CN112653160B - 一种基于虚拟同步发电机的主动电网频率支撑控制方法 - Google Patents

一种基于虚拟同步发电机的主动电网频率支撑控制方法 Download PDF

Info

Publication number
CN112653160B
CN112653160B CN202011495071.5A CN202011495071A CN112653160B CN 112653160 B CN112653160 B CN 112653160B CN 202011495071 A CN202011495071 A CN 202011495071A CN 112653160 B CN112653160 B CN 112653160B
Authority
CN
China
Prior art keywords
vsg
frequency
output
active
active power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011495071.5A
Other languages
English (en)
Other versions
CN112653160A (zh
Inventor
马俊鹏
谢振学
吴子豪
李明
黄海
王若谷
王辰曦
王顺亮
刘天琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Electric Power Research Institute of State Grid Shanxi Electric Power Co Ltd
Original Assignee
Sichuan University
Electric Power Research Institute of State Grid Shanxi Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University, Electric Power Research Institute of State Grid Shanxi Electric Power Co Ltd filed Critical Sichuan University
Priority to CN202011495071.5A priority Critical patent/CN112653160B/zh
Publication of CN112653160A publication Critical patent/CN112653160A/zh
Application granted granted Critical
Publication of CN112653160B publication Critical patent/CN112653160B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种基于虚拟同步发电机的主动电网频率支撑控制方法,在虚拟同步发电机有功控制策略基础上引入一阶高通滤波器环节,提取负荷扰动分量,将其作为传统VSG中频率参考输出值的补偿分量,改变负荷突变暂态过程中的VSG频率输出特性,进而实现电网频率的主动支撑,并利用粒子群算法进行高通滤波器环节参数的优化,提升主动支撑效果。本发明提出的控制结构简单,能够在负荷功率波动时实现主动支撑的效果,改善系统暂态频率响应,还进一步促进了电网对新能源的消纳能力。

Description

一种基于虚拟同步发电机的主动电网频率支撑控制方法
技术领域
本发明属于逆变器控制领域,具体涉及一种基于虚拟同步发电机的主动电网频率支撑控制方法。
背景技术
随着新能源并网逆变器的大规模馈入,以分布式新能源发电系统为主的电力系统时代必将到来。传统电力系统中,旋转电机可以提供较大的转动惯量,有利于维持系统稳定,而在高比例新能源并网系统中,并网逆变器作为分布式电源并网的接口,具有快速响应、控制性能灵活、无转动惯量的特点,无法在负荷扰动时为系统提供功率支撑,因此并网逆变器接入电网会降低系统惯性,增大电网频率波动,严重威胁系统的安全稳定运行。
借鉴传统同步发电机的运行经验,相关学者提出了虚拟同步发电机(virtualsynchronous generator,VSG)概念,利用并网逆变器控制灵活的特点使其模拟同步发电机的运行特征,进而获得与同步发电机机械转子和调速器相似的惯量和一次调频特性,增强了高比例电力电子系统的频率抗干扰能力,因而VSG控制策略受到广泛关注和应用。
目前对VSG技术的研究多集中于对虚拟惯量的模拟或改进,不仅实现过程复杂,而且没有充分利用并网逆变器控制系统灵活可控的特点,导致VSG对提高频率稳定性的效果存在一定局限性。VSG控制重要的缺点在于该算法模拟SG转动惯量的同时,亦对有功-频率(P-f)和无功-幅值(Q-V)特性进行了模拟。导致系统负荷变化后,VSG和SG的频率均沿着P-f下垂特性曲线进行变化,因而VSG对电网频率的支撑能力有限,不能实现电网频率的主动支撑。
发明内容
本发明的目的是提供一种基于虚拟同步发电机的主动电网频率支撑控制方法,旨在实现主动支撑电网频率效果,并能提高系统频率暂态稳定性,进一步促进电网对新能源的消纳能力。
本发明的一种基于虚拟同步发电机的主动电网频率支撑控制方法,包括以下步骤:
步骤1:获取VSG-SG耦合系统中VSG侧的输出电压和输出电流,根据输出电压和输出电流,通过功率计算环节得到实时有功功率值。
步骤2:将步骤1中获取的有功功率值通过一阶高通滤波器环节引入至VSG的有功控制环中,将其作为传统VSG中频率参考输出值的补偿分量。
步骤3:建立VSG-SG耦合系统模型,包括VSG有功控制环节、SG模型及线路,推导负荷扰动输入到SG频率输出的传递函数关系G(s)。
步骤4:采用粒子群算法对以G(s)的H/H2范数为目标函数的主动电网频率支撑策略进行参数优化,得到频率响应性能最优的高通滤波器参数值,提升提高主动电网频率支撑效果。
进一步的,VSG-SG耦合系统模型的有功控制环方程为:
Figure BDA0002841897330000021
其中,ωn为额定角频率,ω1为VSG的虚拟角频率,Pm1为虚拟机械功率,P1为逆变器输出有功功率,J1为虚拟惯量,D1为阻尼系数,Pref为有功功率指令,kp1为调速器调节系数。
SG控制系统包括励磁调节器和调速器环节,根据同步发电机的转子运动方程可得:
Figure BDA0002841897330000022
其中,ω2*为发电机转子角频率,kp2为SG调速器比例系数,T2为调速器时延常数,*号上标表示标幺值,Tj为惯性时间常数。
将式(2)线性化并转换至有名值下得:
Figure BDA0002841897330000023
其中,Sbase为系统功率基准值。
VSG-SG耦合系统等效电路中,E1∠θ1、E2∠θ2分别为VSG、SG输出电压,Vpcc∠θpcc为PCC点电压,X1、X2分别为线路等效输出电抗,Pload为负载功率。对应VSG和SG输出的有功功率分别为:
Figure BDA0002841897330000024
其中,δ1、δ2分别为VSG及SG输出电压相对PCC电压的相角差,可以表示为
Figure BDA0002841897330000025
根据功率守恒关系,负荷扰动功率为VSG、SG输出功率扰动量之和,因此有:
ΔP1+ΔP2=ΔPload (6)
将式(1)-式(6)进行线性化,得到负荷扰动输入到SG频率输出的闭环传递函数为
Figure BDA0002841897330000031
其中,系数a0-a5,b0-b4表达式分别为:
Figure BDA0002841897330000032
Figure BDA0002841897330000033
其中,
Figure BDA0002841897330000034
进一步的,选用H范数和H2范数的加权作为目标函数,利用粒子群优化算法对高通滤波器环节的参数进行优化,目标函数设为:
minJ=α||G(s)||+(1-α)||G(s)||2 (10)
其中,G(s)为等式(7)所示传递函数,α∈[0,1]为权重系数,表示系统考虑H范数性能的比重。
本发明与现有技术相比的有益技术效果为:
本发明充分利用并网变流器高动态响应速度和灵活可控的特征,提出基于高通滤波器的负荷扰动提取策略,提取负荷扰动分量,将其作为传统VSG中频率参考输出值的补偿分量,改变负荷突变暂态过程中的VSG频率输出特性,实现了电网频率的主动支撑,提高了系统频率稳定性。
附图说明
图1为VSG-SG耦合系统结构图;
图2为基于主动电网频率支撑策略的VSG有功控制框图;
图3为SG调速器控制框图;
图4为VSG-SG耦合系统等效电路;
图5为VSG的频率响应波形对比图;
图6为SG频率响应波形对比图;
图7为PCC点频率响应波形对比图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的说明。
VSG-SG耦合系统结构如图1所示,图1中,Udc为VSG直流侧电压,uoabc、ioabc分别为逆变器输出电压和输出电流,Lf、Cf分别为滤波电感和滤波电容,L1为VSG侧线路电感,xt1、xt2分别为SG出口升压变压器和降压变压器的漏抗,L2为SG侧传输线路电感。通过对VSG输出电压和电流进行采样,获得实时功率值,经过VSG控制后得到参考电压幅值和相角,再通过双环控制和PWM调制获得开关信号,完成对并网逆变器的控制。
图2为基于主动电网频率支撑策略的VSG有功控制框图,根据图2结构,可得VSG的有功控制环方程为:
Figure BDA0002841897330000041
其中,ωn为额定角频率,ω1为VSG的虚拟角频率,Pm1为虚拟机械功率,P1为逆变器输出有功功率,J1为虚拟惯量,D1为阻尼系数,Pref为有功功率指令,kp1为调速器调节系数。
SG控制系统包括励磁调节器和调速器环节,其中调速器控制框图如图3所示,根据图3结构及同步发电机的转子运动方程可得:
Figure BDA0002841897330000051
其中,ω2*为发电机转子角频率,kp2为SG调速器比例系数,T2为调速器时延常数,*号上标表示标幺值,Tj为惯性时间常数。
将式(2)线性化并转换至有名值下得:
Figure BDA0002841897330000052
其中,Sbase为系统功率基准值。
VSG-SG耦合系统等效电路如图4所示,图4中,E1∠θ1、E2∠θ2分别为VSG、SG输出电压,Vpcc∠θpcc为PCC点电压,X1、X2分别为线路等效输出电抗,Pload为负载功率。对应VSG和SG输出的有功功率分别为
Figure BDA0002841897330000053
其中,δ1、δ2分别为VSG及SG输出电压相对PCC电压的相角差,可以表示为
Figure BDA0002841897330000054
根据功率守恒关系,负荷扰动功率为VSG、SG输出功率扰动量之和,因此有:
ΔP1+ΔP2=ΔPload (6)
将式(1)-式(6)进行线性化,得到负荷扰动输入到SG频率输出的闭环传递函数为
Figure BDA0002841897330000055
其中,系数a0-a5,b0-b4表达式分别为
Figure BDA0002841897330000061
Figure BDA0002841897330000062
其中,
Figure BDA0002841897330000063
进一步地,为定量分析高通滤波器环节的引入及参数变化对SG频率的扰动抑制能力影响,采用等式(7)所示传递函数G(s)的H/H2范数作为度量系统频率响应的性能指标,其中H范数表示闭环系统频域上增益的最大值,考虑的是对谐振频率的扰动抑制能力,与阻尼特性较相关,H2范数反映的是系统对整个频带内的控制性能,与超调量较相关。
进一步地,选用H范数和H2范数的加权作为目标函数,利用粒子群优化算法对高通滤波器环节的参数进行优化,目标函数设为:
minJ=α||G(s)||+(1-α)||G(s)||2 (10)
其中,G(s)为等式(7)所示传递函数,α∈[0,1]为权重系数,表示系统考虑H范数性能的比重。
下面通过具体实例,使用本发明提出的方法与传统的控制结果进行比较。
图1所示主电路参数如下:Udc=800V,Lf=2mH,Cf=20μF,L1=10mH,L2=10mH,xt1=xt2=0.03pu,图2所示VSG有功环参数如下:J1=0.06kg·m2,D1=5N·m·s/rad,kp1=0,图3所示SG有关参数如下:Tj=2.4s,kp2=100,T2=0.1,系统基准功率Sbase=50kVA,权重系数α设为0.7。系统初始运行时接入负荷15kW,2s时施加10%的负载扰动。
图5为VSG的频率响应仿真图,由图5可知,负荷突变瞬间,无高通滤波器情况下的VSG频率由于下垂特性而直接下降,而系统采用本文提出的VSG控制策略后,频率在暂态过程中反而先上升,说明基于高通滤波器环节的VSG控制策略是一种主动频率支撑策略。
图6为SG频率响应波形对比图,可以看到,当负荷发生扰动后,在VSG控制策略未引入高通滤波器环节时,SG的频率超调量较大,到达稳态的调节时间较长,而在引入参数未优化的高通滤波器环节后,SG的暂态频率最低点提升,且频率变化率减小,较前两种情况而言,系统采用依据粒子群算法优化设计的高通滤波器参数后,SG具有更小的频率超调量和频率变化率,频率调节性能最优,VSG提供的额外功率也更多,使SG的频率响应得到明显改善。
PCC点频率波形如图7所示,图7中不同情况下母线PCC点的频率响应反映了该主动频率支撑策略对电网频率的主动支撑作用。

Claims (2)

1.一种基于虚拟同步发电机的主动电网频率支撑控制方法,其特征在于,包括以下步骤:
步骤1:获取VSG-SG耦合系统中VSG侧的输出电压和输出电流,根据输出电压和输出电流,通过功率计算环节得到实时有功功率值;
步骤2:将步骤1中获取的有功功率值通过一阶高通滤波器环节引入至VSG的有功控制环中,将其作为传统VSG中频率参考输出值的补偿分量;
步骤3:建立VSG-SG耦合系统模型,包括VSG有功控制环节、SG模型及线路,推导负荷扰动输入到SG频率输出的传递函数关系G(s);
VSG-SG耦合系统模型的有功控制环方程为:
Figure FDA0003714389140000011
其中,ωn为额定角频率,ω1为VSG的虚拟角频率,Pm1为虚拟机械功率,P1为逆变器输出有功功率,J1为虚拟惯量,D1为阻尼系数,Pref为有功功率指令,kp1为调速器调节系数;
SG控制系统包括励磁调节器和调速器环节,根据同步发电机的转子运动方程可得:
Figure FDA0003714389140000012
其中,ω2*为发电机转子角频率,kp2为SG调速器比例系数,T2为调速器时延常数,*号上标表示标幺值,Tj为惯性时间常数;
将式(2)线性化并转换至有名值下得:
Figure FDA0003714389140000013
其中,Sbase为系统功率基准值;
VSG-SG耦合系统等效电路中,E1∠θ1、E2∠θ2分别为VSG、SG输出电压,Vpcc∠θpcc为PCC点电压,X1、X2分别为线路等效输出电抗,Pload为负载功率;对应VSG和SG输出的有功功率分别为:
Figure FDA0003714389140000014
其中,δ1、δ2分别为VSG及SG输出电压相对PCC电压的相角差,可以表示为
Figure FDA0003714389140000021
根据功率守恒关系,负荷扰动功率为VSG、SG输出功率扰动量之和,因此有:
ΔP1+ΔP2=ΔPload (6)
将式(1)-式(6)进行线性化,得到负荷扰动输入到SG频率输出的闭环传递函数为
Figure FDA0003714389140000022
其中,系数a0-a5,b0-b4表达式分别为:
Figure FDA0003714389140000023
Figure FDA0003714389140000031
其中,
Figure FDA0003714389140000032
步骤4:采用粒子群算法对以G(s)的H/H2范数为目标函数的主动电网频率支撑策略进行参数优化,得到频率响应性能最优的高通滤波器参数值,提升提高主动电网频率支撑效果。
2.根据权利要求1所述的一种基于虚拟同步发电机的主动电网频率支撑控制方法,其特征在于,所述步骤4中选用H范数和H2范数的加权作为目标函数,利用粒子群优化算法对高通滤波器环节的参数进行优化,目标函数设为:
min J=α||G(s)||+(1-α)||G(s)||2 (10)
其中,G(s)为等式(7)所示传递函数,α∈[0,1]为权重系数,表示系统考虑H范数性能的比重。
CN202011495071.5A 2020-12-17 2020-12-17 一种基于虚拟同步发电机的主动电网频率支撑控制方法 Active CN112653160B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011495071.5A CN112653160B (zh) 2020-12-17 2020-12-17 一种基于虚拟同步发电机的主动电网频率支撑控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011495071.5A CN112653160B (zh) 2020-12-17 2020-12-17 一种基于虚拟同步发电机的主动电网频率支撑控制方法

Publications (2)

Publication Number Publication Date
CN112653160A CN112653160A (zh) 2021-04-13
CN112653160B true CN112653160B (zh) 2022-08-19

Family

ID=75355457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011495071.5A Active CN112653160B (zh) 2020-12-17 2020-12-17 一种基于虚拟同步发电机的主动电网频率支撑控制方法

Country Status (1)

Country Link
CN (1) CN112653160B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113346517B (zh) * 2021-05-11 2022-07-12 国网甘肃省电力公司电力科学研究院 一种虚拟同步机的阻尼支撑策略
CN113659611B (zh) * 2021-06-30 2024-03-12 国网江苏省电力有限公司电力科学研究院 一种并网模式下虚拟同步发电机虚拟惯量的控制方法
CN114825370B (zh) * 2022-03-25 2023-02-07 四川大学 基于非线性函数的自适应惯量的虚拟同步发电机控制方法
CN116154809B (zh) * 2023-04-11 2023-07-28 四川大学 基于自适应控制的电解制氢控制方法
CN117239827B (zh) * 2023-11-14 2024-02-02 北京交通大学 一种混合型孤岛微电网暂态有功响应控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104410097A (zh) * 2014-09-26 2015-03-11 广东易事特电源股份有限公司 微网逆变器及其并网和离网的控制方法
CN108183507A (zh) * 2018-01-15 2018-06-19 东北电力大学 一种基于vsg的pmsg并网主动支撑控制结构
CN109842157A (zh) * 2019-03-21 2019-06-04 东北大学 一种基于改进型虚拟同步发电机的微网逆变器控制方法
CN110198055A (zh) * 2019-06-14 2019-09-03 华北电力大学(保定) 基于虚拟同步机的微网双向换流器控制方法及稳定性分析
CN112003324A (zh) * 2020-08-24 2020-11-27 四川大学 一种基于复合滤波算法的改进微电网控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107465189A (zh) * 2017-08-21 2017-12-12 上海电力学院 基于自适应旋转惯量的虚拟同步发电机控制方法
CN109193797B (zh) * 2018-08-17 2022-02-15 江苏大学 一种基于同步发电机和虚拟同步发电机并联微网的惯性匹配方法及控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104410097A (zh) * 2014-09-26 2015-03-11 广东易事特电源股份有限公司 微网逆变器及其并网和离网的控制方法
CN108183507A (zh) * 2018-01-15 2018-06-19 东北电力大学 一种基于vsg的pmsg并网主动支撑控制结构
CN109842157A (zh) * 2019-03-21 2019-06-04 东北大学 一种基于改进型虚拟同步发电机的微网逆变器控制方法
CN110198055A (zh) * 2019-06-14 2019-09-03 华北电力大学(保定) 基于虚拟同步机的微网双向换流器控制方法及稳定性分析
CN112003324A (zh) * 2020-08-24 2020-11-27 四川大学 一种基于复合滤波算法的改进微电网控制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A Self-Adaptive Inertia and Damping Combination Control of VSG to Support Frequency Stability;Dongdong Li等;《IEEE TRANSACTIONS ON ENERGY CONVERSION》;20170531;第32卷(第1期);第397-398页 *
基于虚拟同步发电机的分布式逆变电源控制策略及参数分析;孟建辉等;《电工技术学报》;20141231;第29卷(第12期);第1-10页 *
提高 LCL 型并网逆变器鲁棒性的改进型电容电流反馈有源阻尼策略;曹子恒等;《高电压技术》;20201130;第46卷(第11期);第3781-3789页 *
新型虚拟同步发电机分布式主动支撑控制策略;王立等;《电测与仪表》;20181110;第55卷(第21期);第112-118页 *

Also Published As

Publication number Publication date
CN112653160A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
CN112653160B (zh) 一种基于虚拟同步发电机的主动电网频率支撑控制方法
CN111277001B (zh) 基于虚拟同步发电机参数自适应控制的风机并网控制方法
CN110277803B (zh) 一种储能变流器的虚拟同步发电机控制方法及控制装置
US5798631A (en) Performance optimization controller and control method for doubly-fed machines
CN102074967B (zh) 一种具有并网特性的储能型风电场控制方法
CN110957714B (zh) 平抑充电站直流微网电压波动的虚拟直流电机控制方法
CN108199396B (zh) 储能逆变器虚拟励磁闭环控制系统及其设计方法
CN108599264B (zh) 一种基于虚拟同步发电机控制的频率电压无差调节方法
CN112398167B (zh) 一种提高微网储能一次调频性能的方法
CN108683212B (zh) 一种基于功率解耦的混合储能型虚拟同步发电机控制方法
CN113612250B (zh) 基于频率偏差的虚拟同步发电机变惯量阻尼协同控制方法
CN107554741B (zh) 一种基于频率法的混合动力船舶的能量管理方法
CN107294124B (zh) 一种适用于储能系统的新型虚拟同步发电机控制方法
CN109980670A (zh) 一种双馈风电变流器直流母线电压控制方法
CN111478310A (zh) 一种基于变下垂系数的直流配网虚拟惯性控制方法
WO2021110171A1 (zh) 一种基于p-u下垂特性的虚拟直流电机控制方法
CN116316848A (zh) 一种基于虚拟同步发电机、虚拟同步电动机的微电网中直驱风机协同控制系统及方法
CN114865932B (zh) 脉冲负载供电系统及控制方法
CN115764989A (zh) 一种基于构网型换流器的虚拟同步发电机系统
Tian et al. Two-stage PV grid-connected control strategy based on adaptive virtual inertia and damping control for DC-link capacitor dynamics self-synchronization
Sun et al. Research on SCESS-DFIG DC bus voltage fluctuation suppression strategy for frequency inertia regulation of power grid
CN116826868B (zh) 并网逆变器的虚拟参数控制方法
CN109004680B (zh) 基于储能逆变器的风电场功率控制方法与系统
Li et al. SOC-based hybrid energy storage system dynamical and coordinated control for vessel DC microgrid
CN113394824B (zh) 无直流侧扰动的mmc交流有功功率快速调控方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant