 B CN 112695518B CN 202011480135 A CN202011480135 A CN 202011480135A CN 112695518 B CN112695518 B CN 112695518B
Authority
CN
China
Prior art keywords
dispersed phase
shear thickening
thickening fluid
graphene oxide
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011480135.4A
Other languages
English (en)
Other versions
CN112695518A (zh
Inventor
代晓青
张中威
熊自明
孙慜倩
段力群
吴健安
夏一鹭
董璐
王涛
林�源
田永良
刘华超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Army Engineering University of PLA
Original Assignee
Army Engineering University of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Army Engineering University of PLA filed Critical Army Engineering University of PLA
Priority to CN202011480135.4A priority Critical patent/CN112695518B/zh
Publication of CN112695518A publication Critical patent/CN112695518A/zh
Application granted granted Critical
Publication of CN112695518B publication Critical patent/CN112695518B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/20Polyalkenes, polymers or copolymers of compounds with alkenyl groups bonded to aromatic groups

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种剪切增稠流体用分散相粒子、制备方法和应用,分散相粒子的制备包括A:将氧化石墨烯按比例分散于溶液中,在超声的条件下进行破碎;B:在隔绝光线的条件下,加入纳米氧化物粒子,搅拌,直至得到混合均匀的分散液;C:继续向步骤二所得到的混合分散液中加入多巴胺盐酸盐,并用氨水将PH调节至8.5‑9.5,在隔绝光线的条件下充分搅拌至少10h;之后离心、水洗,得到剪切增稠流体用分散相粒子。本发明制备的剪切增稠流体用分散相粒子通过利用聚多巴胺自身的黏附性来包裹纳米颗粒,增强了氧化石墨烯片层和纳米颗粒的连接,同时在剪切增稠流体中聚多巴胺可通过金属离子配位间接吸附其他分子,有利于剪切增稠流体的形成,提高剪切增稠流体的性能。

