CN112636167B - 一种多路同步输出激光器光源的驱动模块 - Google Patents

一种多路同步输出激光器光源的驱动模块 Download PDF

Info

Publication number
CN112636167B
CN112636167B CN202011597686.9A CN202011597686A CN112636167B CN 112636167 B CN112636167 B CN 112636167B CN 202011597686 A CN202011597686 A CN 202011597686A CN 112636167 B CN112636167 B CN 112636167B
Authority
CN
China
Prior art keywords
circuit
chip
signal
temperature
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011597686.9A
Other languages
English (en)
Other versions
CN112636167A (zh
Inventor
郭邦红
胡敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Quantum Communication Guangdong Co Ltd
Original Assignee
National Quantum Communication Guangdong Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Quantum Communication Guangdong Co Ltd filed Critical National Quantum Communication Guangdong Co Ltd
Priority to CN202011597686.9A priority Critical patent/CN112636167B/zh
Publication of CN112636167A publication Critical patent/CN112636167A/zh
Application granted granted Critical
Publication of CN112636167B publication Critical patent/CN112636167B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06804Stabilisation of laser output parameters by monitoring an external parameter, e.g. temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明公开了一种多路同步输出激光器光源的驱动模块,包括多路激光器光源产生电路,温控电路和处理器,所述多路激光器光源产生电路包括触发信号同步电路、驱动电路和DFB激光器调制电路;任意一路触发信号同步电路,驱动电路和DFB激光器调制电路均与所述处理器连接,所述温控电路采集DFB激光器调制电路腔内温度反馈至处理器,所述处理器根据控制TEC制冷片对温度进行调节。本发明通过驱动电路驱动增强处理后输出信号具有超窄脉宽,稳定性好,输出抖动小,消光比大,功率以及波长稳定;驱动电路技术指标一致性好,可重复实现多路稳定激光器光源输出。

Description

一种多路同步输出激光器光源的驱动模块
技术领域
本发明涉及激光器领域,具体涉及一种多路同步输出激光器光源的驱动模块。
背景技术
目前QKD(Quantum Key Distribution,量子密钥分发)通信系统主要基于BB84协议,该协议的编码要求QKD系统的发送端需制备两组非正交的四种偏振态单光子。
现有的工程方案中通常有两种方法实现四种偏振态单光子制备。
一种方法是:采用一个激光器LD作为光源,通过分束器BS一分为四,在分光后的四个光路上分别依次连接强度调制器IM、偏振分束器PBS以及电控偏振控制器EPC实现每个分支的偏振态单光子制备,最后通过BS合束输出至光纤中。
另一种方法是:采用四个激光器LD作为光源,在四个光路上分别依次连接偏振分光器PBS以及偏振态控制器EPC实现每个光路的偏振态单光子制备,最后通过BS合束输出至光纤中。
由于强度调制器IM的成本非常高,方法一只能在科研系统中采用,而在商用系统当中,更多的是采用方法二。但方法二由于采用了四个激光器LD作为系统光源,如果不能保证四个激光器输出时刻的相位一致,系统安全性将存在隐患。因此,需要对现有技术进行改进,提出精度更好的保证系统安全的多路同步输出激光器光源系统。
发明内容
为了解决上述技术问题,提出了一种具有超窄光脉冲宽度,输出抖动小,消光比大,功率以及波长稳定的多路同步输出激光器光源的驱动模块。
为实现上述目的,本发明采取的技术方案如下:一种多路同步输出激光器光源的驱动模块,包括多路激光器光源产生电路,温控电路和处理器,其中:
所述多路激光器光源产生电路包括触发信号同步电路、驱动电路和DFB激光器调制电路;
本实施例中,多路激光器光源共有4路激光器光源,4路激光器电源发出发出的激光触发信号。
任意一路触发信号同步电路与所述处理器连接,所述处理器控制触发信号同步电路对触发信号进行相应延时调节;
任意一路驱动电路与所述处理器连接,所述处理器控制驱动电路对触发信号进行超窄脉宽调制以及放大处理;
任意一路DFB(Distributed Feedback)激光器调制电路与温控电路连接,所述温控电路又与所述处理器连接,所述温控电路采集DFB激光器调制电路腔内温度反馈至处理器,所述处理器根据接收到的温度数据结合PID(Proportion Integral Differential)算法计算出调节的数值,并将调节数值发送给DFB激光器调制电路的TEC(Thermo ElectricCooler)制冷片对温度进行调节;
所述触发信号同步电路包括触发信号延时芯片,触发信号延时芯片的调节范围是:实现10ns范围内步进10ps的信号延时调节。
优选地,所述触发信号延时芯片型号为MC100EP196BFAR2G。
优选地,所述驱动电路包括窄脉冲产生电路和信号调制及放大电路,所述窄脉冲产生电路用于将触发信号调节为超窄脉宽信号并将对其进行增强驱动后发送给信号调制及放大电路;
所述信号调制及放大电路对接收到的信号进行放大后输送至DFB激光器调制电路。
优选地,所述窄脉冲产生电路包括一分为二电平转换芯片、窄脉冲延时芯片、电平驱动芯片;
一路触发信号经过一分为二电平转换芯片后将信号一分为二输出两组差分信号,然后输入到窄脉冲延时芯片,所述处理器通过SPI总线调节窄脉冲延时芯片内部信号延时值,使得两组差分信号之间相差100ps,然后输入到电平驱动芯片将两组差分信号合成一路100ps的超窄脉宽信号并增强驱动后输出至DFB激光器调制电路。
优选地,所述信号调制及放大电路包括信号调制DAC芯片和信号放大芯片,所述处理器FPGA芯片通过I2C总线调节信号调制DAC芯片的输出,通过信号放大芯片进行信号放大后输出至DFB激光器调制电路。
优选地,所述一分为二电平转换芯片型号为NB7L11M、窄脉冲延时芯片型号为NB6L295MNTXG、电平驱动芯片型号为MC100LVEP05;
所述信号调制DAC芯片型号为AD56655RBRUZ-2,信号放大芯片型号为OPA4188AIPW。
优选地,所述温控电路包括温度采集电路、温控ADC电路、温控DAC电路、放大电路以及TEC驱动电路,所述温度采集电路用于采集DFB激光器模块腔内的温度并输入温控ADC电路进行数模转换后发送给处理器;
优选地,所述处理器通过SPI总线读取温控ADC电路的实时温度采集数据然后根据PID算法计算出温度调节数据,通过I2C总线将温度调节数据输出至温控DAC电路进行模数转换后发送给放大电路进行信号放大然后输入到TEC驱动电路,所述TEC驱动电路根据接收的数据产生TEC制冷片的驱动电压完成温度调节。
优选地,所述温度采集电路包括运算放大器,所述运算放大器将DFB激光器模块腔内的热敏电阻输出的电压信号进行直流偏置与放大后输入到温控ADC电路;
所述运算放大器的型号为OPA4350UA。
优选地,所述温控ADC电路包括ADC芯片ADS8370IB;所述温控DAC电路包括DAC芯片AD56655RBRUZ-2;所述TEC驱动电路包括TEC驱动芯片MAX8520ETP。
本发明有益的技术效果:
本发明通过驱动电路驱动增强处理后输出信号具有超窄脉宽,稳定性好,输出抖动小,消光比大,功率以及波长稳定;驱动电路技术指标一致性好,可重复实现多路稳定激光器光源输出;控制精确度高,保证了系统性能。
附图说明
图1为本发明的整体结构框图;
图2为本发明中触发信号同步电路的整体结构框图;
图3为本发明中触发信号同步电路部分电路原理图;
图4为本发明中驱动电路部分原理图一;
图5为本发明中驱动电路部分原理图二;
图6为本发明中温控电路的整体结构框图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明,但本发明要求保护的范围并不局限于下述具体实施例。
如图1-6所示,一种多路同步输出激光器光源的驱动模块,包括多路激光器光源产生电路,温控电路和处理器,其中:
多路激光器光源产生电路并行设置,每一路激光器光源产生电路均与处理器以及温控电路连接;所述温控电路又与处理器连接,且通过处理器控制每一路激光器光源产生电路的温度。
具体地,所述每一路激光器光源产生电路都包括触发信号同步电路、驱动电路和DFB激光器调制电路。在本实施例中采用4路激光器光源产生电路
4路激光器光源产生电路产生激光输出的原理是:激光器外部触发信号进入同步调节电路后,由处理器对该路信号进行延时调节,然后再输入到驱动电路,最后由处理器对该信号进行超窄脉宽调制并进行放大后输出至DFB激光器完成触发从而产生超窄脉宽激光光源输出。
然后通过示波器测量4路激光器的输出相位偏差值反馈至处理器后,由处理器控制4路同步调节电路使得每路光源输出的相位同步。温控电路的作用是通过采集DFB激光器腔内温度反馈至处理器,由处理器根据PID算法对DFB激光器内部的TEC制冷片进行温度控制,实现DFB激光器腔内温度快速调节,保证DFB激光器的工作温度要求。
具体地,任意一路触发信号同步电路与所述处理器连接,所述处理器控制触发信号同步电路对触发信号进行相应延时调节;
任意一路驱动电路与所述处理器连接,所述处理器控制驱动电路对触发信号进行超窄脉宽调制以及放大处理;
任意一路DFB激光器调制电路与温控电路连接,所述温控电路又与所述处理器连接,所述温控电路采集DFB激光器调制电路腔内温度反馈至处理器,所述处理器根据接收到的温度数据结合PID算法计算出调节的数值,并将调节数值发送给DFB激光器调制电路的TEC制冷片对温度进行调节;
具体地,所述触发信号同步电路包括触发信号延时芯片,触发信号延时芯片的调节范围是:实现10ns范围内步进10ps的信号延时调节,本实施例中实现2.2ns至12.4ns范围内步进10ps的信号延时调节。
所述处理器采用FPGA处理器,其芯片型号采用EP4CGX150系列或其它同等指标型号芯片,本实施例中采用EP4CGX150DF27I7型号芯片,处理器通过10位总线控制触发信号延时芯片从2.2ns至12.4ns范围内步进10ps的信号延时调节。
处理器FPGA通过10位总线SI-Delay与触发信号延时芯片(MC100EP196BFAR2G)的输入输出端口端口连接,激光器外部触发信号从触发信号延时芯片的输入引脚输入,经过延时处理后从输出延时输出。
具体地参见图1,处理器控制触发信号同步电路的具体过程如下:以第一路激光器外部信号1#和以第二路激光器外部信号2#为例,两路激光器同时发出触发信号,两路信号依次经过触发信号同步电路、驱动电路和DFB激光器调制电路后输出处理后的激光信号,示波器测量4路激光器的输出相位偏差值反馈至处理器后,
此时需要借用示波器测量4路激光器的输出相位偏差值反馈至处理器后,因为多路激光器几乎是同时发出触发信号的,因此通过两条光路的时间间隔在2.2ns至12.4ns之间。
若第一路信号1#的信号比第二路信号2#的信号早,则处理器控制第一路激光器光源产生电路的触发信号同步电路将地一路的激光触发信号延迟时间T,延时以后,两路激光器光源产生电路输出的信号可以同步输出。通过处理器精确地控制每路激光器的触发信号,实现每路激光器都能够在同一相位时刻发光,由此实现多路同步输出激光器光源输出。
所述驱动电路包括窄脉冲产生电路和信号调制及放大电路,所述窄脉冲产生电路用于将触发信号调节为超窄脉宽信号并对其进行增强驱动后发送给信号调制及放大电路;
所述信号调制及放大电路对接收到的信号进行放大后输送至DFB激光器调制电路。
优选地,所述窄脉冲产生电路包括一分为二电平转换芯片、窄脉冲延时芯片、电平驱动芯片,其中电平驱动芯片为LVPECL电平驱动芯片;
一路触发信号经过一分为二电平转换芯片后将信号一分为二输出两组差分信号,然后输入到窄脉冲延时芯片,所述处理器通过SPI总线调节窄脉冲延时芯片内部信号延时值,使得两组差分信号之间相差100ps,然后输入到电平驱动芯片将两组差分信号合成一路100ps的超窄脉宽信号并增强驱动后输出至DFB激光器调制电路。
所述信号调制及放大电路包括信号调制DAC芯片和信号放大芯片,所述处理器FPGA芯片通过I2C总线调节信号调制DAC芯片的输出,通过信号放大芯片进行信号放大后输出至DFB激光器调制电路。
具体地,所述一分为二电平转换芯片型号可选用NB7L11M系列或其它同等指标型号,具体采用NB7L11M芯片、窄脉冲延时芯片可选用NB6L295系列或其它同等指标型号,本实施例采用NB6L295MNTXG芯片、电平驱动芯片可选用MC100LVEP05系列或其它同等指标型号,本实施例采用型号为MC100LVEP05;所述信号调制DAC芯片可选用AD56655系列或其它同等指标型号,本实施例采用AD56655RBRUZ-2,信号放大芯片可选用OPA4188系列或其它同等指标型号,本实施例中采用OPA4188AIPW。
所述分为二电平转换芯片、窄脉冲延时芯片、LVPECL电平驱动芯片和DFB激光器调制电路依次顺序连接;所述调制DAC芯片和信号放大芯片依次连接,所述信号放大芯片又与DFB激光器调制电路电信号连接;FPCA处理器通过电信号分别与窄脉冲延时芯片和调制DAC芯片连接,对窄脉冲延时芯片和调制DAC芯片进行驱动控制。
具体地,整个驱动电路的工作原理为:一路触发信号经芯片(NB7L11M)输出两组差分信号,然后输入到芯片(NB6L295MNTXG);处理器FPGA芯片EP4CGX150DF27I7通过SPI总线调节芯片(NB6L295MNTXG)内部信号延时值,使得两组差分信号之间相差100ps,然后输入到芯片;(MC100LVEP05)的作用是将两组差分信号合成一路差分信号并增强驱动后输出,由此产生100ps的超窄脉宽信号;该信号输出至DFB激光器调制电路。
处理器FPGA芯片EP4CGX150DF27I7通过I2C总线调节调制DAC芯片(AD56655RBRUZ-2)的输出,通过信号放大芯片(OPA4188AIPW)进行信号放大后输出至DFB激光器调制电路。
综上所述,通过窄脉冲产生电路与信号调制及放大电路联合产生驱动信号对DFB激光器完成驱动后输出100ps的超窄脉宽激光光源。
所述温控电路包括温度采集电路、温控ADC电路、温控DAC电路、放大电路以及TEC驱动电路,所述温度采集电路用于采集DFB激光器模块腔内的温度并输入温控ADC电路进行数模转换后发送给处理器;
优选地,所述处理器通过SPI总线读取温控ADC电路的实时温度采集数据然后根据PID算法计算出温度调节数据,通过I2C总线将温度调节数据输出至温控DAC电路进行模数转换后发送给放大电路进行信号放大然后输入到TEC驱动电路,所述TEC驱动电路根据接收的数据产生TEC制冷片的驱动电压完成温度调节。
优选地,所述温度采集电路包括运算放大器型号为OPA4350UA实现,运算放大器将DFB激光器模块腔内的热敏电阻TH输出的电压信号进行直流偏置与放大后输入到温控ADC电路。所述温控ADC电路包括ADC芯片(ADC芯片可选用ADS8370系列或其它同等指标型号,本实施例采用型号为ADS8370IB);所述温控DAC电路包括DAC芯片(DAC芯片可选用AD56655系列或其它同等指标型号,本实施例型号为AD56655RBRUZ-2);所述TEC驱动电路包括TEC驱动芯片(TEC驱动芯片可选用MAX8520系列或其它同等指标型号,本实施例型号为MAX8520ETP)。
所述温度采集电路与DFB激光器模块内的TH热敏电阻连接,然后温控ADC电路与FPGA处理器连接,所述FPGA处理器又与温控DAC电路连接;所述温控DAC电路、放大电路和TEC驱动电路依次顺序连接,所述TEC驱动电路又与DFB激光器模块中的TEC制冷片连接。
温控电路的作用是通过采集DFB激光器腔内温度反馈至处理器,由处理器根据PID算法(在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器)是应用最为广泛的一种自动控制器)对DFB激光器内部的TEC制冷片进行温度控制,实现DFB激光器腔内温度快速调节,保证DFB激光器稳定的25℃工作温度要求。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对发明构成任何限制。

Claims (10)

1.一种多路同步输出激光器光源的驱动模块,其特征在于,包括多路激光器光源产生电路,温控电路和处理器,其中:
所述多路激光器光源产生电路包括触发信号同步电路、驱动电路和DFB激光器调制电路;
任意一路触发信号同步电路与所述处理器连接,所述处理器控制触发信号同步电路对触发信号进行相应延时调节;
任意一路驱动电路与所述处理器连接,所述处理器控制驱动电路对触发信号进行超窄脉宽调制以及放大处理;
任意一路DFB激光器调制电路与温控电路连接,所述温控电路又与所述处理器连接,所述温控电路采集DFB激光器调制电路腔内温度反馈至处理器,所述处理器根据接收到的温度数据结合PID算法计算出调节的数值,并将调节数值发送给DFB激光器调制电路的TEC制冷片对温度进行调节;
所述驱动电路包括窄脉冲产生电路和信号调制及放大电路,所述窄脉冲产生电路用于将触发信号调节为超窄脉宽信号并将对其进行增强驱动后发送给信号调制及放大电路;所述信号调制及放大电路对接收到的信号进行放大后输送至DFB激光器调制电路;
所述窄脉冲产生电路包括一分为二电平转换芯片、窄脉冲延时芯片、电平驱动芯片;
一路触发信号经过一分为二电平转换芯片后将信号一分为二输出两组差分信号,然后输入到窄脉冲延时芯片,所述处理器通过SPI 总线调节窄脉冲延时芯片内部信号延时值,使得两组差分信号之间相差100ps,然后输入到电平驱动芯片将两组差分信号合成一路100ps的超窄脉宽信号并增强驱动后输出至DFB激光器调制电路;所述一分为二电平转换芯片采用NB7L11M系列芯片。
2.如权利要求1所述的一种多路同步输出激光器光源的驱动模块,其特征在于,所述触发信号同步电路包括触发信号延时芯片,触发信号延时芯片的调节范围是:实现10ns范围内步进10ps的信号延时调节。
3.如权利要求2所述的一种多路同步输出激光器光源的驱动模块,其特征在于,所述触发信号延时芯片采用MC100EP196系列芯片。
4.如权利要求1所述的一种多路同步输出激光器光源的驱动模块,其特征在于,所述信号调制及放大电路包括信号调制DAC芯片和信号放大芯片,所述处理器FPGA芯片通过I2C总线调节信号调制DAC芯片的输出,通过信号放大芯片进行信号放大后输出至DFB激光器调制电路。
5.如权利要求2所述的一种多路同步输出激光器光源的驱动模块,其特征在于,所述窄脉冲延时芯片采用NB6L295系列芯片、电平驱动芯片采用MC100LVEP05系列芯片。
6.如权利要求4所述的一种多路同步输出激光器光源的驱动模块,其特征在于,所述信号调制DAC芯片采用AD5665系列芯片,信号放大芯片采用OPA4188系列芯片。
7.如权利要求1所述的一种多路同步输出激光器光源的驱动模块,其特征在于,所述温控电路包括温度采集电路、温控ADC电路、温控DAC电路、放大电路以及TEC驱动电路,所述温度采集电路用于采集DFB激光器模块腔内的温度并输入温控ADC电路进行数模转换后发送给处理器。
8.如权利要求1所述的一种多路同步输出激光器光源的驱动模块,其特征在于,所述处理器通过SPI总线读取温控ADC电路的实时温度采集数据然后根据PID算法计算出温度调节数据,通过I2C总线将温度调节数据输出至温控DAC电路进行模数转换后发送给放大电路进行信号放大然后输入到TEC驱动电路,所述TEC驱动电路根据接收的数据产生TEC制冷片的驱动电压完成温度调节。
9.如权利要求7所述的一种多路同步输出激光器光源的驱动模块,其特征在于,所述温度采集电路包括运算放大器,所述运算放大器将DFB激光器模块腔内的热敏电阻输出的电压信号进行直流偏置与放大后输入到温控ADC电路;
所述运算放大器的芯片采用OPA4350系列芯片。
10.如权利要求8所述的一种多路同步输出激光器光源的驱动模块,其特征在于,所述温控ADC电路包括ADC芯片,ADC芯片采用ADS8370系列芯片;所述温控DAC电路包括DAC芯片,DAC芯片采用AD56655系列芯片;所述TEC驱动电路包括TEC驱动芯片,TEC驱动芯片型号采用MAX8520系列芯片。
CN202011597686.9A 2020-12-29 2020-12-29 一种多路同步输出激光器光源的驱动模块 Active CN112636167B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011597686.9A CN112636167B (zh) 2020-12-29 2020-12-29 一种多路同步输出激光器光源的驱动模块

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011597686.9A CN112636167B (zh) 2020-12-29 2020-12-29 一种多路同步输出激光器光源的驱动模块

Publications (2)

Publication Number Publication Date
CN112636167A CN112636167A (zh) 2021-04-09
CN112636167B true CN112636167B (zh) 2022-04-19

Family

ID=75286274

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011597686.9A Active CN112636167B (zh) 2020-12-29 2020-12-29 一种多路同步输出激光器光源的驱动模块

Country Status (1)

Country Link
CN (1) CN112636167B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203554404U (zh) * 2013-11-20 2014-04-16 中国工程物理研究院流体物理研究所 一种高压光导开关同步触发器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117185A (ja) * 1982-12-23 1984-07-06 Nec Corp レ−ザ装置
JPH04159623A (ja) * 1990-10-23 1992-06-02 Sony Corp 複数半導体光源の出力制御装置
CN2453580Y (zh) * 2000-12-08 2001-10-10 中国科学院上海光学精密机械研究所 多路激光脉冲同步触发装置
CN102447214B (zh) * 2011-12-21 2013-07-03 中国科学院安徽光学精密机械研究所 基于fpga的准分子激光器全固化电源的同步系统
CN104134923A (zh) * 2014-07-24 2014-11-05 安徽问天量子科技股份有限公司 产生高速皮秒窄脉冲激光的装置及方法
CN106654851A (zh) * 2016-11-22 2017-05-10 山东大学 一种半导体激光器窄脉冲驱动电路及其工作方法
KR102517463B1 (ko) * 2018-04-27 2023-04-04 에스케이하이닉스 주식회사 반도체장치
CN112701562B (zh) * 2020-12-29 2023-01-17 广东国腾量子科技有限公司 一种多路同步输出激光器光源模块

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203554404U (zh) * 2013-11-20 2014-04-16 中国工程物理研究院流体物理研究所 一种高压光导开关同步触发器

Also Published As

Publication number Publication date
CN112636167A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
CN112701562B (zh) 一种多路同步输出激光器光源模块
CN108110612B (zh) 一种基于马赫-增德尔干涉仪的无调制稳频方法和装置
US9065242B2 (en) Apparatus and method to enable precision and fast laser frequency tuning
CN103346470B (zh) 一种脉冲泵浦的低重复频率光纤激光相干合成系统
CN111697422B (zh) 一种相位调制型拉曼光功率控制方法及其系统
CN108572469B (zh) 多路不同频点激光同步相位调制光谱展宽装置及方法
CN107634804B (zh) 量子通信中的高消光比脉冲激光控制系统及其控制方法
WO2008067746A1 (fr) Procédé et dispositif pour stabiliser la longueur d'onde d'un signal optique multicanal
CN214411759U (zh) 一种多路同步输出激光器光源驱动模块
US6975448B2 (en) Automatic gain controller of optical fiber amplifier
CN103197422A (zh) 一种基于双光栅的波长可调谐激光相干合束系统
CN112636167B (zh) 一种多路同步输出激光器光源的驱动模块
CN112636165B (zh) 一种多路同步输出激光器光源的温控模块
CN214100228U (zh) 一种多路同步输出激光器的温控模块
CN214280423U (zh) 一种多路同步输出激光器光源模块
US20030067947A1 (en) Laser control circuit for maintaining constant power and extinction ratio
CN103780307B (zh) 一种产生光采样脉冲序列的系统及方法
CN109842009A (zh) 一种阵列激光延时补偿装置及方法
CN112202040B (zh) 激光阵列活塞相位控制方法
CN102364770A (zh) 基于并联标准具的激光波长精密控制方法
CN110220509B (zh) 用于高精度光纤陀螺的混合集成窄线宽激光器系统
CN103235629A (zh) 实现输出功率自动调节控制电路结构及其方法
CN219610988U (zh) 一种快速调节脉冲输出功率的光纤激光器装置及激光雷达
CN201156647Y (zh) 分布反馈注入放大半导体激光器
WO2022037563A1 (zh) 一种光源、光传输方法和光注入锁定系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant