CN112661190B - 一种四氧化三锰纳米颗粒的制备及应用 - Google Patents

一种四氧化三锰纳米颗粒的制备及应用 Download PDF

Info

Publication number
CN112661190B
CN112661190B CN202110174492.6A CN202110174492A CN112661190B CN 112661190 B CN112661190 B CN 112661190B CN 202110174492 A CN202110174492 A CN 202110174492A CN 112661190 B CN112661190 B CN 112661190B
Authority
CN
China
Prior art keywords
dopamine
polydopamine
nanoparticles
trimanganese tetroxide
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110174492.6A
Other languages
English (en)
Other versions
CN112661190A (zh
Inventor
陈佳
J·C·慕也马纳
邱洪灯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN202110174492.6A priority Critical patent/CN112661190B/zh
Publication of CN112661190A publication Critical patent/CN112661190A/zh
Application granted granted Critical
Publication of CN112661190B publication Critical patent/CN112661190B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种四氧化三锰纳米颗粒的制备方法,将硝酸锰加入到碱性低共熔溶剂中,在搅拌下逐滴加入超纯水,室温下静置反应15~60 min,得棕色沉淀粗产品;粗产品用水和无水乙醇洗涤至中性,干燥,即得四氧化三锰纳米颗粒。该纳米颗粒能够呈现类芬顿反应,可将双氧水分解为羟基自由基,使多巴胺在羟基自由基的作用下最终生成具有蓝色荧光的聚多巴胺纳米点,其最佳发射波长为488 nm。同时,随着加入的多巴胺浓度的增加,体系的荧光强度也逐渐增强,并在一定浓度范围内呈现良好的线性关系,从而可以实现多巴胺的检测。

Description

一种四氧化三锰纳米颗粒的制备及应用
技术领域
本发明涉及一种四氧化三锰纳米颗粒的制备方法,本发明同时还涉及该四氧化三锰纳米颗粒纳在制备聚多巴胺纳米点,以及在检测多巴胺中的应用。
背景技术
多巴胺作为一种重要的儿茶酚胺类神经递质,在心血管、内分泌系统和中枢神经系统的功能中发挥着至关重要的作用。一些重要的神经系统疾病,如:精神分裂症、阿尔茨海默病、帕金森病等均与多巴胺的功能失调有关。因此,多巴胺浓度变化的准确测定对研究神经系统中多巴胺相关的生理病理过程具有十分重要的意义。现有的高灵敏多巴胺检测方法一般是将样品分离技术与分析检测技术相结合,但这些方法由于仪器和操作条件比较复杂、时空分辨率低,使其受到了一定的限制。同时,在多巴胺的检测过程中,由于抗坏血酸、尿酸等于多巴胺具有极其相似的结构和性质,所以在实际应用过程经常会产生基质干扰。因此,制备具有理想分析性能的新型纳米材料来构建荧光传感器用于多巴胺的高选择性检测就显得尤为重要。
发明内容
本发明的目的是提供一种四氧化三锰纳米颗粒的制备方法;
本发明的另一目的是提供四氧化三锰纳米颗粒在类芬顿反应中用于聚多巴胺纳米点的制备;
本发明还有一个目的,就是提供四氧化三锰纳米颗粒在检测多巴胺中的应用。
(一)四氧化三锰纳米颗粒的制备
本发明制备四氧化三锰纳米颗粒的方法:将硝酸锰加入到碱性低共熔溶剂中,在搅拌下逐滴加入超纯水,室温下静置反应 15~60 min,得棕色沉淀粗产品;粗产品反复用水和无水乙醇洗涤至中性,干燥,即得四氧化三锰纳米颗粒。
所述碱性低共熔溶剂是将NaOH或KOH加热溶解于PEG-200中得到的澄清透明溶液,且NaOH或KOH与PEG-200的摩尔比为1:40~1:50,优选1:44。硝酸锰以0.05~0.5 g/mL加入到碱性低共熔溶剂中。
加入超纯水的体积为碱性低共熔溶剂体积的0.5~1.5倍。
图1为上述制备的四氧化三锰纳米颗粒的XRD图,从图中可以看出,材料的系列衍射峰分别对应于四氧化三锰的(101),(112),(200),(103),(211),(004),(220),(204),(105),(312),(303),(321),(224)和 (400)晶面,这与卡片四氧化三锰的JCPDS No:24-734完全吻合,证实了制得的材料为四氧化三锰。
图2a为四氧化三锰纳米颗粒的透射电镜(TEM)图,从图中可以看出,四氧化三锰纳米颗粒的平均粒径大约为20 nm。图2b为四氧化三锰纳米颗粒的HRTEM图,从图中可以看出,材料具有明显的晶格条纹,并且条纹间距为4.9 Ao,这与四氧化三锰的(101)晶面完全吻合。
图3为四氧化三锰纳米颗粒的拉曼光谱图。在351 cm−1和644 cm−1处的谱带证实了材料确实为四氧化三锰纳米颗粒。
(二)聚多巴胺纳米点的制备
将上述制备的四氧化三锰纳米颗粒分散于缓冲溶液中,加入双氧水、多巴胺,于室温下反应0.5~2 h,加入pH=4. 0的醋酸缓冲溶液终止反应;然后通过外加磁场分离并收集上清液,将上清液装入透析袋透析后,冷冻干燥,即得聚多巴胺纳米点粉末。
所述缓冲溶液为pH=8.0的4-羟乙基哌嗪乙磺酸溶液或pH=8.0的三羟甲基氨基甲烷缓冲溶液。缓冲溶液中,四氧化三锰纳米颗粒的浓度为10~100 µg/mL,双氧水的摩尔浓度为0.1~200 mM,多巴胺的摩尔浓度为5 mM~100 µM。
所述透析袋的截留分子量为500~1000 Da,透析时间为12~24 h。
图4为上述制备的聚多巴胺纳米点的透射电镜图及粒径分布直方图,其中右上角的小插图为聚多巴胺纳米点的粒径分布直方图,可以看到聚多巴胺纳米点的平均粒径大约为1.7 nm。
图5a为聚多巴胺纳米点的XPS全谱,结果表明材料主要由C、N和O三种元素组成。图5b为聚多巴胺纳米点的C1S精细谱,可以看出该材料存在C-C/C=C、C-N/C-O和C=N/C=O 键;图5c为聚多巴胺纳米点的O1S精细谱,可以看出该材料存在C-O和C=O键;图5d为聚多巴胺纳米点的N1S精细谱,可以看出该材料存在N-C和N-H键。该四氧化三锰纳米颗粒能够呈现类芬顿反应,可将双氧水分解为羟基自由基,同时使多巴胺在羟基自由基的作用下最终生成具有蓝色荧光的聚多巴胺纳米点,其最佳发射波长为488 nm。
(三)多巴胺的检测
分别取一系列相同质量的四氧化三锰纳米颗粒(0.03 mg)分散于20 mM(300 µL)pH=8.0的4-羟乙基哌嗪乙磺酸缓冲溶液(四氧化三锰纳米颗粒的浓度为100 µg/mL)中,再分别加入一定量的双氧水(300 µL、100 mM)和300 µL不同浓度的多巴胺(浓度依次为0.05,0.1,1,10,50,100,150,180,200,300,400,500,600 和 1000 μM),于室温下反应1 h;随后加入100 µL醋酸缓冲溶液(10 mM、pH=4.0)终止反应。测定体系在488 nm处的荧光强度,即可对多巴胺进行定量检测。
图6a为加入不同浓度的多巴胺后体系的荧光发射光谱图。从图6a和图6b中可以看出,随着多巴胺浓度的增加(从下至上多巴胺的浓度逐渐从0.05 µM增加到1000 µM),体系在488 nm处的荧光强度逐渐增强,并在0.05 µM至300 µM之间,多巴胺浓度与体系在488 nm处的荧光强度呈现良好的线性关系(图6b中的插图),线性回归方程为:Y=63.9159+1.1904X,其中Y为体系在488 nm处的荧光强度,X为多巴胺的浓度。
以空白溶液10次测定结果的标准偏差的3倍为信噪比,得出该方法对多巴胺的检测限为0.017 µM,表明该方法具有较宽的线性范围和较低的检测限。
图7为体系在不同干扰物存在下的荧光强度柱状图。从图7中可以看出,只有在多巴胺存在的情况下,体系的荧光才会有明显的增强。表明本发明检测多巴胺具有良好的选择性。
综上所述,本发明在碱性低共熔溶剂中制备的四氧化三锰纳米颗粒可发生类芬顿反应,用于聚多巴胺纳米点的制备,也可以用于多巴胺的高选择性检测。
附图说明
图1为四氧化三锰纳米颗粒的XRD图。
图2为四氧化三锰纳米颗粒的透射电镜(TEM)图(a)以及高分辨透射电镜(HRTEM)图(b)。
图3为四氧化三锰纳米颗粒的拉曼光谱图。
图4为聚多巴胺纳米点的透射电镜(TEM)图及粒径分布直方图。
图5为聚多巴胺纳米点的XPS全谱及C1S、O1S和N1S的精细谱。
图6为加入不同浓度多巴胺后体系的荧光光谱图(a)以及多巴胺的标准曲线图(b)。
图7为体系在不同干扰物存在下的荧光强度柱状图。
具体实施方式
下面通过具体实施例对本发明中四氧化三锰纳米颗粒的制备方法及其在类芬顿反应中用于聚多巴胺纳米点的制备以及多巴胺的检测做进一步说明。
实施例1、四氧化三锰纳米颗粒的制备
将500 mg硝酸锰加入到15 mL 的碱性低共熔溶剂(KOH与PEG-200按照摩尔比1:44组成)中,再在搅拌下逐滴加入10 mL超纯水,在室温下静止反应 0.5 h,得棕色沉淀为粗产品;粗产品反复用水和无水乙醇洗涤至中性后置于70 ℃烘箱中干燥 12 h,得486 mg四氧化三锰纳米颗粒。
实施例2、聚多巴胺纳米点的制备
取实施例1制备的四氧化三锰纳米颗粒0.05 mg,分散于(20 mM,1 mL) pH=8.0的4-羟乙基哌嗪乙磺酸缓冲溶液(四氧化三锰纳米颗粒的浓度为50 µg/mL)中,加入50 mM双氧水、80 mM多巴胺,于室温下反应1 h;随后加入10 mM pH=4.0醋酸缓冲溶液终止反应。反应结束后,通过外加磁场进行分离并收集上清液,并将上清液装入截留分子量为500 Da的透析袋透析12 h后,冷冻干燥,即得聚多巴胺纳米点粉末0.043 mg。
实施例3、多巴胺标准样品的检测
分别取一系列相同质量的四氧化三锰纳米颗粒(0.03 mg)分散于20 mM(300 µL)pH=8.0的4-羟乙基哌嗪乙磺酸缓冲溶液(四氧化三锰纳米颗粒的浓度为100 µg/mL)中,再分别加入一定量的双氧水(300 µL、100 mM)和300 µL不同浓度的多巴胺(浓度依次为0.05,0.1,1,10,50,100,150,180,200,300,400,500,600 和 1000 μM),于室温下反应1 h;随后加入100 µL醋酸缓冲溶液(10 mM、pH=4.0)终止反应。测定体系在488 nm处的荧光强度,构建线性关系:Y=63.9159+1.1904X,其中Y为体系在488 nm处的荧光强度,X为多巴胺的浓度。
实施例4、复杂生物样品中多巴胺的检测
取相同体积的盐酸多巴胺注射液作为样品按照多巴胺标准样品的检测过程进行分析,计算测定结果、加标回收率及相对标准偏差,结果如表1所示。其平均回收率在98.6%~102之间,相对标准偏差<5.0%。表明该方法可用于实际样品的检测,且四氧化三锰纳米颗粒用于检测多巴胺具有较高的准确性。
Figure DEST_PATH_IMAGE001

Claims (7)

1.一种四氧化三锰纳米颗粒在制备聚多巴胺纳米点中的应用,其特征在于:将四氧化三锰纳米颗粒分散于缓冲溶液中,加入双氧水、多巴胺,于室温下反应0.5~2 h,加入pH=4.0的醋酸缓冲溶液终止反应;然后通过外加磁场分离并收集上清液,将上清液装入透析袋透析后,冷冻干燥,即得聚多巴胺纳米点粉末;所述四氧化三锰纳米颗粒的制备方法,是将硝酸锰以0.05~0.5 g/mL加入到碱性低共熔溶剂中,在搅拌下逐滴加入超纯水,室温下静置反应15~60 min,得棕色沉淀粗产品;粗产品反复用水和无水乙醇洗涤至中性,干燥,即得四氧化三锰纳米颗粒;所述碱性低共熔溶剂是将NaOH或KOH加热溶解于PEG-200中得到的澄清透明溶液。
2.如权利要求1所述四氧化三锰纳米颗粒在制备聚多巴胺纳米点中的应用,其特征在于:碱性低共熔溶剂中,NaOH或KOH与PEG-200的摩尔比为1:40~1:50。
3.如权利要求1所述四氧化三锰纳米颗粒在制备聚多巴胺纳米点中的应用,其特征在于:加入超纯水的体积为碱性低共熔溶剂体积的0.5~1.5倍。
4.如权利要求1所述四氧化三锰纳米颗粒在制备聚多巴胺纳米点中的应用,其特征在于:所述缓冲溶液为pH=8.0的4-羟乙基哌嗪乙磺酸溶液或pH=8.0的三羟甲基氨基甲烷缓冲溶液。
5.如权利要求1所述四氧化三锰纳米颗粒在制备聚多巴胺纳米点中的应用,其特征在于:所述透析袋的截留分子量为500 ~1000 Da,透析时间为12~24 h。
6.如权利要求1所述四氧化三锰纳米颗粒在制备聚多巴胺纳米点中的应用,其特征在于:缓冲溶液中,四氧化三锰纳米颗粒的浓度为10~100 µg/mL,双氧水的摩尔浓度为0.1~200 mM,多巴胺的摩尔浓度为5 mM~100 µM。
7.如权利要求1所述方法制备的四氧化三锰纳米颗粒在检测多巴胺中的应用,其特征在于:将一系列四氧化三锰纳米颗粒分散于一定体积的缓冲溶液中制成浓度为100 µg/mL的四氧化三锰溶液,加入相同体积浓度为100 mM的双氧水及不同浓度的多巴胺,于室温下反应2 h,加入pH=4. 0的醋酸缓冲溶液终止反应;测定体系在488 nm处的荧光强度,根据体系在488 nm处的荧光强度与多巴胺浓度之间的线性关系,即可对多巴胺进行定量检测。
CN202110174492.6A 2021-02-07 2021-02-07 一种四氧化三锰纳米颗粒的制备及应用 Active CN112661190B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110174492.6A CN112661190B (zh) 2021-02-07 2021-02-07 一种四氧化三锰纳米颗粒的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110174492.6A CN112661190B (zh) 2021-02-07 2021-02-07 一种四氧化三锰纳米颗粒的制备及应用

Publications (2)

Publication Number Publication Date
CN112661190A CN112661190A (zh) 2021-04-16
CN112661190B true CN112661190B (zh) 2022-09-30

Family

ID=75399317

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110174492.6A Active CN112661190B (zh) 2021-02-07 2021-02-07 一种四氧化三锰纳米颗粒的制备及应用

Country Status (1)

Country Link
CN (1) CN112661190B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190800B1 (en) * 1998-05-11 2001-02-20 The Gillette Company Lithiated manganese dioxide
CN102476831B (zh) * 2010-11-30 2013-08-21 中国科学院大连化学物理研究所 一种合成oms-2型氧化锰八面体分子筛的方法
CN103253717B (zh) * 2013-04-23 2015-01-14 宁夏东方钽业股份有限公司 一种小粒径镍钴锰酸锂前躯体的制备方法
CN106668858B (zh) * 2015-11-09 2019-11-01 首都师范大学 一种可降解光热转换纳米材料的降解方法
CN108069725B (zh) * 2016-11-09 2021-05-18 中国科学院金属研究所 一种中空泡沫材料及其制备方法和应用
CN112266023A (zh) * 2020-11-17 2021-01-26 河南大学 一种形貌可控的二氧化锰纳米结构、其制备方法及应用

Also Published As

Publication number Publication date
CN112661190A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
Urbaniak et al. Properties and application of diketones and their derivatives
US9352394B2 (en) Nano aggregates of molecular ultra small clusters of noble metals and a process for the preparation thereof
CN110627046B (zh) 一种氮掺杂石墨烯量子点及其制备方法和应用
Daikopoulos et al. Arsenite remediation by an amine-rich graphitic carbon nitride synthesized by a novel low-temperature method
CN109071259A (zh) 生产新纳米材料的方法
KR102387805B1 (ko) 복합구조 메조결정 나노입자 및 그의 제조방법
Xue et al. One-step synthesis of carbon dots embedded zincone microspheres for luminescent detection and removal of dichromate anions in water
Togashi et al. Solvent-free synthesis of monodisperse Cu nanoparticles by thermal decomposition of an oleylamine-coordinated Cu oxalate complex
CN102728850B (zh) 高稳定性聚合物包裹的银纳米团簇制备方法
CN103043709B (zh) 一种氧化石墨烯/AgInS2纳米杂化材料的制备方法
CN107814375B (zh) 富勒烯水溶性修饰物及其制备方法
CN112661190B (zh) 一种四氧化三锰纳米颗粒的制备及应用
Alzahrani Colorimetric detection of ammonia using synthesized silver nanoparticles from durian fruit shell
CN113185704B (zh) 一种锌配位聚合物及其制备方法和应用
CN113044874A (zh) 一种制备小尺寸CuBr纳米颗粒的方法
CN113845906A (zh) 一种氮掺杂碳量子点荧光探针的合成及应用
US9352302B2 (en) Visible light responsive doped titania photocatalytic nanoparticles and process for their synthesis
KR101958625B1 (ko) 목재 열수 추출물을 이용한 전이금속 나노 입자의 제조방법 및 이를 이용하여 제조된 전이금속 나노 입자
CN110220869B (zh) 一种检测水中汞离子的方法
An et al. Functionalization of carbon nanobeads and their use as metal ion adsorbents
CN107243358B (zh) 一种纳米级零价铁载体及其制备方法与应用
Yang et al. Fluorescence analysis of cobalt (ii) in water with β-cyclodextrin modified Mn-doped ZnS quantum dots
CN113199035B (zh) 一种金纳米颗粒-金纳米团簇复合材料及其制备方法和应用
CN111218285B (zh) 一种基于硒-胺混合液的荧光硒纳米颗粒的制备方法
CN112326618A (zh) 一种对苯二酚的检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant