CN112670798B - Multi-frequency terahertz wave generating device based on non-collinear cascade optical difference frequency - Google Patents
Multi-frequency terahertz wave generating device based on non-collinear cascade optical difference frequency Download PDFInfo
- Publication number
- CN112670798B CN112670798B CN202011597916.1A CN202011597916A CN112670798B CN 112670798 B CN112670798 B CN 112670798B CN 202011597916 A CN202011597916 A CN 202011597916A CN 112670798 B CN112670798 B CN 112670798B
- Authority
- CN
- China
- Prior art keywords
- light
- cascade
- reflecting mirror
- reflector
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 24
- 230000000694 effects Effects 0.000 claims abstract description 3
- 239000013078 crystal Substances 0.000 claims description 47
- 229910013641 LiNbO 3 Inorganic materials 0.000 claims description 28
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 claims description 5
- 230000010287 polarization Effects 0.000 claims description 3
- 238000004020 luminiscence type Methods 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 4
- 230000005855 radiation Effects 0.000 abstract description 2
- 238000005086 pumping Methods 0.000 description 11
- 238000011160 research Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010905 molecular spectroscopy Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000001328 terahertz time-domain spectroscopy Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明提供的基于非共线级联光学差频的多频太赫兹波产生装置与现有的基于级联光学差频效应的太赫兹辐射源相比,(1)通过改变反射镜的位置与角度,可以调节θ 1、θ 2……θ n‑1的大小,从而得到多频率的太赫兹波,调谐方式简单,操作灵活。(2)通过改变反射镜的位置与角度,可以调节θ 1、θ 2……θ n‑1的大小,实现非共线级联差频,有效提高太赫兹波转换效率。
Compared with the existing terahertz radiation source based on the cascaded optical difference frequency effect, the multi-frequency terahertz wave generation device based on non-collinear cascaded optical difference frequency provided by the present invention, (1) by changing the position of the mirror and Angle, the size of θ 1 , θ 2 ... θ n‑1 can be adjusted to obtain multi-frequency terahertz waves. The tuning method is simple and the operation is flexible. (2) By changing the position and angle of the mirror, the size of θ 1 , θ 2 ... θ n‑1 can be adjusted to realize non-collinear cascaded difference frequency and effectively improve the conversion efficiency of terahertz wave.
Description
技术领域technical field
本发明属于太赫兹波应用技术领域,具体涉及基于级联差频的太赫兹产生装置。The invention belongs to the technical field of terahertz wave application, and in particular relates to a terahertz generation device based on cascaded difference frequency.
背景技术Background technique
太赫兹波(Terahertz,简称THz),是指频率在0.1-10 THz(1THz=1012 Hz)范围内的电磁波,其波段位于电磁波谱中毫米波和红外线之间,是光子学与电子学、宏观理论向微观理论的过渡区域。太赫兹波所处的特殊位置使其在物理、化学、天文学、分子光谱、生命科学和医药科学等基础研究领域,以及医学成像、环境监测、材料检测、食品检测、射电天文、移动通讯、卫星通信和军用雷达等应用研究领域均有重大的科学研究价值和广阔的应用前景。太赫兹波主要应用在以下领域:Terahertz waves (Terahertz, THz for short) refer to electromagnetic waves with a frequency in the range of 0.1-10 THz (1THz=10 12 Hz). The transitional area from macro theory to micro theory. The special position of terahertz wave makes it widely used in basic research fields such as physics, chemistry, astronomy, molecular spectroscopy, life science and medical science, as well as medical imaging, environmental monitoring, material detection, food detection, radio astronomy, mobile communication, satellite Applied research fields such as communication and military radar have great scientific research value and broad application prospects. Terahertz waves are mainly used in the following fields:
(1)成像领域(1) Imaging field
利用太赫兹时域光谱技术可以直接测量太赫兹电磁脉冲所产生的瞬态电磁场,可以直接测得样品的介电常数。The transient electromagnetic field generated by the terahertz electromagnetic pulse can be directly measured by using the terahertz time-domain spectroscopy technique, and the dielectric constant of the sample can be directly measured.
(2)生物化学技术领域(2) Biochemical technology field
由于许多生物大分子的转动吸收谱处于太赫兹频段,利用对生化反应太赫兹吸收谱的研究可以得到反应中的分子运动状况信息。对于进一步研究生化反应提供了有力的手段。Since the rotational absorption spectra of many biomacromolecules are in the terahertz frequency range, the molecular motion information in the reaction can be obtained by studying the terahertz absorption spectra of biochemical reactions. It provides a powerful means for further research on chemical reactions.
(3)天文学领域(3) Astronomy field
在宇宙中,大量的物质在发出太赫兹电磁波。碳(C)、水(H2O)、一氧化碳(CO)、氮(N2)、氧(O2)等大量的分子可以在太赫兹频段进行探测。In the universe, a large amount of matter is emitting terahertz electromagnetic waves. A large number of molecules such as carbon (C), water (H 2 O), carbon monoxide (CO), nitrogen (N 2 ), and oxygen (O 2 ) can be detected in the terahertz frequency range.
(4)通信领域(4) Communication field
太赫兹波是很好的宽带信息载体,可以携带声频或者视频信号进行传输。太赫兹波用于通信可以获得10 GB/s的无线传输速度,这比当前的超宽带技术快几百至一千多倍。Terahertz wave is a good broadband information carrier, which can carry audio or video signals for transmission. The use of terahertz waves for communication can achieve a wireless transmission speed of 10 GB/s, which is hundreds to more than a thousand times faster than the current ultra-wideband technology.
(5)国土安全领域(5) Homeland security field
在国土安全领域,由于太赫兹波的非电离性,及强穿透性,所以它能够在机场、车站等地对隐藏的爆炸物、违禁品、武器、毒品等危险物品提供远距离、大范围的预警。In the field of homeland security, due to the non-ionization and strong penetrability of terahertz waves, it can provide long-distance and large-scale detection of hidden explosives, contraband, weapons, drugs and other dangerous items in airports, stations and other places. early warning.
缺少的能够产生高功率、高质量、高效率的太赫兹波,且低成本并能在室温下运转的太赫兹源是目前面临的主要问题。The lack of terahertz sources capable of generating high-power, high-quality, high-efficiency terahertz waves at low cost and operating at room temperature is the main problem at present.
发明内容Contents of the invention
本发明的目的是提供一种基于非共线级联光学差频的多频太赫兹波产生装置,可以产生多个频率的太赫兹波,提高太赫兹波转换效率。The purpose of the present invention is to provide a multi-frequency terahertz wave generating device based on non-collinear cascaded optical difference frequency, which can generate terahertz waves of multiple frequencies and improve the conversion efficiency of terahertz waves.
本发明的目的是以下述方式实现的:The purpose of the present invention is achieved in the following manner:
一种基于非共线级联光学差频的多频太赫兹波产生装置,包括第一泵浦源和第二泵浦源,APPLN晶体,MgO:LiNbO3晶体,第B1反射镜B1、第B2反射镜B2……第Bn反射镜Bn、第M1反射镜M1、第M2反射镜M2……第Mn反射镜Mn、第C1反射镜C1、第C2反射镜C2……第Cn反射镜Cn,合束镜以及相位延时系统;A multi-frequency terahertz wave generating device based on non-collinear cascaded optical difference frequency, including a first pump source and a second pump source, APPLN crystal, MgO:LiNbO 3 crystal, B 1 reflector B 1 , B 2nd mirror B 2 ... B nth mirror B n , M 1st mirror M 1 , M 2nd mirror M 2 ... M nth mirror M n , C 1st mirror C 1 , C 2th mirror C 2 ... C nth mirror C n , beam combiner and phase delay system;
从第一泵浦源出射的第一泵浦光入射合束镜;从第二泵浦源出射的第二泵浦光经过相位延时系统后入射合束镜;第一泵浦光与第二泵浦光在合束镜中合为一束混频光;混频光入射APPLN晶体,通过级联光学差频产生第一级联光12;The first pump light emitted from the first pump source enters the beam combiner; the second pump light emitted from the second pump source enters the beam combiner after passing through the phase delay system; the first pump light and the second The pump light is combined into a bundle of mixed light in the beam combining mirror; the mixed light is incident on the APPLN crystal, and the first
第一级联光12经第B1反射镜B1透射后变为第二级联光G1,第二级联光G1经第M1反射镜M1、第C1反射镜C1反射后入射MgO:LiNbO3晶体;第一级联光经第B1反射镜B1反射后再经第B2反射镜B2反射后变为第三级联光G2,第三级联光G2经第M2反射镜M2、第C2反射镜C2反射后入射MgO:LiNbO3晶体13;第一级联光12经第B2反射镜B2透射后再经第B3反射镜B3反射后变为第四级联光G3,第四级联光G3经第M3反射镜M3、第C3反射镜C3反射后入射MgO:LiNbO3晶体;The
以此类推,第一级联光12经第Bn-1反射镜Bn-1透射后再经第Bn反射镜Bn反射后变为第n+1级联光Gn,第n+1级联光Gn经第Mn反射镜Mn、第Cn反射镜Cn反射后入射MgO:LiNbO3晶体13,第n+1级联光Gn不为第二级联光G1或第三级联光G2。By analogy, the
第二级联光G1、第三级联光G2……第n+1级联光Gn入射MgO:LiNbO3晶体,从而通过MgO:LiNbO3晶体产生太赫兹波;The second cascade light G 1 , the third cascade light G 2 ...the n+1th cascade light G n is incident on the MgO:LiNbO 3 crystal, thereby generating terahertz waves through the MgO:LiNbO 3 crystal;
第一泵浦光和第二泵浦光的频率不同;光束传播的平面为X轴和Y轴所确定的平面,Z轴垂直于光束传播的平面,从第一泵浦源出射的第一束泵浦光的初始传播方向为X轴正向,从第二泵浦源出射的第二泵浦光的初始传播方向为Y轴正向,混频光的传播方向为X轴的正向;太赫兹波的传播方向与MgO:LiNbO3晶体的出射面的垂直方向的夹角为0°-10°。The frequencies of the first pump light and the second pump light are different; the plane of beam propagation is the plane determined by the X axis and the Y axis, and the Z axis is perpendicular to the plane of beam propagation. The first beam emitted from the first pump source The initial propagation direction of the pump light is the positive direction of the X axis, the initial propagation direction of the second pump light emitted from the second pump source is the positive direction of the Y axis, and the propagation direction of the mixing light is the positive direction of the X axis; The included angle between the propagation direction of the Hertzian wave and the vertical direction of the exit surface of the MgO:LiNbO 3 crystal is 0°-10°.
所述第一泵浦源采用脉冲激光器,第二泵浦源采用脉冲激光器,两束泵浦光的偏振方向均为Z轴。The first pumping source uses a pulsed laser, the second pumping source uses a pulsed laser, and the polarization directions of the two pumping lights are both Z-axis.
相位延时系统由第一反射镜、第二反射镜、第三反射镜和第四反射镜组成,从第二泵浦源出射的第二泵浦光经过第一反射镜、第二反射镜、第三反射镜和第四反射镜组成的相位延时系统后入射合束镜。The phase delay system consists of a first reflector, a second reflector, a third reflector and a fourth reflector, the second pump light emitted from the second pump source passes through the first reflector, the second reflector, The phase delay system composed of the third reflector and the fourth reflector is incident on the beam combiner.
所述第一反射镜、第二反射镜、第三反射镜和第四反射镜均为平面镜,且对第二泵浦光全反射,第B1反射镜B1、第B2反射镜B2……第Bn反射镜Bn对第一级联光12部分透射,第M1反射镜M1、第M2反射镜M2……第Mn反射镜Mn、第C1反射镜C1、第C2反射镜C2……第Cn反射镜Cn对第一级联光12全反射。The first reflecting mirror, the second reflecting mirror, the third reflecting mirror and the fourth reflecting mirror are all plane mirrors, and totally reflect the second pumping light, the B 1st reflecting mirror B 1 , the B 2nd reflecting mirror B 2 ...the B nth reflector B n partially transmits the
所述APPLN晶体为长方体,在X-Y平面内为矩形,光轴沿Z轴。MgO:LiNbO3晶体在X-Y平面内为等腰梯形,晶体的光轴沿Z轴。The APPLN crystal is a cuboid, a rectangle in the XY plane, and the optical axis is along the Z axis. The MgO:LiNbO 3 crystal is an isosceles trapezoid in the XY plane, and the optical axis of the crystal is along the Z axis.
第二级联光G1、第三级联光G2……第n+1级联光Gn从MgO:LiNbO3晶体在X-Y平面内的斜面入射。The second cascade light G 1 , the third cascade light G 2 . . . the n+1th cascade light G n is incident from the oblique plane of the MgO:LiNbO 3 crystal in the XY plane.
所述级联光是多个频率的级联光混合的一种混频光,且它们共线传播。级联光中相邻阶级联光的频率差等于第一泵浦光与第二泵浦光之间的频率差。The cascaded light is a kind of mixed frequency light in which cascaded lights of multiple frequencies are mixed, and they propagate collinearly. The frequency difference between adjacent cascade lights in the cascade lights is equal to the frequency difference between the first pump light and the second pump light.
第二级联光G1、第三级联光G2……第n+1级联光Gn入射MgO:LiNbO3晶体的方向与入射的MgO:LiNbO3晶体面的垂直方向的夹角为0°-10°,第二级联光G1与第三级联光G2之间的夹角为θ 1,第三级联光G2与第四级联光G3之间的夹角为θ 2,第n级联光Gn-1与第n+1级联光Gn之间的夹角为θ n-1。改变第C1反射镜C1、第C2反射镜C2……第Cn反射镜Cn的位置与角度,可以改变θ 1、θ 2……θ n-1的大小,通过非共线级联差频产生高功率太赫兹波。The angle between the direction of the second cascade light G 1 , the third cascade light G 2 ... the n+1th cascade light G n incident on the MgO:LiNbO 3 crystal and the vertical direction of the incident MgO:LiNbO 3 crystal plane is 0°-10°, the angle between the second cascade light G 1 and the third cascade light G 2 is θ 1 , the angle between the third cascade light G 2 and the fourth cascade light G 3 is θ 2 , and the angle between the nth cascade light G n-1 and the n+1th cascade light G n is θ n-1 . Changing the position and angle of the C 1st reflector C 1 , the C2th reflector C 2 ... the Cnth reflector C n can change the size of θ 1 , θ 2 ... θ n-1 , through the non-collinear Cascaded difference frequencies generate high power terahertz waves.
相对于现有技术,本发明提供的基于非共线级联光学差频的多频太赫兹波产生装置与现有的基于级联光学差频效应的太赫兹辐射源相比,具有以下优点:Compared with the prior art, the multi-frequency terahertz wave generating device based on non-collinear cascaded optical difference frequency provided by the present invention has the following advantages compared with the existing terahertz radiation source based on the cascaded optical difference frequency effect:
(1)通过改变反射镜的位置与角度,可以调节θ 1、θ 2……θ n-1的大小,从而得到多频率的太赫兹波,调谐方式简单,操作灵活。(1) By changing the position and angle of the reflector, the size of θ 1 , θ 2 ... θ n-1 can be adjusted to obtain multi-frequency terahertz waves. The tuning method is simple and the operation is flexible.
(2)通过改变反射镜的位置与角度,可以调节θ 1、θ 2……θ n-1的大小,实现非共线级联差频,有效提高太赫兹波转换效率。(2) By changing the position and angle of the mirror, the size of θ 1 , θ 2 ... θ n-1 can be adjusted to realize non-collinear cascaded difference frequency and effectively improve the conversion efficiency of terahertz wave.
附图说明Description of drawings
图1是本发明实施例的结构原理图。Fig. 1 is a structural schematic diagram of an embodiment of the present invention.
图2是当产生频率为0.5 THz的太赫兹波时,相位匹配角与级联光波长的对应关系图。Fig. 2 is a diagram of the corresponding relationship between the phase matching angle and the wavelength of the cascaded light when a terahertz wave with a frequency of 0.5 THz is generated.
具体实施方式Detailed ways
以下将结合附图以及具体实施例,对本发明的技术方案进行清楚、完整的描述,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,不能理解为对本发明保护范围的限制,该领域的技术熟练人员可以根据下述本发明的内容做出一些非本质的改进和调整。在本发明中,除非另有明确的规定和限定,本申请使用的技术术语应当为本发明所述技术人员所理解的通常意义。The technical solutions of the present invention will be clearly and completely described below in conjunction with the accompanying drawings and specific embodiments. It should be understood that the preferred embodiments described here are only used to illustrate and explain the present invention, and should not be construed as limiting the protection scope of the present invention. , those skilled in the art can make some non-essential improvements and adjustments based on the contents of the present invention described below. In the present invention, unless otherwise clearly specified and limited, the technical terms used in the present application shall have the usual meanings understood by those skilled in the present invention.
如附图1所示,一种基于非共线级联光学差频的多频太赫兹波产生装置,包括第一泵浦源1和第二泵浦源3,APPLN晶体11,MgO:LiNbO3晶体13,第B1反射镜B1、第B2反射镜B2……第Bn反射镜Bn、第M1反射镜M1、第M2反射镜M2……第Mn反射镜Mn、第C1反射镜C1、第C2反射镜C2……第Cn反射镜Cn,合束镜9以及相位延时系统。As shown in Figure 1, a multi-frequency terahertz wave generating device based on non-collinear cascaded optical difference frequency includes a
从第一泵浦源1出射的第一泵浦光2入射合束镜9。从第二泵浦源3出射的第二泵浦光4经过相位延时系统后入射合束镜9。第一泵浦光2与第二泵浦光4在合束镜9中合为一束混频光10。混频光10入射APPLN晶体11,通过级联光学差频产生第一级联光12。第一级联光12经第B1反射镜B1透射后变为级联光G1,第二级联光G1经第M1反射镜M1、第C1反射镜C1反射后入射MgO:LiNbO3晶体13;第一级联光12经第B1反射镜B1反射后再经第B2反射镜B2反射后变为第三级联光G2,第三级联光G2经第M2反射镜M2、第C2反射镜C2反射后入射MgO:LiNbO3晶体13;第一级联光12经第B2反射镜B2透射后再经第B3反射镜B3反射后变为第四级联光G3,第四级联光G3经第M3反射镜M3、第C3反射镜C3反射后入射MgO:LiNbO3晶体13;以此类推,第一级联光12经第Bn-1反射镜Bn-1透射后再经第Bn反射镜Bn反射后变为第n+1级联光Gn,第n+1级联光Gn经第Mn反射镜Mn、第Cn反射镜Cn反射后入射MgO:LiNbO3晶体13,第n+1级联光Gn不为第二级联光G1或第三级联光G2;The
第二级联光G1、第三级联光G2……第n+1级联光Gn入射MgO:LiNbO3晶体13,从而通过MgO:LiNbO3晶体13产生太赫兹波14。The second cascade light G 1 , the third cascade light G 2 .
由于第一级联光12中相邻阶级联光的频率差等于第一泵浦光2与第二泵浦光4之间的频率差,从而通过调节第一泵浦光2与第二泵浦光4的频率差,从而可以产生相邻阶级联光的频率差不同的第一级联光12。Since the frequency difference between adjacent cascade lights in the
光束传播的平面为X轴和Y轴所确定的平面,Z轴垂直于光束传播的平面,从第一泵浦源1出射的第一束泵浦光2的初始传播方向为X轴正向,从第二泵浦源3出射的第二泵浦光4的初始传播方向为Y轴正向,混频光10的传播方向为X轴的正向。The plane of beam propagation is the plane determined by the X-axis and the Y-axis, the Z-axis is perpendicular to the plane of beam propagation, and the initial propagation direction of the
一个泵浦光通过相位延时系统的目的是为了使两个泵浦光相位同步。The purpose of one pump light passing through the phase delay system is to synchronize the phases of the two pump lights.
第二级联光G1、第三级联光G2……第n+1级联光从MgO:LiNbO3晶体13在X-Y平面内的斜面入射。太赫兹波14的传播方向与MgO:LiNbO3晶体13的出射面的垂直方向的夹角为0°-10°。The second cascade light G 1 , the third cascade light G 2 . . . the n+1th cascade light is incident from the oblique plane of the MgO:LiNbO 3 crystal 13 in the XY plane. The included angle between the propagation direction of the
本实施例中,第一泵浦源1采用Yb:YAG脉冲激光器,第一泵浦光2的频率为291.76THz,第二泵浦源3采用Yb:YAG脉冲激光器,第二泵浦光4的频率为291.26THz。两台泵浦源的重复频率均为10Hz,单脉冲能量均为100mJ,光束直径为1mm,偏振方向为Z轴。In this embodiment, the
本实施例中,相位延时系统由第一反射镜5、第二反射镜6、第三反射镜7和第四反射镜8组成,从第二泵浦源3出射的第二泵浦光4经过第一反射镜5、第二反射镜6、第三反射镜7和第四反射镜8组成的相位延时系统后入射合束镜9。泵浦光通过相位延时系统不改变光的传播方向,泵浦光可以不止通过一个相位延时系统。In this embodiment, the phase delay system is composed of a first reflector 5, a second reflector 6, a third reflector 7 and a fourth reflector 8, and the second pump light 4 emitted from the
所述第一反射镜5、第二反射镜6、第三反射镜7和第四反射镜8均为平面镜,且对第二泵浦光4全反射,第B1反射镜B1、第B2反射镜B2……第Bn反射镜Bn对第一级联光12的透射率均为50%,第M1反射镜M1、第M2反射镜M2……第Mn反射镜Mn、第C1反射镜C1、第C2反射镜C2……第Cn反射镜Cn对第一级联光12全反射。The first reflecting mirror 5, the second reflecting mirror 6, the third reflecting mirror 7 and the fourth reflecting mirror 8 are all plane mirrors, and totally reflect the second pumping light 4, the B1 reflecting mirror B1 , the Bth reflecting mirror 2 reflectors B 2 ... B nth reflector B n has a transmittance of 50% for the
本实施例中,APPLN晶体11为长方体,在X-Y平面内为矩形,晶体的光轴沿Z轴。APPLN晶体11尺寸X×Y×Z为60mm×6mm×1.5mm。MgO:LiNbO3晶体13在X-Y平面内为等腰梯形,MgO掺杂浓度为5 mol %,晶体的光轴沿Z轴。MgO:LiNbO3晶体13在X-Y平面内的腰边长度为20mm,上底边长度为37.4mm,下底边长度为20mm,沿Z轴的厚度为5mm。In this embodiment, the
在本实施例中,第一级联光12中相邻阶级联光的频率差等于0.5 THz。In this embodiment, the frequency difference between adjacent cascade lights in the
本实施例中,第二级联光G1、第三级联光G2……第n+1级联光Gn入射MgO:LiNbO3晶体13的方向与入射的MgO:LiNbO3晶体13面的垂直方向的夹角为0°-10°,第二级联光G1与第三级联光G2之间的夹角为θ 1,第三级联光G2与第四级联光G3之间的夹角为θ 2,第n级联光Gn-1与第n+1级联光Gn之间的夹角为θ n-1。改变第C1反射镜C1、第C2反射镜C2……第Cn反射镜Cn的位置与角度,可以改变θ 1、θ 2……θ n-1的大小,通过非共线级联差频产生高功率太赫兹波。如附图2所示,当改变级联光的波长以及相应的θ 1、θ 2……θ n-1的大小,通过非共线级联差频可以产生频率为0.5 THz的太赫兹波。 In this embodiment, the direction in which the second cascaded light G 1 , the third cascaded light G 2 . . . The angle in the vertical direction is 0°-10°, the angle between the second cascade light G 1 and the third cascade light G 2 is θ 1 , the third cascade light G 2 and the fourth cascade light The included angle between G 3 is θ 2 , and the included angle between the nth cascaded light G n-1 and the n+1th cascaded light G n is θ n-1 . Changing the position and angle of the C 1st reflector C 1 , the C2th reflector C 2 ... the Cnth reflector C n can change the size of θ 1 , θ 2 ... θ n-1 , through the non-collinear Cascaded difference frequencies generate high power terahertz waves. As shown in Figure 2, when the wavelength of the cascaded light and the corresponding size of θ 1 , θ 2 ... θ n-1 are changed, a terahertz wave with a frequency of 0.5 THz can be generated through the non-collinear cascaded difference frequency.
以上所述的实施例仅是对于本发明技术方案的举例和说明,便于本领域技术人员理解本申请的技术方案,而不是全部的实施方式,本发明的保护范围并不局限于此。以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。本发明的基本思路在于上述基本方案,对于本领域的及任何熟悉本技术领域的技术人员来说,在不脱离发明整体构思和本发明 的原理的精神的前提下,根据本发明的教导,设计出各种变形的模型、公式、参数并不需要花费创造性劳动。在不脱离本发明的原理和精神的情况下对实施方式进行的变化、修改、替换、等同替换和变型,这些也应该视为本发明的保护范围。The above-mentioned embodiments are only examples and descriptions of the technical solutions of the present invention, which are convenient for those skilled in the art to understand the technical solutions of the present application, rather than all implementation modes, and the protection scope of the present invention is not limited thereto. The various technical features of the above-mentioned embodiments can be combined arbitrarily. For the sake of concise description, all possible combinations of the various technical features in the above-mentioned embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, should be considered as within the scope of this specification. When the combination of technical solutions contradicts each other or cannot be realized, it should be considered that the combination of technical solutions does not exist, nor is it within the protection scope of the present invention. The basic idea of the present invention lies in the above-mentioned basic scheme. For those skilled in the art and any person familiar with the technical field, without departing from the overall concept of the invention and the spirit of the principles of the present invention, according to the teachings of the present invention, design It does not require creative labor to produce models, formulas, and parameters of various deformations. Changes, modifications, replacements, equivalent replacements and variants made to the embodiments without departing from the principle and spirit of the present invention should also be regarded as the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011597916.1A CN112670798B (en) | 2020-12-29 | 2020-12-29 | Multi-frequency terahertz wave generating device based on non-collinear cascade optical difference frequency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011597916.1A CN112670798B (en) | 2020-12-29 | 2020-12-29 | Multi-frequency terahertz wave generating device based on non-collinear cascade optical difference frequency |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112670798A CN112670798A (en) | 2021-04-16 |
CN112670798B true CN112670798B (en) | 2023-02-28 |
Family
ID=75410335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011597916.1A Expired - Fee Related CN112670798B (en) | 2020-12-29 | 2020-12-29 | Multi-frequency terahertz wave generating device based on non-collinear cascade optical difference frequency |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112670798B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009180809A (en) * | 2008-01-29 | 2009-08-13 | Sekisui Chem Co Ltd | Tera-hertz electromagnetic wave generator |
CN102570247A (en) * | 2012-01-20 | 2012-07-11 | 中国科学院上海技术物理研究所 | Angle tuning-free THz collinear difference frequency radiation system based on cadmium telluride |
CN106159643A (en) * | 2016-09-13 | 2016-11-23 | 华北水利水电大学 | A kind of terahertz-wave parametric oscillator based on cascade parametric effect |
CN110021869A (en) * | 2019-05-09 | 2019-07-16 | 华北水利水电大学 | A kind of three-dimensional optical parametric oscillation terahertz radiation source |
-
2020
- 2020-12-29 CN CN202011597916.1A patent/CN112670798B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009180809A (en) * | 2008-01-29 | 2009-08-13 | Sekisui Chem Co Ltd | Tera-hertz electromagnetic wave generator |
CN102570247A (en) * | 2012-01-20 | 2012-07-11 | 中国科学院上海技术物理研究所 | Angle tuning-free THz collinear difference frequency radiation system based on cadmium telluride |
CN106159643A (en) * | 2016-09-13 | 2016-11-23 | 华北水利水电大学 | A kind of terahertz-wave parametric oscillator based on cascade parametric effect |
CN110021869A (en) * | 2019-05-09 | 2019-07-16 | 华北水利水电大学 | A kind of three-dimensional optical parametric oscillation terahertz radiation source |
Non-Patent Citations (1)
Title |
---|
差频可调谐太赫兹技术的新进展;柴路等;《物理学报》;20160731;第65卷(第07期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN112670798A (en) | 2021-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105790044B (en) | Two-color fields chevilled silk induction THz electric field based on pulse polarization shaping enhances system | |
CN105261922A (en) | A compact broadband-spectrum independently-tunable dual-wavelength parameter oscillator | |
CN106410572A (en) | High energy Terahertz wave parametric oscillator | |
CN110137779B (en) | Double-inner-cavity terahertz wave parametric oscillator | |
CN106451035B (en) | A kind of terahertz radiation source of stokes light enhancing | |
CN112670798B (en) | Multi-frequency terahertz wave generating device based on non-collinear cascade optical difference frequency | |
CN110137780B (en) | A cascaded terahertz wave parametric oscillator | |
CN110021869B (en) | Three-dimensional optical parametric oscillation terahertz wave radiation source | |
CN106159643B (en) | A Terahertz Wave Parametric Oscillator Based on Cascade Parametric Effect | |
CN112670796B (en) | Terahertz radiation source based on combination of resonant cavity and cascade difference frequency | |
CN109510054B (en) | A method for generating multi-frequency ultrashort laser pulse trains | |
CN112670793B (en) | A multi-frequency terahertz wave generation device based on optimized cascaded difference frequency | |
CN112670795A (en) | Multi-frequency terahertz radiation source based on waveguide | |
CN112670797A (en) | Multi-frequency terahertz radiation source based on optical parametric oscillation | |
CN104155825A (en) | Large-energy terahertz pulse generation method and device | |
CN110034482B (en) | A multi-beam terahertz wave parametric oscillator | |
CN112670792B (en) | Device for simultaneously generating multi-frequency terahertz waves based on optimized cascade difference frequency | |
CN110086076B (en) | Wide-spectrum optical parametric oscillator | |
CN112670794A (en) | Frequency conversion terahertz radiation source based on multi-difference frequency effect | |
CN112670799B (en) | Multi-frequency terahertz radiation source based on optimized difference frequency | |
CN109143720A (en) | A kind of optical parametric generator generating multi beam THz wave | |
CN115733036A (en) | Device for generating high-power terahertz waves based on triple optimization cascade difference frequency | |
Wang et al. | Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration | |
KR101017938B1 (en) | Terahertz wave generator and high power terahertz wave generation method using same | |
CN106229796B (en) | A kind of terahertz radiation source based on optical frequency mixing effect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230228 |