Description

剪切增稠流体用分散相粒子、制备方法和应用
技术领域
本发明属于剪切增稠流体领域,具体涉及一种剪切增稠流体用分散相粒子、制备方法和应用。
背景技术
剪切增稠流体(Shear Thickening Fluid,STF),是由分散相粒子和分散介质组成的一种非牛顿力学行为可逆流体,在平衡状态下,表现为分散胶体形式;在高速剪切作用时,其剪切黏度会随着剪切速率的增大而增加。绝大多数分散体系如悬浮液、乳胶、高分子-填料体系等均具有剪切增稠的行为。
在高分子溶液中加入纳米粒子,纳米粒子具有很高的表面吸附能,可以将高分子不同的链单元吸附在一起,起到类似交联剂的作用,研究证实加入纳米粒子可以使高分子溶液出现剪切增稠行为。纳米粒子的种类较少以及含纳米粒子的剪切增稠流体的制备复杂,制约着其应用。
将Kevlar纤维、超高分子量聚乙烯纤维等的纱线浸渍含功能纳米粒子的剪切增稠流体形成复合材料,该复合材料在受剪切力、冲击力时有明显的剪切增稠反应,变得更为强韧的基体可以吸收冲击能量以及抵抗剪切应变。基于对剪切增稠的研究成果,可以设计出质量轻、体积小、更多功能、更加人性化的防护装备。
发明内容
针对上述问题,本发明提出一种剪切增稠流体用分散相粒子、制备方法和应用。
实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:
一种制备剪切增稠流体用分散相粒子的方法,包括以下步骤:
A:将氧化石墨烯按比例分散于溶液中,在超声的条件下进行破碎;
B:在隔绝光线的条件下,加入纳米氧化物粒子,搅拌,直至得到混合均匀的分散液;
C:继续向步骤二所得到的混合分散液中加入多巴胺盐酸盐,并用氨水将PH调节至8.5-9.5,在隔绝光线的条件下充分搅拌至少10h;
以上步骤中,所述氧化石墨烯的加入顺序放置在第一步或最后一步,所述纳米氧化物粒子和所述多巴胺盐酸盐可为无次序加入;
D:待氧化石墨烯、纳米氧化物粒子和多巴胺盐酸盐混合完全后,离心、水洗,得到剪切增稠流体用分散相粒子。
作为本发明的进一步改进,所述步骤A中,氧化石墨烯按1-2g/L的比例加入到溶液中。
作为本发明的进一步改进,所述步骤B中,纳米氧化物粒子按5-10g/L的比例加入到溶液中。
作为本发明的进一步改进,所述步骤C中,多巴胺盐酸盐按2-5g/L的量加入到溶液中。
作为本发明的进一步改进,步骤二,所述纳米氧化物粒子为二氧化钛或二氧化硅,所选用的纳米氧化物粒子的直径分散在5~20nm之间。
作为本发明的进一步改进,还包括将步骤三得到的所述分散相粒子采用冻干法进行干燥得到分散相粒子粉末。
本发明还提供了一种采用制备方法制作的剪切增稠流体用分散相粒子,其特征在于:由氧化石墨烯、纳米氧化物和聚多巴胺组成,所述的聚多巴胺通过极性基团与所述氧化石墨烯相连,所述的纳米氧化物吸附在所述氧化石墨烯的片层结构上或被所述聚多巴胺包裹住。
本发明还提供了一种应用所述的剪切增稠流体用分散相粒子增强纤维材料的方法,包括将所述分散相粒子分散于有机溶液中获得剪切增稠流体,之后用无水乙醇稀释,并将纤维织物浸渍到稀释液中,之后取出纤维织物,烘干,得到剪切增稠流体增强后的纤维织物。
作为本发明的进一步改进,所述的有机溶液包括聚乙二醇、聚氧化乙醇。
作为本发明的进一步改进,所述纤维织物选用具有三维立体结构的织物。
本发明的有益效果:本发明所制备的用于剪切增稠流体中的分散相粒子通过利用聚多巴胺自身的黏附性来包裹纳米颗粒,增强了氧化石墨烯片层和纳米颗粒的连接,同时在剪切增稠流体中聚多巴胺可通过金属离子配位间接吸附其他分子,有利于剪切增稠流体的形成,提高剪切增稠流体的性能。对于后期将其应用于纤维织物中所得到的复合材料,能够显著的提高三维立体纤维复合材料的抗剪切和抗冲击性能。
附图说明
图1为本发明实例1分散相粒子不同分辨率下的TEM和HTEM图;
图2为本发明实例1分散相粒子TEM微区成分图;
图3为本发明实例2分散相粒子的SEM图;
图4为本发明实例2分散相粒子的TEM图;
图5为本发明实例3分散相粒子的SEM图;
图6为本发明实例3分散相粒子的微区成分分析;
图7为本发明实例3分散相粒子的TEM图;
图8为采用实例3分散相粒子与分散相介质复合后的黏度随剪切速率的变化图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下面结合附图对本发明的应用原理作详细的描述。
剪切增稠流体用分散相粒子的制备
实施例一:
本实施例的制备方法包括以下步骤:
A、将氧化石墨烯分散于纯水中,配成1.0mg/ml的分散液100ml,生物破碎超声1h。
B、将500mg的粒径尺寸分布在5-20nm二氧化钛加入到氧化石墨烯分散液中,继续隔绝外部光线室温搅拌4h,搅拌速率为400转/分,得到混合分散液B。
C、将200mg多巴胺盐酸盐在搅拌条件下加入到步骤B的混合分散液中,逐滴滴加氨水,调节反应溶液的PH值为9,继续在隔绝外部光线条件下搅拌12h,搅拌速率为800 转/分,得到分散液C。
D、将分散液C以8000转/分钟离心30分钟后,水洗离心3次,收集固体,冷冻干燥获得可剪切增稠流体用分散相粒子,标记为Y1。
实施例二:
本实施例的制备方法包括以下步骤:
A、将200mg盐酸多巴胺和500mg的纳米二氧化钛分散于100ml纯水中,逐滴滴加氨水,调节PH值为9,隔绝光线室温搅拌12h,搅拌速率400转/分;
B、将100mg氧化石墨烯加入到步骤A的混合分散液中,生物破碎超声1h,隔绝光线室温搅拌4h,搅拌速率800转/分;
C、将经过步骤B所得的分散液以8000转/分钟离心30分钟后,水洗离心3次,收集固体,冻干获得剪切增稠流体用分散相粒子,标记为Y2。
实施例三:
本实施例的制备方法包括以下步骤:
A、将氧化石墨烯粉末或氧化石墨烯水溶液分散在纯水溶液中,配成1.0mg/ml的分散液100ml,生物破碎超声1h;
B、将200mg盐酸多巴胺加入到步骤A所得的分散液中,逐滴滴加氨水,调节溶液的PH值达到9,室温搅拌12h,搅拌速率为800转/分;
C、将500mg的二氧化钛加入到步骤B的混合分散液中,隔绝光线搅拌4h,搅拌速率为400转/分;
D、将经过步骤C获得的分散液以8000转/分钟离心30分钟后,水洗离心3次,收集固体,冻干获得剪切增稠流体用分散相粒子,标记为Y3。
对比实施例:
选用吸附有二氧化钛离子的氧化石墨烯作为分散相粒子,对应的所制作的剪切增稠流体标记为C1。
剪切增稠流体用分散相粒子的应用
实施例
对应于以上三个实施例所获得的分散相粒子,进行三组平行的实验。
每组实验的具体步骤包括:(1)将分散相粒子与分散介质聚乙二醇以1∶8的比例搅拌均匀后,置入真空干燥箱中24h,除去其中的气泡,得到稳定的剪切增稠流体。分别标记为X1、X2和X3。(2)用无水乙醇按1∶100~1∶500的比例稀释配制好的分散体系溶液。 (3)用该分散溶液浸渍纤维织物2min后,然后置于空气中晾干以便除去无水乙醇,最后在80℃的烘箱中放置24h后烘干,即得剪切增稠流体纤维织物复合材料。
在本发明的实施纤维织物选用的是具有三维立体结构的超高分子量聚乙烯纤维织物。
性能测试
微观形貌观察
如图1和图2所示的实施例一所制备的分散相粒子Y1的微观形貌,聚多巴胺的形成,并未改变GO的褶皱结构,并使得TiO2和GO的连接更为紧密,在样品的TEM微区成分分析中也证明了PDA的存在和N原子分布。
如图3、4所示对实施例二所制备的分散相粒子Y2进行的微观形貌观察,可以看出纳米二氧化钛颗粒外层包裹了聚多巴胺的“外衣”,该活性“外衣”又与氧化石墨烯以羟基等基团连接在一起。
如图5、6、7所示对实施例二所制备的分散相粒子Y3进行的微观形貌观察和微区成分分析,可以看出聚多巴胺在氧化石墨烯片层进行自聚合,同时部分还原氧化石墨烯,在氧化石墨烯和盐酸多巴胺所聚合形成的褶皱片层上,吸附或以氢键作用吸附了纳米二氧化钛颗粒。
由此可以看出,所添加的多巴胺能够与氧化石墨烯聚合在一起,并且能够使得TiO2和GO的更为紧密的连接在一起。且综合对比Y1、Y2、Y3的微观形貌,发现Y1样品的 TiO2分散最好,Y2样品石墨烯存在一定的团聚现象,Y3样品的TiO2分散最差。故以Y1 为优选分散相粒子。
剪切增稠流体性能测试
分散相Y1以50%的体积分数分散到聚乙二醇分散介质中,采用美国TA公司生产的AR2000 EX型旋转流变仪测得的流体黏度随剪切速率的变化关系,对比于同体积分数的 C1获得的剪切增稠流体。由图8所给出的数据可以看出,Y1配置的流体在剪切速率为3.1s-1时流体开始增稠,7.0s-1左右,黏度急剧上升,剪切速率25.1s-1左右达到172Pa.s。而对比例,无论是增稠时间、还是黏度的上升速度,以及达到目标黏度的值均迟缓于实施例。以剪切速率25/s为例,未添加多巴胺的样品C1的黏度是163Pa.s,同等条件下添加多巴胺的样品Y3黏度升高到172Pa.s,黏度提高了5.5%。增稠效果较为明显由此可见多巴胺的加入增加了氧化石墨烯和纳米氧化物之间的粘结,使得纳米颗粒在某些方向上也具有了长的分子链和更为牢固的片层结构,从而导致其剪切增稠性能有所提高。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (7)

1.剪切增稠流体用分散相粒子在制备纤维织物中的应用,其特征在于,
将剪切增稠流体用分散相粒子与分散介质聚乙二醇以1:8的比例搅拌均匀后,置入真空干燥箱中24h,除去其中的气泡,得到稳定的剪切增稠流体;
用无水乙醇按1:100~1:500的比例稀释配制好的分散体系溶液;
用该分散体系溶液浸渍纤维织物2min后,置于空气中晾干以便除去无水乙醇,最后在80℃的烘箱中放置24h后烘干,得到剪切增稠流体纤维织物复合材料;
所述剪切增稠流体用分散相粒子由氧化石墨烯、纳米氧化物和聚多巴胺组成,所述的聚多巴胺通过极性基团与所述氧化石墨烯相连,所述的纳米氧化物吸附在所述氧化石墨烯的片层结构上或被所述聚多巴胺包裹住;
所述剪切增稠流体用分散相粒子的制备方法包括以下步骤:A:将氧化石墨烯按比例分散于溶液中,在超声的条件下进行破碎;
B:在隔绝光线的条件下,加入纳米氧化物粒子,搅拌,直至得到混合均匀的分散液;
C:继续向步骤B所得到的分散液中加入多巴胺盐酸盐,并用氨水将pH调节至8.5-9.5,在隔绝光线的条件下充分搅拌至少10h;
D:待氧化石墨烯、纳米氧化物粒子和多巴胺盐酸盐混合完全后,离心、水洗,得到剪切增稠流体用分散相粒子。
2.根据权利要求1所述的应用,其特征在于:所述步骤A中,氧化石墨烯按1-2g/L的比例加入到溶液中。
3.根据权利要求1所述的应用,其特征在于:所述步骤B中,纳米氧化物粒子按5-10g/L的比例加入到溶液中。
4.根据权利要求1所述的应用,其特征在于:所述步骤C中,多巴胺盐酸盐按2-5g/L的量加入到溶液中。
5.根据权利要求1所述的应用,其特征在于:步骤B中,所述纳米氧化物粒子为二氧化钛或二氧化硅,所选用的纳米氧化物粒子的直径分散在5~20nm之间。
6.根据权利要求1所述的应用,其特征在于:还包括将所述分散相粒子采用冻干法进行干燥得到分散相粒子粉末。
7.根据权利要求1所述的应用,其特征在于:所述纤维织物选用具有三维立体结构的织物。
CN202011480135.4A 2020-12-15 2020-12-15 剪切增稠流体用分散相粒子、制备方法和应用 Active CN112695518B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011480135.4A CN112695518B (zh) 2020-12-15 2020-12-15 剪切增稠流体用分散相粒子、制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011480135.4A CN112695518B (zh) 2020-12-15 2020-12-15 剪切增稠流体用分散相粒子、制备方法和应用

Publications (2)

Publication Number Publication Date
CN112695518A CN112695518A (zh) 2021-04-23
CN112695518B true CN112695518B (zh) 2022-11-01

Family

ID=75508292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011480135.4A Active CN112695518B (zh) 2020-12-15 2020-12-15 剪切增稠流体用分散相粒子、制备方法和应用

Country Status (1)

Country Link
CN (1) CN112695518B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107815870A (zh) * 2017-10-26 2018-03-20 天津工业大学 一种柔软耐久型防刺材料的制备方法
CN108692616A (zh) * 2018-05-14 2018-10-23 嘉兴固甲安全防护科技有限公司 一种半液态防弹刺复合材料的制备方法、防弹刺复合材料及防弹刺防护内芯
CN109485850A (zh) * 2018-11-01 2019-03-19 中国人民解放军陆军工程大学 一种可紫外光还原氧化石墨烯复配材料及其制备方法
CN110655072A (zh) * 2019-09-25 2020-01-07 深圳烯创先进材料研究院有限公司 一种剪切增稠液复合石墨烯海绵防护材料及其制备方法
CN112046104A (zh) * 2020-08-13 2020-12-08 西安工程大学 一种具有运动监测功能的柔性防刺复合材料及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107815870A (zh) * 2017-10-26 2018-03-20 天津工业大学 一种柔软耐久型防刺材料的制备方法
CN108692616A (zh) * 2018-05-14 2018-10-23 嘉兴固甲安全防护科技有限公司 一种半液态防弹刺复合材料的制备方法、防弹刺复合材料及防弹刺防护内芯
CN109485850A (zh) * 2018-11-01 2019-03-19 中国人民解放军陆军工程大学 一种可紫外光还原氧化石墨烯复配材料及其制备方法
CN110655072A (zh) * 2019-09-25 2020-01-07 深圳烯创先进材料研究院有限公司 一种剪切增稠液复合石墨烯海绵防护材料及其制备方法
CN112046104A (zh) * 2020-08-13 2020-12-08 西安工程大学 一种具有运动监测功能的柔性防刺复合材料及制备方法

Also Published As

Publication number Publication date
CN112695518A (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
Mohamed et al. Composite material based on pullulan/silane/ZnO-NPs as pH, thermo-sensitive and antibacterial agent for cellulosic fabrics
Wang et al. Improvement of interfacial interactions using natural polyphenol-inspired tannic acid-coated nanoclay enhancement of soy protein isolate biofilms
Cheng et al. Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity
Shen et al. Solvent-free cellulose nanocrystal fluids for simultaneous enhancement of mechanical properties, thermal conductivity, moisture permeability and antibacterial properties of polylactic acid fibrous membrane
Mushi et al. Nanostructurally Controlled Hydrogel Based on Small‐Diameter Native Chitin Nanofibers: Preparation, Structure, and Properties
Maatar et al. Microporous cationic nanofibrillar cellulose aerogel as promising adsorbent of acid dyes
Wu et al. Preparation and characterization of chitosan/α‐zirconium phosphate nanocomposite films
Yang et al. Synthesis of novel sunflower-like silica/polypyrrole nanocomposites via self-assembly polymerization
Liu et al. In situ synthesis of plate-like Fe 2 O 3 nanoparticles in porous cellulose films with obvious magnetic anisotropy
Zhao et al. Electrospun multi-scale hybrid nanofiber/net with enhanced water swelling ability in rubber composites
Ren et al. Quaternized xylan/cellulose nanocrystal reinforced magnetic hydrogels with high strength
CN109322155B (zh) 一种三重响应性纳米纤维水凝胶的制备方法
WO2015174717A1 (ko) 실라카 함유 복합 나노입자 및 이를 함유하는 하이드로겔 보습패치
Ma et al. Antibacterial casein-based ZnO nanocomposite coatings with improved water resistance crafted via double in situ route
He et al. Moisture and solvent responsive cellulose/SiO 2 nanocomposite materials
CN112272689A (zh) 绝热材料用涂料以及绝热材料
Zhang et al. Dynamic behavior of crosslinked amphiphilic block copolymer nanofibers dispersed in liquid poly (ethylene oxide) below and above their glass transition temperature
Kotsuchibashi et al. Construction of ‘smart’surfaces with polymer functionalized silica nanoparticles
CN112695518B (zh) 剪切增稠流体用分散相粒子、制备方法和应用
Zhao et al. Transparent, thermal stable and hydrophobic coatings from fumed silica/fluorinated polyacrylate composite latex via in situ miniemulsion polymerization
Jia et al. Construction of highly stretchable silica/polyacrylamide nanocomposite hydrogels through hydrogen bond strategy
Cao et al. Fabrication of self-healing nanocomposite hydrogels with the cellulose nanocrystals-based Janus hybrid nanomaterials
JP2022033960A (ja) 複合粒子及び液晶表示装置
Yin et al. Enhanced wettability and moisture retention of cotton fabrics coated with self-suspended chitosan derivative
Zhang et al. Self-lubricating interpenetrating polymer networks with functionalized nanoparticles enhancement for quasi-static and dynamic antifouling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Dai Xiaoqing

Inventor after: Lin Yuan

Inventor after: Tian Yongliang

Inventor after: Liu Huachao

Inventor after: Zhang Zhongwei

Inventor after: Xiong Ziming

Inventor after: Sun Minqian

Inventor after: Duan Liqun

Inventor after: Wu Jianan

Inventor after: Xia Yilu

Inventor after: Dong Lu

Inventor after: Wang Tao

Inventor before: Dai Xiaoqing

Inventor before: Lin Yuan

Inventor before: Tian Yongliang

Inventor before: Liu Huachao

Inventor before: Zhang Zhongwei

Inventor before: Xiong Ziming

Inventor before: Sun Minqian

Inventor before: Duan Liqun

Inventor before: Wu Jianan

Inventor before: Xia Yilu

Inventor before: Dong Lu

Inventor before: Wang Tao