CN112665707A - 一种变压器短路冲击后累积效应及诊断方法 - Google Patents

一种变压器短路冲击后累积效应及诊断方法 Download PDF

Info

Publication number
CN112665707A
CN112665707A CN202011471219.1A CN202011471219A CN112665707A CN 112665707 A CN112665707 A CN 112665707A CN 202011471219 A CN202011471219 A CN 202011471219A CN 112665707 A CN112665707 A CN 112665707A
Authority
CN
China
Prior art keywords
transformer
vibration
frequency ratio
short circuit
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011471219.1A
Other languages
English (en)
Other versions
CN112665707B (zh
Inventor
刘力卿
张鑫
王凤林
张弛
唐庆华
李志坚
王楠
魏菊芳
马昊
冯军基
李维博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Tianjin Electric Power Co Ltd
Electric Power Research Institute of State Grid Tianjin Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
State Grid Tianjin Electric Power Co Ltd
Electric Power Research Institute of State Grid Tianjin Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Tianjin Electric Power Co Ltd, Electric Power Research Institute of State Grid Tianjin Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202011471219.1A priority Critical patent/CN112665707B/zh
Publication of CN112665707A publication Critical patent/CN112665707A/zh
Application granted granted Critical
Publication of CN112665707B publication Critical patent/CN112665707B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

本发明涉及一种变压器短路冲击后累积效应及诊断方法,其技术特点是:对变压器开展短路冲击试验,提取变压器短路冲击后累积效应的振动特征量;变压器短路冲击后累积效应诊断。本发明设计合理,其通过对三相变压器开展短路冲击试验,并在在试验的过程中记录记录变压器的振动特征参量,即振动熵、主频比和半频比,通过振动特征参量数据得出不同故障类型对于各个振动特征参量的影响,从而实现对变压器的故障进行诊断,对电力系统的安全运行有着重要意义。

Description

一种变压器短路冲击后累积效应及诊断方法
技术领域
本发明属于输变电设备运维领域,涉及变压器故障诊断,尤其是变压器短路冲击后累积效应及诊断方法。
背景技术
电力变压器作为电力系统的枢纽设备,其安全稳定运行对于电网可靠性具有重要意义。在电网运行过程中,变压器事故多次发生,其中,约41%的变压器事故涉及绕组故障,主要原因为绕组抗短路能力不足。变压器遭受外部短路故障时,高幅值的短路冲击电流在绕组上产生巨大的洛伦兹力,引起绝缘材料塑性变形、磨损等,将进一步增加压紧力不足、匝间短路等故障出现的概率,降低绕组的抗短路能力。
短路冲击对绝缘材料和电磁线具有力、热累积效应。绕组机械状态在短路冲击后出现变化,相应的也会影响振动信号的特征。暂态振动信号受其他因素影响小,信噪比高,能较好的反映多次短路冲击时绕组的机械状态。目前对短路冲击下绕组振动机理和特性的研究不够完善,暂态声振信号的状态信息利用仍然不够充分,需要进一步从绕组振动特性入手深入研究短路冲击下绕组的振动响应,及多次短路冲击过程中振动信号的变化规律。
发明内容
本发明的目的在于克服现有技术的不足之处,提供一种能够对变压器的故障进行诊断的变压器短路冲击后累积效应及诊断方法。
本发明解决技术问题所采用的技术方案是:
一种变压器短路冲击后累积效应及诊断方法,包括以下步骤:
步骤1、对变压器开展短路冲击试验,提取变压器短路冲击后累积效应的振动特征量。
步骤2、变压器短路冲击后累积效应诊断。
而且,所述步骤1的具体实现方法为:首先采用三相变压器开展短路冲击试验,短路冲击试验的接线为三相电源连接三相变压器的三角形绕组,断路器连接三相变压器的星形绕组,然后进行后短路试验,对变压器绕组的良好、松动和变形状态分别进行多组试验;在试验的过程中采集电流波形以及振动信号,每组试验结束后测量每相绕组的短路阻抗值,并计算每组实验的振动特征向量。
而且,所述电流波形以及振动信号通过触发采集方式采集,所述触发采集方式为:分别在三相绕组对应的1/2油箱高度位置处布置多个振动测点,所述振动测点在高压套管出线侧自右向左布置,在低压套管出线侧自左向右布置;在高压套管出线侧和低压套管出线侧正对中间的位置布置传声器测点。
而且,所述振动特征量包括振动熵、主频比及半频比,所述振动熵的计算公式为:
Figure BDA0002836006620000021
其中
Figure BDA0002836006620000022
其中Ei为某一频率的信号能量,Aj为某一频率某一时刻的幅值;
所述主频比的计算公式为:
Figure BDA0002836006620000023
其中,E2为频率为50HZ的信号的能量,E4为频率为100HZ的信号的能量;
所述半频比的计算公式为:
Figure BDA0002836006620000024
而且,所述步骤2的实现方法为:绘制出短路阻抗、振动熵、主频比和半频比的变化曲线图,并根据曲线图得出变压器的故障诊断方法,包括以下步骤:
①当振动熵数值稳定处于0.4以下时,则变压器的绕组处于健康状态;
②当振动熵、主频比和半频比发生跃变时,即主频比降低,半频比和振动熵增大,说明变压器的绕组出现松动的情况;
③当振动熵、主频比和半频比发生跃变后,振动熵和半频比皆有所上升,主频比先增加后减小,说明变压器的绕组松动及变形同时出现,当振动熵及半频比降低,主频比增大,说明此时变压器的绕组松动与变形现象同时发生,且变形引起特征值的变化大于松动;
④当振动熵、主频比和半频比出现大幅度往复变化或短路阻抗变化超过2%时,说明绕组状态已经完全损坏。
本发明的优点和积极效果是:
本发明通过对三相变压器开展短路冲击试验,并在在试验的过程中记录记录变压器的振动特征参量,即振动熵、主频比和半频比,通过振动特征参量数据得出不同故障类型对于各个振动特征参量的影响,从而实现对变压器的故障进行诊断。
附图说明
图1为高压套管侧振动测点分布图。
图2为低压套管侧振动测点分布图。
图3为前14次短路冲击试验中震动特征值的变化规律曲线图。
图4为14-22次短路冲击试验中震动特征值的变化规律曲线图。
具体实施方式
下面通过具体实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。
步骤1、对变压器开展短路冲击试验,提取变压器短路冲击后累积效应的振动特征量。
本步骤中,采用三相变压器开展短路冲击试验,优选采用400V三相缩比模型变压器,400V三相缩比模型变压器的参数如表1所示。
表1变压器参数
Figure BDA0002836006620000031
400V三相缩比模型变压器属于I类变压器(25kVA~2500kVA额定容量),且高低压绕组独立,适合进行三相短路,短路试验持续时间为0.5秒,允许偏差为±10%,短路冲击试验的接线为三相电源连接三相变压器的三角形绕组,断路器连接三相变压器的星形绕组,然后进行后短路试验(即绕组的短路在变压器另一绕组施加电压后进行),
对变压器绕组的不同状态:良好、松动和变形,分别进行多组试验,在试验的过程中以触发采集方式同时记录电流波形以及振动信号,所述触发采集方式为分别在三相绕组对应的1/2油箱高度位置处布置6个振动测点,为了方便对比,其中3个振动测点在高压套管出线侧自右向左布置,另外三个振动测点在低压套管出线侧自左向右布置;在高压套管出线侧和低压套管出线侧正对中间的位置布置传声器测点,优选的传声器测点采用加速度传感器进行检测,所述加速度传感器的参数如表2所示。
表2加速度传感器参数
Figure BDA0002836006620000032
每组试验结束后测量每相绕组的短路阻抗值。
为了完整地模拟了变压器绕组状态“良好-松动-变形”的损坏过程,变压器短路冲击试验总共进行了22次,分为5期,如表3所示。在试验过程中,为了判断绕组松动故障下暂态+振动信号的变化规律,在第2期(第6次)以及第3期(第9次)短路冲击试验前对绕组进行两种程度的人为松动。在第4期以及第5期试验中,为了加速绕组变形,加大短路电流幅值,延长短路持续时间,最终在第22次短路冲击后绕组机械状态彻底损坏,短路阻抗变化超过2%。
表3短路冲击工况
Figure BDA0002836006620000041
每组试验结束后计算每组实验的振动特征向量,所述振动特征量包括振动熵、主频比及半频比。
所述振动熵根据两体模型及弹性体模型的多倍频振动现象,结合振动机理研究以及暂态振动特性试验提出的,其表征时频图分布复杂情况的振动特征参量,定义为某一频率的整个时域信号的能量值与整个频域能量总和的比值:
Figure BDA0002836006620000042
式中:Ei为某一频率的信号能量,等于该频率处整个时域上幅值的平方和;Aj为某一频率某一时刻的幅值。由于在短路冲击时存在机电耦合作用及非线性作用,会导致参变共振以及超、亚谐共振,且信号主要集中在0-1000Hz以内,因此本文中主要针对频率为25iHz(i=1,2,…,40)这40个频率点。为了使得振动熵数值区间为[0,1],在关心的频带内,振动熵的计算公式为:
Figure BDA0002836006620000043
且振动熵的值越接近于0,说明暂态振动信号能量越集中,时频图越简单;振动熵的值越接近于1,说明信号能量越分散,时频图越复杂。
在绕组短路冲击激励的基本解中,包含50Hz及100Hz的频率分量,因此定义50Hz及100Hz为暂态声振信号的主频,则主频能量占比即主频比计算公式为:
Figure BDA0002836006620000044
其中,E2为频率为50HZ的信号的能量,E4为频率为100HZ的信号的能量。
由于存在机电耦合作用,当绕组模态满足一定条件时,暂态声振信号中会出现参变共振,其明显特征为25Hz的奇数倍频,因此定义25Hz,75Hz,125Hz,…,975Hz等20个频率为半频,则半频比的计算公式为:
Figure BDA0002836006620000051
步骤2、变压器短路冲击后累积效应诊断。
本步骤的具体实现方法为:绘制出短路阻抗、振动熵、主频比和半频比的变化曲线图,根据曲线图分别讨论不同故障类型对于各个振动特征参量的影响:
1)短路阻抗是以第一次短路冲击试验前状态为基准。可以发现基于暂态振动信号的振动特征参量明显比标准中规定的短路阻抗法灵敏,后者在变压器绕组已经发生严重变形的情况下仍然未超过规定允许值2%。
2)第1期5次短路冲击振动熵约0.3,说明在变压器绕组状态健康情况下,暂态声振能量主要集中于50Hz及100Hz,机电耦合作用较小,材料非线性不明显,很少出现参变共振以及超、亚谐共振现象。
3)实验变压器绕组松动后(第6次试验),振动特征参量发生跃变,主频比降低,半频比和振动熵增大。这说明变压器绕组的松动所导致的模态频率下降使得机电耦合作用及材料非线性变强,声振能量变得更加分散。
4)变压器绕组再次松动后(第9次试验),振动特征参量同样发生跃变,其中振动熵及半频比进一步增大,主频比继续下降。
5)第4期初次试验(第15次)各振动特征参量皆有上升,说明此时变压器绕组松动及变形同时出现。随后的4次短路冲击(16-19次)中主频比先增加后减小。
6)第5期初次试验(第20次)振动熵及半频比降低,主频比增大,说明此时变压器绕组松动与变形同时发生,且变形引起特征值的变化大于松动。随后两次试验三个振动特征参量大幅度往复变化,此时绕组状态已经完全损坏。
综上可知,变压器绕组遭受短路冲击而损坏是一个累积过程:最初由于绝缘材料产生塑性变形,一般发生松动故障,振动熵及半频比增大,而主频比下降;随后产生轻微的变形并逐渐累积,最终绕组随着松动及变形的加重而彻底损毁,期间伴随着振动特征参量的大幅度变化。由此总结出变压器的故障诊断方法:
①当振动熵数值稳定处于0.4以下时,则变压器的绕组处于健康状态。
②当振动熵、主频比和半频比发生跃变时,即主频比降低,半频比和振动熵增大,说明变压器的绕组出现松动的情况。
③当振动熵、主频比和半频比发生跃变后,振动熵和半频比皆有所上升,主频比先增加后减小,说明变压器的绕组松动及变形同时出现,当振动熵及半频比降低,主频比增大,说明此时变压器的绕组松动与变形现象同时发生,且变形引起特征值的变化大于松动。
④当振动熵、主频比和半频比出现大幅度往复变化或短路阻抗变化超过2%时,说明绕组状态已经完全损坏。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (5)

1.一种变压器短路冲击后累积效应及诊断方法,其特征在于:包括以下步骤:
步骤1、对变压器开展短路冲击试验,提取变压器短路冲击后累积效应的振动特征量;
步骤2、变压器短路冲击后累积效应诊断。
2.根据权利要求1所述的一种变压器短路冲击后累积效应及诊断方法,其特征在于:所述步骤1的具体实现方法为:首先采用三相变压器开展短路冲击试验,短路冲击试验的接线为三相电源连接三相变压器的三角形绕组,断路器连接三相变压器的星形绕组,然后进行后短路试验,对变压器绕组的良好、松动和变形状态分别进行多组试验;在试验的过程中采集电流波形以及振动信号,每组试验结束后测量每相绕组的短路阻抗值,并计算每组实验的振动特征向量。
3.根据权利要求2所述的一种变压器短路冲击后累积效应及诊断方法,其特征在于:所述电流波形以及振动信号通过触发采集方式采集,所述触发采集方式为:分别在三相绕组对应的1/2油箱高度位置处布置多个振动测点,所述振动测点在高压套管出线侧自右向左布置,在低压套管出线侧自左向右布置;在高压套管出线侧和低压套管出线侧正对中间的位置布置传声器测点。
4.根据权利要求2所述的一种变压器短路冲击后累积效应及诊断方法,其特征在于:所述振动特征量包括振动熵、主频比及半频比,所述振动熵的计算公式为:
Figure FDA0002836006610000011
其中
Figure FDA0002836006610000012
其中Ei为某一频率的信号能量,Aj为某一频率某一时刻的幅值;
所述主频比的计算公式为:
Figure FDA0002836006610000013
其中,E2为频率为50HZ的信号的能量,E4为频率为100HZ的信号的能量;
所述半频比的计算公式为:
Figure FDA0002836006610000014
5.根据权利要求1所述的一种变压器短路冲击后累积效应及诊断方法,其特征在于:所述步骤2的实现方法为:绘制出短路阻抗、振动熵、主频比和半频比的变化曲线图,并根据曲线图得出变压器的故障诊断方法,包括以下步骤:
①当振动熵数值稳定处于0.4以下时,则变压器的绕组处于健康状态;
②当振动熵、主频比和半频比发生跃变时,即主频比降低,半频比和振动熵增大,说明变压器的绕组出现松动的情况;
③当振动熵、主频比和半频比发生跃变后,振动熵和半频比皆有所上升,主频比先增加后减小,说明变压器的绕组松动及变形同时出现,当振动熵及半频比降低,主频比增大,说明此时变压器的绕组松动与变形现象同时发生,且变形引起特征值的变化大于松动;
④当振动熵、主频比和半频比出现大幅度往复变化或短路阻抗变化超过2%时,说明绕组状态已经完全损坏。
CN202011471219.1A 2020-12-15 2020-12-15 一种变压器短路冲击后累积效应及诊断方法 Active CN112665707B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011471219.1A CN112665707B (zh) 2020-12-15 2020-12-15 一种变压器短路冲击后累积效应及诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011471219.1A CN112665707B (zh) 2020-12-15 2020-12-15 一种变压器短路冲击后累积效应及诊断方法

Publications (2)

Publication Number Publication Date
CN112665707A true CN112665707A (zh) 2021-04-16
CN112665707B CN112665707B (zh) 2023-03-03

Family

ID=75404251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011471219.1A Active CN112665707B (zh) 2020-12-15 2020-12-15 一种变压器短路冲击后累积效应及诊断方法

Country Status (1)

Country Link
CN (1) CN112665707B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114113939A (zh) * 2021-11-24 2022-03-01 国网宁夏电力有限公司宁东供电公司 基于暂态振动信号的变压器故障检测方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101937047A (zh) * 2009-06-30 2011-01-05 上海市电力公司 利用振动波形检测变压器绕组状态的方法
CN102721464A (zh) * 2012-06-13 2012-10-10 江苏省电力公司南京供电公司 电力变压器绕组变形故障检测方法及系统
US20120327745A1 (en) * 2011-06-27 2012-12-27 General Electric Company Electrical substation fault monitoring and diagnostics
CN102998544A (zh) * 2011-09-16 2013-03-27 河南电力试验研究院 变压器短路时绕组工作状态诊断方法
CN105182172A (zh) * 2015-07-23 2015-12-23 广东电网有限责任公司电力科学研究院 基于振动信号形态谱的变压器突发短路下绕组状态诊断方法
CN107991074A (zh) * 2017-11-21 2018-05-04 西安交通大学 基于噪声信号的变压器突发短路时绕组机械状态诊断方法
CN108572293A (zh) * 2018-04-25 2018-09-25 广州供电局有限公司 变压器故障隐患诊断方法和装置
CN108693437A (zh) * 2018-03-22 2018-10-23 国网湖南省电力有限公司 一种判断变压器绕组变形的方法及系统
CN109033612A (zh) * 2018-07-20 2018-12-18 广西电网有限责任公司电力科学研究院 一种基于振动噪声及bp神经网络的变压器故障诊断方法
WO2019177253A1 (ko) * 2018-03-14 2019-09-19 엘에스산전 주식회사 배전반 내 차단기 관리 시스템
CN111487046A (zh) * 2020-02-27 2020-08-04 广西电网有限责任公司电力科学研究院 一种断路器声纹及振动熵特征融合的故障诊断方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101937047A (zh) * 2009-06-30 2011-01-05 上海市电力公司 利用振动波形检测变压器绕组状态的方法
US20120327745A1 (en) * 2011-06-27 2012-12-27 General Electric Company Electrical substation fault monitoring and diagnostics
CN102998544A (zh) * 2011-09-16 2013-03-27 河南电力试验研究院 变压器短路时绕组工作状态诊断方法
CN102721464A (zh) * 2012-06-13 2012-10-10 江苏省电力公司南京供电公司 电力变压器绕组变形故障检测方法及系统
CN105182172A (zh) * 2015-07-23 2015-12-23 广东电网有限责任公司电力科学研究院 基于振动信号形态谱的变压器突发短路下绕组状态诊断方法
CN107991074A (zh) * 2017-11-21 2018-05-04 西安交通大学 基于噪声信号的变压器突发短路时绕组机械状态诊断方法
WO2019177253A1 (ko) * 2018-03-14 2019-09-19 엘에스산전 주식회사 배전반 내 차단기 관리 시스템
CN108693437A (zh) * 2018-03-22 2018-10-23 国网湖南省电力有限公司 一种判断变压器绕组变形的方法及系统
CN108572293A (zh) * 2018-04-25 2018-09-25 广州供电局有限公司 变压器故障隐患诊断方法和装置
CN109033612A (zh) * 2018-07-20 2018-12-18 广西电网有限责任公司电力科学研究院 一种基于振动噪声及bp神经网络的变压器故障诊断方法
CN111487046A (zh) * 2020-02-27 2020-08-04 广西电网有限责任公司电力科学研究院 一种断路器声纹及振动熵特征融合的故障诊断方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
余长厅等: "《基于声纹及振动的变压器故障诊断技术研究》", 《高压电器》 *
张坤等: "《应用复小波变换检测突发短路时的电力变压器绕组状态》", 《电工技术学报》 *
杨毅等: "基于振动分布特征的电力变压器绕组故障诊断", 《振动与冲击》 *
汲胜昌等: "基于振动信号的电力变压器机械状态诊断方法研究综述", 《高电压技术》 *
王楠等: "《变压器短路冲击累积效应评估技术》", 《电气应用》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114113939A (zh) * 2021-11-24 2022-03-01 国网宁夏电力有限公司宁东供电公司 基于暂态振动信号的变压器故障检测方法
CN114113939B (zh) * 2021-11-24 2022-11-18 国网宁夏电力有限公司宁东供电公司 基于暂态振动信号的变压器故障检测方法

Also Published As

Publication number Publication date
CN112665707B (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
Sidhu et al. Detection of incipient faults in distribution underground cables
Abu-Siada et al. A novel online technique to detect power transformer winding faults
Butler-Purry et al. Characterization of transients in transformers using discrete wavelet transforms
Shi et al. Multi-frequency acoustic signal under short-circuit transient and its application on the condition monitoring of transformer winding
CN108957183A (zh) 变压器直流偏磁监测方法及装置
CN110376454B (zh) 绕组径向变形与振荡波关联性研究平台及其试验方法
CN103926509A (zh) 基于谱峭度相对能量熵的配电网故障阶梯式选线方法
CN112665707B (zh) 一种变压器短路冲击后累积效应及诊断方法
CN110007198A (zh) 一种新型的单相接地故障启动方法
Mallick et al. Fault analysis of voltage-source converter based multi-terminal HVDC transmission links
Li et al. Fault detection method using high-pass filtering in VSC based multi-terminal DC system
Katić et al. Novel voltage dip detection algorithm using harmonics in the dip's transient stage
Masdi et al. Study of impulse voltage distribution in transformer windings
CN110017894B (zh) 变压器运行状态振声检测中随机噪声的滤除方法和装置
CN108735488B (zh) 一种基于自激振荡波的变压器设计方法
CN103577659A (zh) 电炉变压器轴向预紧力对固有振动频率影响的分析方法
Wu et al. Study on nanosecond impulse frequency response for detecting transformer winding deformation based on Morlet wavelet transform
El-Shafhy et al. Ferroresonance in distribution systems–state of the art
CN114118546A (zh) 一种高比例新能源电力系统的过电压风险评估方法及系统
Florkowski Exploitation stresses and challenges in diagnostics of electrical industrial equipment
Holdyk et al. External and internal overvoltages in a 100 MVA transformer during high-frequency transients
Shi et al. Diagnosis on winding failure through impulsive sound of power transformer
Lopez-Fernandez et al. Frequency domain severity factor (FDSF)-transient voltage performance-transformer outside/inside
Shrivastava et al. Wavelet entropy: Application in islanding detection
CN115047240B (zh) 一种利用小波细节分量变化特征的变压器励磁涌流判别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant