CN112648981B - Method for measuring swing quantity of rotating mechanism in motion process based on laser positioning - Google Patents

Method for measuring swing quantity of rotating mechanism in motion process based on laser positioning Download PDF

Info

Publication number
CN112648981B
CN112648981B CN202011397415.9A CN202011397415A CN112648981B CN 112648981 B CN112648981 B CN 112648981B CN 202011397415 A CN202011397415 A CN 202011397415A CN 112648981 B CN112648981 B CN 112648981B
Authority
CN
China
Prior art keywords
laser
scale
rotating mechanism
camera
hatch cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011397415.9A
Other languages
Chinese (zh)
Other versions
CN112648981A (en
Inventor
陈卓
李翔
傅波
王明海
汪跃峰
徐林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVIC Chengdu Aircraft Design and Research Institute
Original Assignee
AVIC Chengdu Aircraft Design and Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVIC Chengdu Aircraft Design and Research Institute filed Critical AVIC Chengdu Aircraft Design and Research Institute
Priority to CN202011397415.9A priority Critical patent/CN112648981B/en
Publication of CN112648981A publication Critical patent/CN112648981A/en
Application granted granted Critical
Publication of CN112648981B publication Critical patent/CN112648981B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • G01C15/004Reference lines, planes or sectors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The invention belongs to the technical field of displacement measurement, and relates to a method for measuring the swing quantity of a rotating mechanism in a motion process based on laser positioning; the length scales are marked on the rotating mechanism; a camera is arranged on the rotating mechanism, and the camera is adjusted to focus on the scale; mounting a laser source on the ground or other object that is stationary relative to the ground; a laser source is utilized to emit laser beams, the laser beams are adjusted to be parallel to the rotating surface of the rotating mechanism, and laser marks are formed on the scales; when the rotating mechanism swings, the laser mark swings in the same amount and in the opposite direction relative to the scale, and the swinging amount of the rotating mechanism can be obtained by recording the swinging amount through the camera.

Description

Method for measuring swing quantity of rotating mechanism in motion process based on laser positioning
Technical Field
The invention belongs to the technical field of displacement measurement, and relates to a method for measuring swing quantity of a rotating mechanism in a motion process based on laser positioning.
Background
A rotary mechanism is a mechanism whose motion can be broken down into rotary motion and other types of motion during operation.
During its movement, it generally oscillates in the direction normal to the plane of rotation, which oscillation is often detrimental to the mechanism itself. In order to control the swing, the swing amount of the rotating mechanism during the movement process needs to be measured. Generally, the measurement is carried out by adopting a laser displacement sensor and a stay wire displacement sensor.
The prior art has the following defects:
the sensor needs to follow the mechanism synchronously, and a follow-up device is difficult to realize; and the factors of follow-up advance, follow-up lag, follow-up rotation surface deviation and the like all cause larger measurement errors.
Disclosure of Invention
The purpose of the invention is as follows: in order to solve the technical problem, a measuring method avoiding adopting a follow-up device is designed.
The technical scheme of the invention is as follows: a method for measuring swing quantity of a rotating mechanism in a motion process based on laser positioning is characterized in that length scales are marked on the rotating mechanism; a camera is arranged on the rotating mechanism, and the camera is adjusted to focus on the scale; mounting a laser source on the ground or other object that is stationary relative to the ground; a laser source is used for emitting laser beams, the laser beams are adjusted to be parallel to the rotating surface of the rotating mechanism, and laser marks are formed on the scales; when the rotating mechanism swings, the laser marks swing reversely in equal amount relative to the scales, and the swinging amount of the rotating mechanism can be obtained by recording the swinging amount through the camera.
The length scale marks are on a surface of the mechanism perpendicular to the plane of rotation.
The length scales are along the swing direction of the mechanism.
The length scale range is between 0mm and 100mm, and the precision is better than 1mm.
The adjusting camera focuses on the scale, and the video picture can cover the full scale range.
The laser beam is a planar radial laser beam.
The laser mark covers the whole process that the length scale rotates along with the mechanism.
The invention has the beneficial effects that:
the measuring device is simple, a follow-up device is not needed, and measuring errors caused by factors such as follow-up advance, follow-up lag, follow-up rotation surface deviation and the like are avoided.
Drawings
FIG. 1 is a schematic diagram of measuring swing amount of a rotating mechanism in a movement process based on laser positioning
FIG. 2 is a schematic diagram of measuring the swing amount of an aircraft canopy during opening and closing based on laser positioning
Wherein: 1-rotating mechanism, 2-length scale, 3-laser mark, 4-camera, 5-laser beam, 6-laser source, 7-ruler, 8-hatch cover, 9-rear hinge, 10-ground, 11-hatch cover table and 12-laser line marking instrument
Detailed Description
As shown in fig. 2, the method is applied to the measurement of the swing amount of the airplane canopy during the opening and closing process, and the swing amount of the center point of the front Edge (EF) during the opening and closing process of the canopy 8 rotating around the rear hinge 9 is measured. The hatch cover 11 and the laser line marker 12 are fixed to the ground by bolts, pressure beams, and the like. The straight edge 7 is glued 502 to the front edge of the hatch in the direction of oscillation. Meanwhile, the camera 4 is fixed at the front edge by using a special tool, and the camera 4 is adjusted to focus on the scale of the ruler 7 and cover the full scale range. The laser striping machine 12 is opened, a plane type radial laser beam 5 is emitted, the laser beam is adjusted to be parallel to the rotating surface of the hatch cover 8, a laser mark 3 is formed in the middle point of the scale of the straight scale 7 (the AB middle point, the CD middle point and the EF middle point are marked in advance, and the laser beam direction is adjusted to pass through the 3 middle points at the same time), and the laser mark 3 can cover the whole process that the scale of the straight scale rotates along with the hatch cover. The hatch cover 8 swings around the rear hinge 9 when the switch is rotated, the laser mark 3 swings in the same amount and in the opposite direction relative to the scale of the straight scale 7, and the swing amount is recorded by the camera 4 and is led out, so that the swing amount of the midpoint of the front edge of the hatch cover 8 can be obtained.
The method for measuring the swing of the hatch cover avoids the problem that a follow-up device needs to be arranged when a laser displacement sensor or a stay wire displacement sensor is used for measuring, and avoids measurement errors caused by factors such as follow-up advance, follow-up lag, follow-up rotation surface deviation and the like.

Claims (5)

1. A method for measuring swing quantity of a rotating mechanism in a motion process based on laser positioning is characterized in that length scales are marked on the rotating mechanism; a camera is arranged on the rotating mechanism, and the camera is adjusted to focus on the scale; mounting a laser source on the ground or other object that is stationary relative to the ground; a laser source is used for emitting laser beams, the laser beams are adjusted to be parallel to the rotating surface of the rotating mechanism, and laser marks are formed on the scales; when the rotating mechanism swings, the laser mark swings reversely in an equal amount relative to the scale, and the swinging amount of the rotating mechanism can be obtained by recording the swinging amount by using the camera; the method specifically comprises the following steps:
measuring the swinging amount of the midpoint of the front edge EF in the process of rotating the switch of the hatch cover (8) around the rear hinge (9); the hatch cover platform (11) and the laser graticule instrument (12) are fixed on the ground through bolts and pressing beams, a ruler (7) is adhered to the front edge of the hatch cover along the swinging direction by 502 glue, a camera (4) is fixed on the front edge, and the camera (4) is adjusted to focus on the scale of the ruler (7) and cover the full scale range of the scale; opening a laser graticule instrument (12), emitting a plane type radial laser beam (5), adjusting the laser beam to enable the laser beam to be parallel to the rotation surface of the hatch cover (8) and form a laser mark (3) at the middle point of the scale of the straight scale (7), marking the middle point AB of the rear hinge, the middle point of the CD of the corresponding part of the hatch cover platform and the front Edge (EF) of the hatch cover and the middle point EF of the CD in advance, and adjusting the direction of the laser beam to enable the laser mark (3) to cover the whole process that the scale of the straight scale rotates along with the hatch cover through the 3 middle points; the hatch cover (8) swings around the rear hinge (9) when rotating the switch, the laser mark (3) swings in the same amount and in the opposite direction relative to the scale of the ruler (7), and the swing amount is recorded by the camera (4) and is led out, so that the swing amount of the midpoint of the front edge of the hatch cover (8) can be obtained.
2. The laser positioning-based rotary mechanism motion process oscillation amount measurement method of claim 1, wherein the length scale mark is on a surface of the mechanism perpendicular to the plane of rotation.
3. The laser positioning-based rotary mechanism motion process oscillation amount measurement method of claim 1, wherein the length scale is along a mechanism oscillation direction.
4. The method for measuring the swing quantity of the rotary mechanism based on the laser positioning during the motion process as claimed in claim 1, wherein the length scale range is between 0mm and 100mm, and the precision is better than 1mm.
5. The method of claim 1, wherein the laser beam is a planar radial laser beam.
CN202011397415.9A 2020-12-04 2020-12-04 Method for measuring swing quantity of rotating mechanism in motion process based on laser positioning Active CN112648981B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011397415.9A CN112648981B (en) 2020-12-04 2020-12-04 Method for measuring swing quantity of rotating mechanism in motion process based on laser positioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011397415.9A CN112648981B (en) 2020-12-04 2020-12-04 Method for measuring swing quantity of rotating mechanism in motion process based on laser positioning

Publications (2)

Publication Number Publication Date
CN112648981A CN112648981A (en) 2021-04-13
CN112648981B true CN112648981B (en) 2023-01-13

Family

ID=75350353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011397415.9A Active CN112648981B (en) 2020-12-04 2020-12-04 Method for measuring swing quantity of rotating mechanism in motion process based on laser positioning

Country Status (1)

Country Link
CN (1) CN112648981B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1789905A (en) * 2005-12-28 2006-06-21 张奔牛 Apparatus and method for detecting and monitoring displacement/deflection
CN107228655A (en) * 2017-06-16 2017-10-03 山东大学 A kind of tunnel danger stone real-time displacement monitoring system and method for considering rotation effect
CN110631550A (en) * 2019-09-29 2019-12-31 中铁大桥局第七工程有限公司 Method and device for measuring inclination of cofferdam back cover

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3751123B2 (en) * 1997-07-11 2006-03-01 株式会社リコー Relative position detector
JPH11257962A (en) * 1998-03-11 1999-09-24 Yasaka:Kk Swing stopping structure of suspended body and laser apparatus for setting-out which is equipped with the structure
CN2387505Y (en) * 1999-09-03 2000-07-12 劳勇 Laser measuring gauge
JP2005345415A (en) * 2004-06-07 2005-12-15 Shin Nippon Air Technol Co Ltd Marking device, and leveling method in marking device
CN101315275B (en) * 2008-06-18 2011-07-20 安徽巨一自动化装备有限公司 Measurer for vehicle steering angle
CN203587065U (en) * 2013-06-17 2014-05-07 中国航天科工集团第三研究院第八三五八研究所 A follow-up stabilizing apparatus angle precision measurement device
CN203657807U (en) * 2014-01-03 2014-06-18 江苏莱赛光电技术有限公司 Laser marking-off instrument
CN104567598A (en) * 2014-12-31 2015-04-29 彩虹(合肥)液晶玻璃有限公司 Device and method for measuring forming furnace-discharging deviation of liquid crystal substrate glass
KR101950634B1 (en) * 2015-04-22 2019-02-20 신닛테츠스미킨 카부시키카이샤 Shape measuring device and shape measuring method
JP6553999B2 (en) * 2015-09-17 2019-07-31 株式会社トプコン Polygon mirror and fan beam output device and surveying system
EP3173738A1 (en) * 2015-11-30 2017-05-31 HILTI Aktiengesellschaft Method for checking a rotation laser for cone errors
CN106546216A (en) * 2016-11-01 2017-03-29 广州视源电子科技股份有限公司 Distance measurement method, device, camera and mobile terminal
CN106628163B (en) * 2017-01-13 2018-12-28 厦门大学 A kind of supersonic speed unmanned fighter that big drag braking and VTOL can be achieved
CN109163675B (en) * 2018-08-01 2021-01-22 成都飞机工业(集团)有限责任公司 Method for detecting angular pendulum shaft position accuracy based on laser tracker
CN209043260U (en) * 2018-12-03 2019-06-28 国家电网有限公司 A kind of device of measurement iron tower of power transmission line rotation angle
CN109443221A (en) * 2018-12-22 2019-03-08 交通运输部公路科学研究所 A kind of laser displacement inspecting device of video auxiliary
CN209310804U (en) * 2019-01-09 2019-08-27 广西南宁联纵消防设备有限公司 A kind of Laser Line Marker based on unmanned plane
CN110243311A (en) * 2019-06-28 2019-09-17 上海工程技术大学 A kind of Dynamic High-accuracy outer corner measurement system and method for view-based access control model
CN110425984A (en) * 2019-09-06 2019-11-08 国网青海省电力公司电力科学研究院 A kind of non-contact displacement detection device and its method based on image recognition technology
CN111332454B (en) * 2020-03-19 2023-03-24 中国航空工业集团公司沈阳飞机设计研究所 Variable-configuration cabin door for enhancing aircraft course stability and control method thereof
CN111322954B (en) * 2020-03-19 2021-07-27 北京神工科技有限公司 Assembly tool pose measuring method and device, storage medium and electronic equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1789905A (en) * 2005-12-28 2006-06-21 张奔牛 Apparatus and method for detecting and monitoring displacement/deflection
CN107228655A (en) * 2017-06-16 2017-10-03 山东大学 A kind of tunnel danger stone real-time displacement monitoring system and method for considering rotation effect
CN110631550A (en) * 2019-09-29 2019-12-31 中铁大桥局第七工程有限公司 Method and device for measuring inclination of cofferdam back cover

Also Published As

Publication number Publication date
CN112648981A (en) 2021-04-13

Similar Documents

Publication Publication Date Title
CN103344383B (en) Calibration device of three-dimensional flexible array touch sensor
US4950890A (en) Method and apparatus for correcting position errors using writable encoders
US7296362B2 (en) Surface curvature measuring apparatus for object profiles
CN100410625C (en) Shedding profilogram measuring apparatus
US8575791B2 (en) Manufacturing-process equipment
CN101972928A (en) Automatic aligning assembly system for micro members
US4972798A (en) Drawing machine
CN102554710A (en) Device and method for measuring rotation angle error of rotary table of machine tool
CN109352422A (en) A kind of multi-functional on-position measure method and device of dual-headed laser scanning
CN112648981B (en) Method for measuring swing quantity of rotating mechanism in motion process based on laser positioning
CN108106547B (en) Plane three-degree-of-freedom macro-micro composite positioning system and method based on laser sensor
TWI648516B (en) Dual optical measurement compensation system
CN203494949U (en) Frame curve shape measuring device
US6561006B1 (en) Method and device for adjusting a vane and vane adjustable by said method
US6209216B1 (en) Methods and apparatus for measuring airfoil coordinates
CN213482282U (en) Wind vane alignment device of wind driven generator
CN203330651U (en) Automatic positioning device for side face hole in end cover
CN102699483A (en) Automatic laser deviation rectifying system of flame chamfering robot
CN110823103A (en) Calibration control method, device and system of laser line length measuring instrument
US6529278B2 (en) Optical interference apparatus and position detection apparatus
CN103769859A (en) Assembling platform and method of parallel robot
CN105091771A (en) Apparatus for measuring micro-deformation of connecting rod based on displacement amplification principle
JPS5857700B2 (en) Aspheric lens measuring device
CN109870107B (en) Device for mutual calibration among multiple nano displacement sensors
JPH04231810A (en) Position measuring apparatus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant