CN112655879A - 一种用于固态酶解的复合酶制剂及其在麦麸改性中的应用 - Google Patents

一种用于固态酶解的复合酶制剂及其在麦麸改性中的应用 Download PDF

Info

Publication number
CN112655879A
CN112655879A CN202011458724.2A CN202011458724A CN112655879A CN 112655879 A CN112655879 A CN 112655879A CN 202011458724 A CN202011458724 A CN 202011458724A CN 112655879 A CN112655879 A CN 112655879A
Authority
CN
China
Prior art keywords
wheat bran
enzymolysis
enzyme preparation
solid
complex enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011458724.2A
Other languages
English (en)
Inventor
吕凤霞
焦琳舒
陆兆新
毛濛兰
张充
别小妹
赵海珍
周立邦
陈美容
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN202011458724.2A priority Critical patent/CN112655879A/zh
Publication of CN112655879A publication Critical patent/CN112655879A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

本发明公开了一种用于固态酶解的复合酶制剂及其在麦麸改性中的应用,属于食品加工技术领域。本发明采用纤维素酶、木聚糖酶、β‑葡聚糖酶和果胶酶,以50~100:1:60~90:400~600的比例制成复合酶制剂,并以10~35%的添加量加入麦麸中进行固态复合酶解。其在固态酶解改性麦麸后能够有效提高麦麸水溶性膳食纤维比例,改善麦麸膳食纤维品质,提高麦麸游离活性成分含量,改良麦麸食用品质。

Description

一种用于固态酶解的复合酶制剂及其在麦麸改性中的应用
技术领域
本发明属于食品加工技术领域,涉及到一种用于固态酶解的复合酶制剂及其在麦麸改性中的应用。
背景技术
麦麸是小麦传统磨粉加工过程中主要的副产物之一,常被作为膳食纤维的良好来源而加入食品中,但过高比例的不溶性膳食纤维严重影响了全麦食品的食用品质,从而限制了麦麸的应用领域。目前,改善麦麸品质的方法主要有物理、化学和生物方法三大类。与传统的物理、化学方法相比,生物方法具有绿色、高效、温和等优点,已成为食品加工研究领域的热点。
关于生物方法改性麦麸的方法主要分为两类,一是利用微生物发酵产生的酶及其代谢来改善麦麸的膳食纤维结构和游离活性成分含量;二是利用生物酶制剂处理麦麸,达到改善麦麸品质的目的。但微生物发酵存在处理时间长,且发酵过程中易产生菌丝、孢子等物质,伴有令人不愉快的气味和颜色,加大了后期利用难度。常见的酶解处理主要在液态环境下进行,有利于酶解体系各物质的扩散,增加酶解效率,但这也增加了后期的干燥储存能耗。一般当酶解体系中固体含量高于15%即为固态酶解。与液态酶解相比,它具有清洁、低能耗等优点,同时也更有利于产品后期的加工,是生物酶法应用的重要形式之一。然而,由于固态酶解过程低聚糖产物浓度较高,导致产物对酶反馈抑制效应变得更加明显。因此,构建适合用于固态酶解的高效多酶体系势在必行。目前关于生物酶法的研究多集中于对其膳食纤维的改性,而对其生理活性成分的影响研究则相对较少。
发明内容
为了解决上述问题,本发明将四种酶制剂复配,将其制备成复合酶制剂应用于固态酶解麦麸改性中。与传统生物酶法应用相比,经多种酶制剂复配而成的复合酶制剂在固态水解麦麸的过程中有效提高麦麸可溶性膳食纤维含量,同时释放出烷基间苯二酚、总酚和黄等活性物质,提高其生物利用率,改善麦麸的食用品质,为增加麦麸经济附加值提供了新路径。
本发明的第一个目的在于提供一种用于固态酶解的复合酶制剂,是由纤维素酶、木聚糖酶、β-葡聚糖酶和果胶酶复配而成,其中纤维素酶、木聚糖酶、β-葡聚糖酶和果胶酶的酶活力单位比例为50~100:1:60~90:400~600。
本发明的第二个目的是提供以上复合酶制剂在固态酶解麦麸改性中的应用,将包含纤维素酶、木聚糖酶、β-葡聚糖酶和果胶酶的复合酶制剂处理麦麸,通过固态酶解的方式改善麦麸理化性质和营养特性。
以上所述的复合酶制剂固态酶解麦麸方法如下:
(1)对麦麸进行加热处理;
(2)将复合酶制剂以10~35%的添加量与麦麸均匀混合;
(3)在固态酶解条件下对麦麸进行酶解处理。
进一步的,步骤(1)中加热处理的处理温度为100~150℃,处理时间为10~30min。
进一步的,步骤(2)中水与麦麸质量为1~3:1。
进一步的,步骤(3)中酶解处理的酶解温度50~70℃,酶解pH5~7,酶解时间1.5~2.5h。
本发明具有以下有益效果:
(1)改善麦麸的理化特性
复合酶制剂中的纤维素酶、木聚糖酶、β-葡聚糖酶和果胶酶能针对纤维素、木聚糖、β-葡聚糖和果胶质中的糖苷键进行特异性水解,将长链多糖降解为低聚糖和单糖等。利用复合酶制剂固态酶解后的麦麸理化性质得到显著改善。与原料麦麸相比,酶解后的麦麸网状结构发生明显的分裂解体,持水力、持油力和膨胀力同时下降,抗氧化特性有所提升,这对麦麸中活性化合物的释放十分有利。
(2)提升麦麸的营养特性
相比与未经处理的原料麦麸,经复合酶制剂固态酶解后的麦麸细胞壁和蛋白质破坏程度更深,导致可溶性膳食纤维含量显著提升。麦麸的游离活性成分大量释放,烷基间苯二酚、总酚、黄酮含量均显著提高,同时,阿魏酸、没食子酸和对羟基苯甲酸含量也有所增加,有效改善了麦麸的营养特性,提高了其营养价值。
附图说明
图1不同处理组麦麸细胞壁的微观结构;
RWB:原料麦麸,CWB:未添加酶处理麦麸,EWB:固态复合酶解麦麸;
图2不同处理组麦麸膳食纤维的傅里叶红外光谱图;
RWB:原料麦麸,CWB:未添加酶处理麦麸,EWB:固态复合酶解麦麸;
图3不同处理组麦麸的膳食纤维含量;
RWB:原料麦麸,CWB:未添加酶处理麦麸,EWB:固态复合酶解麦麸,SDF:可溶性膳食纤维,IDF:不溶性膳食纤维,TDF:膳食纤维。
具体实施方式:
下面将结合本发明具体的实施例,对本发明技术方案进行清楚、完整地描述,但不用来限制本发明的范围。
实施例1:复合酶制剂配方的优化
以纤维素酶、木聚糖酶、果胶酶和β-葡聚糖酶为四个因素,各取三种添加量进行正交优化试验,设计如表1所示的四因素三水平正交试验表:
表1正交试验因素水平表
Figure BDA0002830419030000031
以麦麸中的可溶性膳食纤维含量为指标,正交实验设计及极差分析见表2,表3。
表2正交试验设计表及极差分析结果
Figure BDA0002830419030000032
Figure BDA0002830419030000041
表3正交试验方差分析表
Figure BDA0002830419030000042
F0.01(2,9)=8.02,F0.05(2,9)=4.26;“**”表示极显著
通过极差分析可以看出,纤维素酶添加量和木聚糖酶添加量在-1水平,果胶酶添加量在+1水平时,对麦麸膳食纤维含量提高效果明显优于其它水平;β-葡聚糖酶添加量在+1水平时,效果优于其它水平,但影响相对较小。四个因素对麦麸可溶性膳食纤维含量的影响顺序为B>D>A>C。从表3的正交试验方差分析结果可以看出,纤维素酶添加量、木聚糖酶添加量和果胶酶添加量对可溶性膳食纤维含量影响极显著,β-葡聚糖酶添加量则不显著,结果与极差分析一致。
综合表2和表2结果,可得到最优组合为A1B1C3D3,即纤维素酶添加量50~100U/g,木聚糖酶添加量1U/g,β-葡聚糖酶添加量为60~90U/g,果胶酶添加量400~600U/g。通过验证实验表明该条件下固态酶解后的麦麸可溶性膳食纤维含量达到了19.54±0.73g/100g。
实施例2:复合酶制剂在麦麸改性种的应用
一种复合酶制剂,其组成成分包括纤维素酶、木聚糖酶、β-葡聚糖酶和果胶酶,其中所述纤维素酶、木聚糖酶、β-葡聚糖酶和果胶酶的添加酶活力单位比例为50~100:1:60~90:400~600。
以上复合酶制剂在麦麸改性中的应用,包括以下步骤:
(1)对麦麸进行高温处理,处理温度为100~150℃,处理时间为10~30min;
(2)将复合酶制剂以10~35%的添加量与麦麸均匀混合,加入与麦麸比例为1~3:1的水;
(3)在酶解温度50~70℃,酶解pH5~7,酶解时间1.5~2.5h的条件下处理麦麸。
实施例3:复合酶制剂固态酶解麦麸对其理化特性的影响
对实施例2中经复合酶制剂固态酶解改性后的麦麸进行理化性质测定,包括微观结构,可溶性膳食纤维结构,持水/油性和膨胀力。
(1)复合酶制剂固态酶解麦麸对其微观结构的影响
将酶解后的麦麸与2%琼脂混合,2.5%戊二醛固定于0.1M磷酸缓冲液(pH 7.0)中固化。经组织脱水、石蜡包埋、渗透后,用切片机切片,移入载玻片。用Calcofluor White荧光增白剂和罗丹明B分别对小麦麸皮的细胞壁和蛋白质染色1h。用共聚焦激光扫描显微镜(CLSM)观察小麦麸皮细胞壁的变化,样品的激发波长分别为405nm和543nm,荧光发射范围分别为300-440nm。
结果如图1所示,与原料麦麸相比,复合酶制剂固态酶解麦麸后,其细胞壁受到较大程度的破坏。
(2)复合酶制剂固态酶解麦麸对其可溶性膳食纤维结构的影响
将酶解后的麦麸制备可溶性膳食纤维,冷冻干燥成粉末。准确称取充分研磨后的可溶性膳食纤维1mg,压片后放入红外光谱仪中,在4000-400cm-1波长范围内扫描,分辨率:4cm-1,扫描次数:32。
结果如图2所示,三种麦麸样品的可溶性膳食纤维的红外吸收峰特征相似,结构特征也相似。3310cm-1处宽且强的吸收峰为多糖配糖体-OH缔合引起的伸缩振动吸收,2930cm-1处较弱的吸收峰对应于C-H基团的伸缩振动,这是多糖结构的典型特征。与原料麦麸相比,未添加酶处理和酶解后的麦麸在该位置的吸收峰发生红移,且峰宽增加,吸收强度增加,说明水分子加强了可溶性膳食纤维分子内氢键作用。1656cm-1和1540cm-1两处分别为酯羰基-COOR和羧酸盐-COO-的伸缩振动引起的吸收峰。此外,1149-1077cm-1之间的吸收峰是由C-O和C-O-C基团的拉伸振动引起的。1018cm-1处是典型的糖类吸收峰,是纤维素和半纤维素中C=O的伸缩振动峰,未添加酶处理的麦麸和原料麦麸的可溶性膳食纤维吸收峰在此处更尖锐,可能是不溶性膳食纤维水解为可溶性膳食纤维过程中,分子链断裂,分子聚合度下降,更多的糖苷键暴露出来。846cm-1处的吸收峰是由SDF中的α-糖苷键引起的。这意味着复合酶制剂固态酶解麦麸后,其可溶性膳食纤维中分子内的氢键作用更加强烈,更多的糖苷键暴露出来。
(3)复合酶制剂固态酶解麦麸对其持水/油性和膨胀力的影响
称取一定量的酶解后的麦麸样品,按1:10(w/v)比例加入蒸馏水,室温下搅拌混匀1h,2500r/min离心20min,弃上清液,沉淀称重后计算持水性。
称取一定量的酶解后的麦麸样品,按1:10(w/v)比例加入花生油,搅拌混匀,室温下放置1h,1500r/min离心20min,残渣称重。
取一定量的酶解后的麦麸样品,记录其体积,按照1:10(w/v)比例加入蒸馏水,充分混匀后于室温下放置24h,记录体积计算吸水膨胀性。
结果表明,复合酶制剂固态酶解麦麸后,其持水力、持油力和膨胀力都显著下降。
实施例4:复合酶制剂固态酶解麦麸对其营养特性的影响
对实施例2中经复合酶制剂固态酶解改性后的麦麸进行营养特性测定,包括膳食纤维含量和活性成分含量。
(1)复合酶制剂固态酶解麦麸对其膳食纤维含量的影响
取适量麦麸,根据GB 5009.88-2014中膳食纤维含量的测定方法,测定酶解麦麸的可溶性膳食纤维和不溶性膳食纤维含量。
结果如图3所示,复合酶制剂固态酶解麦麸后,其可溶性膳食纤维含量提高了9倍。与许多液态酶解处理后的麦麸相比,采用固态复合酶解对膳食纤维的改善效果更好。
(2)复合酶制剂固态酶解麦麸对其活性成分含量的影响
在超声波条件下,通过80%甲醇提取麦麸提取液,分别测定麦麸中的烷基间苯二酚、黄酮和总酚含量;利用纯甲醇萃取复溶后的提取液,测定麦麸中的各类酚酸的含量。
表4不同处理组麦麸样品活性成分
Figure BDA0002830419030000061
表5不同处理组麦麸的酚酸含量变化
Figure BDA0002830419030000062
复合酶制剂固态酶解麦麸后,其烷基间苯二酚、总酚和黄酮含量都有所提高,各类酚酸含量也发生不同程度的提高,其中没食子酸和阿魏酸增幅较大。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (6)

1.一种用于固态酶解的复合酶制剂,其特征在于,其组成成分包括纤维素酶、木聚糖酶、β-葡聚糖酶和果胶酶,其中所述纤维素酶、木聚糖酶、β-葡聚糖酶和果胶酶添加的酶活力单位比例为50~100:1: 60~90:400~600。
2.权利要求1所述的用于固态酶解的复合酶制剂在麦麸改性中的应用。
3.根据权利要求2所述的应用,其特征在于,包括以下步骤:
(1)对麦麸进行加热处理;
(2)将复合酶制剂以10~35%的添加量与麦麸均匀混合;
(3)在固态酶解条件下对麦麸进行酶解处理。
4.根据权利要求3所述的应用,其特征在于,步骤(1)中加热处理的处理温度为100~150℃,处理时间为10~30 min。
5.根据权利要求3所述的应用,其特征在于,步骤(2)中水与麦麸质量比为1~3:1。
6.根据权利要求3所述的应用,其特征在于,步骤(3)中酶解处理的酶解温度50~70℃,酶解pH5~7,酶解时间1.5~2.5h。
CN202011458724.2A 2020-12-11 2020-12-11 一种用于固态酶解的复合酶制剂及其在麦麸改性中的应用 Pending CN112655879A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011458724.2A CN112655879A (zh) 2020-12-11 2020-12-11 一种用于固态酶解的复合酶制剂及其在麦麸改性中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011458724.2A CN112655879A (zh) 2020-12-11 2020-12-11 一种用于固态酶解的复合酶制剂及其在麦麸改性中的应用

Publications (1)

Publication Number Publication Date
CN112655879A true CN112655879A (zh) 2021-04-16

Family

ID=75404916

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011458724.2A Pending CN112655879A (zh) 2020-12-11 2020-12-11 一种用于固态酶解的复合酶制剂及其在麦麸改性中的应用

Country Status (1)

Country Link
CN (1) CN112655879A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115557830A (zh) * 2022-10-26 2023-01-03 江南大学 基于超声辅助酶解法提取小麦麸皮中烷基间苯二酚的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102948758A (zh) * 2012-11-26 2013-03-06 陕西科技大学 一种从荞麦麸皮中提取荞麦黄酮的方法
CN104605378A (zh) * 2015-03-03 2015-05-13 北京中国科学院老专家技术中心 一种超微麸粉的制备方法
CN108471759A (zh) * 2015-12-22 2018-08-31 杜邦营养生物科学有限公司 组合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102948758A (zh) * 2012-11-26 2013-03-06 陕西科技大学 一种从荞麦麸皮中提取荞麦黄酮的方法
CN104605378A (zh) * 2015-03-03 2015-05-13 北京中国科学院老专家技术中心 一种超微麸粉的制备方法
CN108471759A (zh) * 2015-12-22 2018-08-31 杜邦营养生物科学有限公司 组合物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115557830A (zh) * 2022-10-26 2023-01-03 江南大学 基于超声辅助酶解法提取小麦麸皮中烷基间苯二酚的方法
CN115557830B (zh) * 2022-10-26 2024-02-13 江南大学 基于超声辅助酶解法提取小麦麸皮中烷基间苯二酚的方法

Similar Documents

Publication Publication Date Title
Tarasov et al. Lignin–carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review
Vučurović et al. Sugar beet pulp as support for Saccharomyces cerivisiae immobilization in bioethanol production
Kataeva et al. Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature
CN113337545B (zh) 裂褶菌发酵产物及其制备方法、护肤品、裂褶菌培养基
Chen et al. Comprehensive understanding of enzymatic saccharification of Betaine: Lactic acid-pretreated sugarcane bagasse
WO2014026154A1 (en) Optimized pretreatment of biomass
Si et al. Screen of high efficiency cellulose degrading strains and effects on tea residues dietary fiber modification: Structural properties and adsorption capacities
Odorico et al. Pretreatment of Guinea grass (Panicum maximum) with the ionic liquid 1-ethyl-3-methyl imidazolium acetate for efficient hydrolysis and bioethanol production
Fang et al. Purification and characterization of a xylanase from Aspergillus carneus M34 and its potential use in photoprotectant preparation
CN112655879A (zh) 一种用于固态酶解的复合酶制剂及其在麦麸改性中的应用
Balaraman et al. Kinetics and optimization of microwave-assisted lignin fractionation with Protic low transition temperature mixture of Sesamum indicum straw for enhanced bioethanol production
Nguyen et al. Physical pretreatment and algal enzyme hydrolysis of dried low-grade and waste longan fruits to enhance its fermentable sugar production
Gu et al. Ultrasound‐assisted fractionation of dried distillers' grains with solubles (DDGS) at mild temperature for co‐production of xylan and protein feed
Mariano et al. Bioethanol production from coconut pulp residue using hydrothermal and postalkaline pretreatment
Tsegaye et al. Optimization of Organosolv pretreatment conditions and hydrolysis by Bacillus sp. BMP01 for effective depolymerization of wheat straw biomass
Lu et al. Effect of different pretreatment of birch sawdust on the production of active polysaccharides by Inonotus obliquus under submerged fermentation and its structural mechanism
Rovera et al. Enzymatic hydrolysis of bacterial cellulose in the presence of a non‐catalytic cerato‐platanin protein
Takahashi et al. Bindability and digestibility of high-pressure-treated starch with glucoamylases from Rhizopus sp.
Rodrigues et al. Untreated Chlorella homosphaera biomass allows for high rates of cell wall glucan enzymatic hydrolysis when using exoglucanase-free cellulases
JP2009291154A (ja) バイオエタノールの製造方法
US20100168411A1 (en) Method of producing fermentation product and fermentation product
Haw et al. Nuclear magnetic resonance study of autohydrolyzed and organosolv-treated lodgepole pinewood using carbon-13 with cross polarization and magic-angle spinning
KR20110095662A (ko) 플라즈마 처리를 이용하여 해조류로부터 당류 물질을 제조하는 방법 및 이를 이용한 바이오연료의 제조방법
Cao et al. ISOLATION AND CHARACTERIZATION OF SOLUBLE POLYSACCHARIDES FROM CALAMAGROSTIS ANGUSTIFOLIA KOM.
CN115005419A (zh) 一种无蛋蛋黄酱及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210416

RJ01 Rejection of invention patent application after publication