CN112635620A - 一种Gr/MX2/Si太阳能电池的制备方法 - Google Patents

一种Gr/MX2/Si太阳能电池的制备方法 Download PDF

Info

Publication number
CN112635620A
CN112635620A CN202011519084.1A CN202011519084A CN112635620A CN 112635620 A CN112635620 A CN 112635620A CN 202011519084 A CN202011519084 A CN 202011519084A CN 112635620 A CN112635620 A CN 112635620A
Authority
CN
China
Prior art keywords
silicon wafer
quaternary ammonium
solar cell
window area
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011519084.1A
Other languages
English (en)
Inventor
马文会
王琦迪
李绍元
陈秀华
魏奎先
陈正杰
雷云
于洁
伍继君
谢克强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202011519084.1A priority Critical patent/CN112635620A/zh
Publication of CN112635620A publication Critical patent/CN112635620A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/07Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the Schottky type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种Gr/MX2/Si太阳能电池的制备方法,属于太阳能电池技术领域。本发明以石墨为阳极,MX2晶体为阴极,在季铵盐/乙腈溶液中恒压电化学反应得到季铵离子插层MX2晶体,季铵离子插层MX2晶体置于DMF/PVP溶液中超声剥离,洗涤得到MX2纳米片悬浮液;硅片窗口区域外进行封胶处理以保留窗口区域外的氧化层,然后在HF溶液中反应去除窗口区域和硅片背面的氧化层,去除硅片氧化层上的胶,清洗吹干得到预处理硅片;预处理硅片的窗口区域引入MX2纳米片悬浮液,烘干得到MX2纳米片膜;将片层石墨烯转移至硅片的窗口区域的MX2纳米片膜上;在硅片氧化层上涂抹导电层,硅片背面涂抹背电极即得Gr/MX2/Si太阳能电池。该MX2纳米片作为空穴传输层有利于提高光生电子‑空穴对的有效分离。

Description

一种Gr/MX2/Si太阳能电池的制备方法
技术领域
本发明涉及一种Gr/MX2/Si太阳能电池的制备方法,属于太阳能电池技术领域。
背景技术
近年来,太阳能因其储量无穷、不受地域限制、清洁无污染等优点而备受世界各国关注。硅太阳能电池(单晶,多晶,非晶)具有丰富的储量、合适的能带结构、优异的可靠性和成熟的制造工艺等优势。石墨烯由于其良好的透光率和较高的载流子迁移速度等优点被广泛应用于太阳能电池中,既能作为透明电极传输载流子,又能与硅片相接触形成异质结,建立内建电场分离光生载流子。目前,已有很多相关石墨烯/硅基肖特基结太阳能电池的有关报道,但是相比其他类型的太阳能电池,其转换效率依旧偏低,最大的限制条件即是石墨烯和硅基之间严重的界面复合,光生电子-空穴分离不充分,光生电流大大降低,不利于构建高性能的光伏器件。界面复合严重对于器件的影响是致命的,光生载流子的产生速率和收集几率降低会大大影响器件的短路电流密度和反向饱和电流。
发明内容
本发明针对现有技术中太阳能电池转换效率问题,提供一种Gr/MX2/Si太阳能电池的制备方法,本发明通过对MX2晶体的电化学插层剥离制备相关二维纳米片,再引入Gr/Si太阳能电池中作为电子阻拦层/空穴传输层,构建Gr/MX2/Si太阳能电池,提高其转换效率。
一种Gr/MX2/Si太阳能电池的制备方法,具体步骤如下:
(1)以石墨为阳极,MX2晶体为阴极,在季铵盐/乙腈溶液中恒压电化学反应得到季铵离子插层MX2晶体,季铵离子插层MX2晶体置于DMF/PVP溶液中超声剥离,经乙醇或异丙醇洗涤得到MX2纳米片悬浮液;MX2纳米片的横向尺寸为0.1~5μm,片层厚度为1~30层;
(2)硅片窗口区域外进行封胶处理以保留窗口区域外的氧化层,然后在HF溶液中反应去除窗口区域和硅片背面的氧化层,去除硅片氧化层上的胶,依次经丙酮、乙醇和去离子水的超声清洗,吹干得到预处理硅片;其中硅片窗口区域为0.3×0.3cm2
(3)将步骤(1)MX2纳米片悬浮液超声处理,预处理硅片的窗口区域引入MX2纳米片悬浮液,烘干成膜得到MX2纳米片膜;引入方法为滴涂、旋涂或丝网印刷,优选旋涂,旋涂速度为1000~6000rpm,时间为10~60S;成膜温度为25~200℃;
(4)采用湿法转移法,将片层石墨烯转移至步骤(3)的硅片的窗口区域的MX2纳米片膜上;
(5)在硅片的氧化层上涂抹导电层,硅片背面涂抹背电极即得Gr/MX2/Si太阳能电池。
所述步骤(1)MX2晶体为MoS2、WS2、MoSe2、WSe2、MoTe2或WTe2,优选地,MX2晶体为MoS2、WS2或WSe2
所述季铵盐为氟化季铵、氯化季铵、溴化季铵或碘化季铵。进一步的,氟化季铵为四己基氟化铵、四乙基氟化铵、四丙基氟化铵或四丁基氟化铵;氯化季铵为四己基氯化铵、四乙基氯化铵、四丙基氯化铵或四丁基氯化铵;溴化季铵为四己基溴化铵、四乙基溴化铵、四丙基溴化铵或四丁基溴化铵;碘化季铵为四己基碘化铵、四乙基碘化铵、四丙基碘化铵或四丁基碘化铵。优选为溴化季铵中的四己基溴化铵、四乙基溴化铵、四丙基溴化铵或四丁基溴化铵;
所述季铵盐/乙腈溶液中季铵盐的浓度为0.1~2mol/L,DMF/PVP溶液中DMF浓度为0.1~2mol/L,优选地季铵盐的浓度0.2~1mol/L,DMF浓度为0.2~1mol/L;
所述恒压电化学反应的电压为0.5~50V,时间为1~24h;优选地,反应电压为1~25V,反应时间为2~12h;
所述步骤(2)HF溶液的质量浓度为1%~10%,反应时间为1~10min;优选的,HF溶液的质量浓度为2%~5%,反应时间为2~5min;
所述步骤(3)MX2纳米片膜的厚度为1~30nm;
所述步骤(4)片层石墨烯为1~6层;优选的,片层石墨烯为3~4层;
所述步骤(5)导电层为Au或Ag,背电极为Al或In-Ga合金。
本发明的有益效果是:
(1)本发明通过对MX2晶体的电化学插层剥离制备二维纳米片,再引入Gr/Si太阳能电池中作为电子阻拦层/空穴传输层,构建Gr/MX2/Si太阳能电池,提高其转换效率;
(2)本发明引入电子阻拦层/空穴传输层的目的在于当光生载流子对在内建电场的作用下分离后,电子和空穴迅速传输不再重遇并产生复合,大块的MX2晶体作为间隙半导体,其光学能带0.7~1.6eV,又由于是层状结构的晶体,可以通过层数调控带隙;
(3)本发明采用电化学插层剥离MX2纳米片缺陷相对较少,制备工艺简单。
(4)本发明二维MX2在石墨烯和硅界面处作为空穴传输层能有效地降低石墨烯和硅之间界面载流子复合,有利于提高光生电子-空穴对的有效分离,制备出高效的Gr/MX2/Si太阳能电池。
附图说明
图1为Gr/MX2/Si太阳能电池结构示意图;
图2为电化学插层剥离晶体MX2机理图;
图3为悬浮液中MoS2纳米片的样品TEM表征;
图4为悬浮液中WS2纳米片的样品TEM表征;
图5为旋涂MoS2纳米片于硅片的样品AFM表征;
图6为旋涂WS2纳米片于硅片的样品AFM表征;
图7为最优Gr/MoS2/Si太阳能电池实施例1在100mW白光照射下的电流-电压特征曲线;
图8为最优条件Gr/WS2/Si太阳能电池实施例5在100mW白光照射下的电流-电压特征曲线;
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
本发明Gr/MX2/Si太阳能电池的结构见图1,Gr/MX2/Si太阳能电池包括依次连接的前电极、石墨烯层、电子阻挡层/空穴传输层、硅和背电极,石墨烯与硅基结合形成的肖特基结为转换单元;中间层(电子阻挡层/空穴传输层)改善器件性能,太阳能电池的阳极是前电极,优选银电极,阴极是背电极,优选In-Ga合金电极;
电化学插层剥离晶体MX2机理图见图2,以石墨棒作为阳极,MX2晶体作为阴极,在0.2~1mol/L季铵盐/乙腈溶液中进行电化学插层反应,在反应过程中,向阴极施加负电压,以将带正电荷的季铵离子插入晶体中,以达到插层的目的;透过插层的电压和时间可以实现对MX2纳米片的横向尺寸和层数的可控制备,随后将插层反应完成的晶体在0.1~2mol/L的DMF/PVP溶液中超声剥离得到MX2纳米片悬浮液,然后进行3~10次的离心清洗,得到含有MX2纳米片的乙醇或异丙醇溶液。
实施例1:一种Gr/MoS2/Si太阳能电池的制备方法,具体步骤如下:
(1)以石墨为阳极,MoS2晶体为阴极,在季铵盐/乙腈溶液中恒压电化学反应10h得到季铵离子插层MoS2晶体,季铵离子插层MoS2晶体置于DMF/PVP溶液中超声剥离2h,经异丙醇洗涤7次得到MoS2纳米片悬浮液(异丙醇悬浮液);其中季铵盐为四己基溴化铵,四己基溴化铵/乙腈溶液中四己基溴化铵的浓度为0.2mol/L,恒压电化学反应的电压为10V,DMF/PVP溶液中DMF浓度为0.2mol/L;
(2)硅片窗口区域外进行封胶带处理以保留窗口区域外的氧化层,然后在质量浓度为2%HF溶液中反应3min去除窗口区域和硅片背面的氧化层,去除硅片氧化层上的胶带,依次经丙酮、乙醇和去离子水的超声清洗,吹干得到预处理硅片;其中硅片为1×1cm2,硅片窗口区域为0.3×0.3cm2
(3)将步骤(1)MoS2纳米片悬浮液超声处理2h使MoS2纳米片分散均匀,预处理硅片的窗口区域引入MoS2纳米片悬浮液,烘干成膜得到MoS2纳米片膜;引入方法为旋涂,旋涂速度为3000rpm,时间为30S;成膜温度为70℃;
(4)采用湿法转移法,将3层的片层石墨烯转移至步骤(3)的硅片的窗口区域的MoS2纳米片膜上;
(5)在硅片的氧化层上涂抹导电层(导电银浆),硅片背面涂抹背电极In-Ga合金即得Gr/MX2/Si太阳能电池;
本实施例MoS2纳米片悬浮液中MoS2纳米片的透射图见图3,样品确实呈现片层状,非常薄,几近透明,横向尺寸约为100纳米;本实施例旋涂MoS2纳米片于硅片的样品AFM表征见图5,旋涂在硅片上的纳米片在视野大概9微米范围内的原子力显微镜的三维表征,硅片表面有着起伏的薄膜状纳米片,厚度约为4~5纳米,结合MoS2的层间距约为0.615纳米,判断制备得到的样品为6~8层的MoS2纳米片;
本实施例Gr/MoS2/Si太阳能电池在100mW白光照射下的电流-电压特征曲线见图7,MoS2纳米片引入电池后经过测试,得到的电池的明场曲线,其转换效率可以达到4.29%。
实施例2:一种Gr/MoS2/Si太阳能电池的制备方法,具体步骤如下:
(1)以石墨为阳极,MoS2晶体为阴极,在季铵盐/乙腈溶液中恒压电化学反应1h得到季铵离子插层MoS2晶体,季铵离子插层MoS2晶体置于DMF/PVP溶液中超声剥离2h,经异丙醇洗涤3次得到MoS2纳米片悬浮液(异丙醇悬浮液);其中季铵盐为四丙基溴化铵,四丙基溴化铵/乙腈溶液中四丙基溴化铵的浓度为0.8mol/L,恒压电化学反应的电压为20V,DMF/PVP溶液中DMF浓度为0.8mol/L;MoS2纳米片的横向尺寸约为3~5μm,片层厚度为20~30层;
(2)硅片窗口区域外进行封胶带处理以保留窗口区域外的氧化层,然后在质量浓度为10%HF溶液中反应1min去除窗口区域和硅片背面的氧化层,去除硅片氧化层上的胶带,依次经丙酮、乙醇和去离子水的超声清洗,吹干得到预处理硅片;其中硅片为1×1cm2,硅片窗口区域为0.3×0.3cm2
(3)将步骤(1)MoS2纳米片悬浮液超声处理1.8h使MoS2纳米片分散均匀,预处理硅片的窗口区域引入MoS2纳米片悬浮液,烘干成膜得到MoS2纳米片膜;引入方法为旋涂,旋涂速度为5000rpm,时间为20S;成膜温度为100℃;
(4)采用湿法转移法,将6层的片层石墨烯转移至步骤(3)的硅片的窗口区域的MoS2纳米片膜上;
(5)在硅片的氧化层上涂抹导电层(导电银浆),硅片背面涂抹背电极In-Ga合金即得Gr/MoS2/Si太阳能电池;
本实施例Gr/MoS2/Si太阳能电池在100mW白光照射下的电流-电压特征曲线可知,MoS2纳米片引入电池后经过测试,得到的电池的明场曲线,其转换效率可以达到3.96%。
实施例3:一种Gr/MoS2/Si太阳能电池的制备方法,具体步骤如下:
(1)以石墨为阳极,MoS2晶体为阴极,在季铵盐/乙腈溶液中恒压电化学反应24h得到季铵离子插层MoS2晶体,季铵离子插层MoS2晶体置于DMF/PVP溶液中超声剥离5h,经异丙醇洗涤10次得到MoS2纳米片悬浮液(异丙醇悬浮液);其中季铵盐为四丁基溴化铵,四丁基溴化铵/乙腈溶液中四丁基溴化铵的浓度为1mol/L,恒压电化学反应的电压为30V,DMF/PVP溶液中DMF浓度为1mol/L;MoS2纳米片的横向尺寸约为0.5~1μm,片层厚度为1~6层;
(2)硅片窗口区域外进行封胶带处理以保留窗口区域外的氧化层,然后在质量浓度为8%HF溶液中反应1.5min去除窗口区域和硅片背面的氧化层,去除硅片氧化层上的胶带,依次经丙酮、乙醇和去离子水的超声清洗,吹干得到预处理硅片;其中硅片为1×1cm2,硅片窗口区域为0.3×0.3cm2
(3)将步骤(1)MoS2纳米片悬浮液超声处理1.5h使MoS2纳米片分散均匀,预处理硅片的窗口区域引入MoS2纳米片悬浮液,烘干成膜得到MoS2纳米片膜;引入方法为旋涂,旋涂速度为6000rpm,时间为10S;成膜温度为150℃;
(4)采用湿法转移法,将3层的片层石墨烯转移至步骤(3)的硅片的窗口区域的MoS2纳米片膜上;
(5)在硅片的氧化层上涂抹导电层(导电银浆),硅片背面涂抹背电极In-Ga合金即得Gr/MoS2/Si太阳能电池;
本实施例Gr/MoS2/Si太阳能电池在100mW白光照射下的电流-电压特征曲线可知,MoS2纳米片引入电池后经过测试,得到的电池的明场曲线,其转换效率可以达到3.84%。
实施例4:一种Gr/MoS2/Si太阳能电池的制备方法,具体步骤如下:
(1)以石墨为阳极,MoS2晶体为阴极,在季铵盐/乙腈溶液中恒压电化学反应12h得到季铵离子插层MoS2晶体,季铵离子插层MoS2晶体置于DMF/PVP溶液中超声剥离3h,经异丙醇洗涤4次得到MoS2纳米片悬浮液(异丙醇悬浮液);其中季铵盐为四乙基溴化铵,四乙基溴化铵/乙腈溶液中四乙基溴化铵的浓度为1.5mol/L,恒压电化学反应的电压为25V,DMF/PVP溶液中DMF浓度为1.5mol/L;MoS2纳米片的横向尺寸约为1~2μm,片层厚度为10~20层;
(2)硅片窗口区域外进行封胶带处理以保留窗口区域外的氧化层,然后在质量浓度为5%HF溶液中反2.5min去除窗口区域和硅片背面的氧化层,去除硅片氧化层上的胶带,依次经丙酮、乙醇和去离子水的超声清洗,吹干得到预处理硅片;其中硅片为1×1cm2,硅片窗口区域为0.3×0.3cm2
(3)将步骤(1)MoS2纳米片悬浮液超声处理2h使MoS2纳米片分散均匀,预处理硅片的窗口区域引入MoS2纳米片悬浮液,烘干成膜得到MoS2纳米片膜;引入方法为旋涂,旋涂速度为4000rpm,时间为20S;成膜温度为25℃;
(4)采用湿法转移法,将3层的片层石墨烯转移至步骤(3)的硅片的窗口区域的MoS2纳米片膜上;
(5)在硅片的氧化层上涂抹导电层(导电银浆),硅片背面涂抹背电极In-Ga合金即得Gr/MoS2/Si太阳能电池;
本实施例Gr/MoS2/Si太阳能电池在100mW白光照射下的电流-电压特征曲线可知,MoS2纳米片引入电池后经过测试,得到的电池的明场曲线,其转换效率可以达到3.58%。
实施例5:一种Gr/WS2/Si太阳能电池的制备方法,具体步骤如下:
(1)以石墨为阳极,WS2晶体为阴极,在季铵盐/乙腈溶液中恒压电化学反应10h得到季铵离子插层WS2晶体,季铵离子插层WS2晶体置于DMF/PVP溶液中超声剥离2h,经异丙醇洗涤7次得到WS2纳米片悬浮液(异丙醇悬浮液);其中季铵盐为四乙基溴化铵,四乙基溴化铵/乙腈溶液中四乙基溴化铵的浓度0.2mol/L,恒压电化学反应的电压为10V,DMF/PVP溶液中DMF浓度为0.2mol/L;
(2)硅片窗口区域外进行封胶带处理以保留窗口区域外的氧化层,然后在质量浓度为2%HF溶液中反应3min去除窗口区域和硅片背面的氧化层,去除硅片氧化层上的胶带,依次经丙酮、乙醇和去离子水的超声清洗,吹干得到预处理硅片;其中硅片为1×1cm2,硅片窗口区域为0.3×0.3cm2
(3)将步骤(1)WS2纳米片悬浮液超声处理2h使MoS2纳米片分散均匀,预处理硅片的窗口区域引入WS2纳米片悬浮液,烘干成膜得到WS2纳米片膜;引入方法为旋涂,旋涂速度为3000rpm,时间为30S;成膜温度为70℃;
(4)采用湿法转移法,将3层的片层石墨烯转移至步骤(3)的硅片的窗口区域的WS2纳米片膜上;
(5)在硅片的氧化层上涂抹导电层(导电银浆),硅片背面涂抹背电极In-Ga合金即得Gr/WS2/Si太阳能电池;
本实施例WS2纳米片悬浮液中WS2纳米片的透射图见图4,样品确实呈现片层状,非常薄,几近透明,横向尺寸约为100纳米;本实施例旋涂WS2纳米片于硅片的样品AFM表征见图6,旋涂在硅片上的纳米片在视野大概9微米范围内的原子力显微镜的三维表征,硅片表面有着起伏的薄膜状纳米片,厚度约为3~5纳米,结合WS2的层间距约为0.6纳米,判断制备得到的样品为5~8层的WS2纳米片;
本实施例Gr/WS2/Si太阳能电池在100mW白光照射下的电流-电压特征曲线见图8,WS2纳米片引入电池后经过测试,得到的电池的明场曲线,其转换效率可以达到5.74%。
实施例6:一种Gr/WS2/Si太阳能电池的制备方法,具体步骤如下:
(1)以石墨为阳极,WS2晶体为阴极,在季铵盐/乙腈溶液中恒压电化学反应2h得到季铵离子插层WS2晶体,季铵离子插层WS2晶体置于DMF/PVP溶液中超声剥离2h,经异丙醇洗涤5次得到WS2纳米片悬浮液(异丙醇悬浮液);其中季铵盐为四丁基溴化铵,四丁基溴化铵/乙腈溶液中四丁基溴化铵的浓度为0.1mol/L,恒压电化学反应的电压为8V,DMF/PVP溶液中DMF浓度为0.1mol/L;WS2纳米片的横向尺寸约为3~5μm,片层厚度为15~30层;
(2)硅片窗口区域外进行封胶带处理以保留窗口区域外的氧化层,然后在质量浓度为7%HF溶液中反应4min去除窗口区域和硅片背面的氧化层,去除硅片氧化层上的胶带,依次经丙酮、乙醇和去离子水的超声清洗,吹干得到预处理硅片;其中硅片为1×1cm2,硅片窗口区域为0.3×0.3cm2
(3)将步骤(1)WS2纳米片悬浮液超声处理2.5h使MoS2纳米片分散均匀,预处理硅片的窗口区域引入WS2纳米片悬浮液,烘干成膜得到WS2纳米片膜;引入方法为旋涂,旋涂速度为1000rpm,时间为40S;成膜温度为60℃;
(4)采用湿法转移法,将4层的片层石墨烯转移至步骤(3)的硅片的窗口区域的WS2纳米片膜上;
(5)在硅片的氧化层上涂抹导电层(导电银浆),硅片背面涂抹背电极In-Ga合金即得Gr/WS2/Si太阳能电池;
本实施例Gr/WS2/Si太阳能电池在100mW白光照射下的电流-电压特征曲线可知,WS2纳米片引入电池后经过测试,得到的电池的明场曲线,其转换效率可以达到3.79%。
实施例7:一种Gr/WS2/Si太阳能电池的制备方法,具体步骤如下:
(1)以石墨为阳极,WS2晶体为阴极,在季铵盐/乙腈溶液中恒压电化学反应20h得到季铵离子插层WS2晶体,季铵离子插层WS2晶体置于DMF/PVP溶液中超声剥离1h,经异丙醇洗涤6次得到WS2纳米片悬浮液(异丙醇悬浮液);其中季铵盐为四己基溴化铵,四己基溴化铵/乙腈溶液中四己基溴化铵的浓度为1.8mol/L,恒压电化学反应的电压为50V,DMF/PVP溶液中DMF浓度为1.8mol/L;WS2纳米片的横向尺寸约为0.1~1μm,片层厚度为1~5层;
(2)硅片窗口区域外进行封胶带处理以保留窗口区域外的氧化层,然后在质量浓度为8%HF溶液中反应1.2min去除窗口区域和硅片背面的氧化层,去除硅片氧化层上的胶带,依次经丙酮、乙醇和去离子水的超声清洗,吹干得到预处理硅片;其中硅片为1×1cm2,硅片窗口区域为0.3×0.3cm2
(3)将步骤(1)WS2纳米片悬浮液超声处理3.5h使MoS2纳米片分散均匀,预处理硅片的窗口区域引入WS2纳米片悬浮液,烘干成膜得到WS2纳米片膜;引入方法为旋涂,旋涂速度为2000rpm,时间为50S;成膜温度为200℃;
(4)采用湿法转移法,将2层的片层石墨烯转移至步骤(3)的硅片的窗口区域的WS2纳米片膜上;
(5)在硅片的氧化层上涂抹导电层(导电银浆),硅片背面涂抹背电极In-Ga合金即得Gr/WS2/Si太阳能电池;
本实施例Gr/WS2/Si太阳能电池在100mW白光照射下的电流-电压特征曲线可知,WS2纳米片引入电池后经过测试,得到的电池的明场曲线,其转换效率可以达到4.88%。
实施例8:一种Gr/WS2/Si太阳能电池的制备方法,具体步骤如下:
(1)以石墨为阳极,WS2晶体为阴极,在季铵盐/乙腈溶液中恒压电化学反应15h得到季铵离子插层WS2晶体,季铵离子插层WS2晶体置于DMF/PVP溶液中超声剥离3h,经异丙醇洗涤9次得到WS2纳米片悬浮液(异丙醇悬浮液);其中季铵盐为四丙基溴化铵,四丙基溴化铵/乙腈溶液中四丙基溴化铵的浓度为2mol/L,恒压电化学反应的电压为45V,DMF/PVP溶液中DMF浓度为2mol/L;WS2纳米片的横向尺寸约为1~3μm,片层厚度为10~15层;
(2)硅片窗口区域外进行封胶带处理以保留窗口区域外的氧化层,然后在质量浓度为10%HF溶液中反应1min去除窗口区域和硅片背面的氧化层,去除硅片氧化层上的胶带,依次经丙酮、乙醇和去离子水的超声清洗,吹干得到预处理硅片;其中硅片为1×1cm2,硅片窗口区域为0.3×0.3cm2
(3)将步骤(1)WS2纳米片悬浮液超声处理4h使MoS2纳米片分散均匀,预处理硅片的窗口区域引入WS2纳米片悬浮液,烘干成膜得到WS2纳米片膜;引入方法为旋涂,旋涂速度为5000rpm,时间为10S;成膜温度为180℃;
(4)采用湿法转移法,将5层的片层石墨烯转移至步骤(3)的硅片的窗口区域的WS2纳米片膜上;
(5)在硅片的氧化层上涂抹导电层(导电银浆),硅片背面涂抹背电极In-Ga合金即得Gr/WS2/Si太阳能电池;
本实施例Gr/WS2/Si太阳能电池在100mW白光照射下的电流-电压特征曲线可知,WS2纳米片引入电池后经过测试,得到的电池的明场曲线,其转换效率可以达到3.67%。
实施例9:一种Gr/MoSe2/Si太阳能电池的制备方法,具体步骤如下:
(1)以石墨为阳极,MoSe2晶体为阴极,在季铵盐/乙腈溶液中恒压电化学反应10h得到季铵离子插层MoSe2晶体,季铵离子插层MoSe2晶体置于DMF/PVP溶液中超声剥离2h,经异丙醇洗涤7次得到MoSe2纳米片悬浮液(异丙醇悬浮液);其中季铵盐为四己基氯化铵,四己基氯化铵/乙腈溶液中四己基氯化铵的浓度为0.2mol/L,恒压电化学反应的电压为10V,DMF/PVP溶液中DMF浓度为0.2mol/L;
(2)硅片窗口区域外进行封胶带处理以保留窗口区域外的氧化层,然后在质量浓度为2%HF溶液中反应3min去除窗口区域和硅片背面的氧化层,去除硅片氧化层上的胶带,依次经丙酮、乙醇和去离子水的超声清洗,吹干得到预处理硅片;其中硅片为1×1cm2,硅片窗口区域为0.3×0.3cm2
(3)将步骤(1)MoSe2纳米片悬浮液超声处理2h使MoSe2纳米片分散均匀,预处理硅片的窗口区域引入MoSe2纳米片悬浮液,烘干成膜得到MoSe2纳米片膜;引入方法为旋涂,旋涂速度为3000rpm,时间为30S;成膜温度为70℃;
(4)采用湿法转移法,将3层的片层石墨烯转移至步骤(3)的硅片的窗口区域的MoSe2纳米片膜上;
(5)在硅片的氧化层上涂抹导电层(导电银浆),硅片背面涂抹背电极In-Ga合金即得Gr/MoSe2/Si太阳能电池;
本实施例Gr/MoSe2/Si太阳能电池在100mW白光照射下的电流-电压特征曲线可知,MoSe2纳米片引入电池后经过测试,得到的电池的明场曲线,其转换效率可以达6.52%。
实施例9:一种Gr/WSe2/Si太阳能电池的制备方法,具体步骤如下:
(1)以石墨为阳极,WSe2晶体为阴极,在季铵盐/乙腈溶液中恒压电化学反应10h得到季铵离子插层WSe2晶体,季铵离子插层WSe2晶体置于DMF/PVP溶液中超声剥离2h,经异丙醇洗涤7次得到WSe2纳米片悬浮液(异丙醇悬浮液);其中季铵盐为四丁基碘化铵,四丁基碘化铵/乙腈溶液中四丁基碘化铵的浓度为0.2mol/L,恒压电化学反应的电压为10V,DMF/PVP溶液中DMF浓度为0.2mol/L;
(2)硅片窗口区域外进行封胶带处理以保留窗口区域外的氧化层,然后在质量浓度为2%HF溶液中反应3min去除窗口区域和硅片背面的氧化层,去除硅片氧化层上的胶带,依次经丙酮、乙醇和去离子水的超声清洗,吹干得到预处理硅片;其中硅片为1×1cm2,硅片窗口区域为0.3×0.3cm2
(3)将步骤(1)WSe2纳米片悬浮液超声处理2h使WSe2纳米片分散均匀,预处理硅片的窗口区域引入WSe2纳米片悬浮液,烘干成膜得到WSe2纳米片膜;引入方法为旋涂,旋涂速度为3000rpm,时间为30S;成膜温度为70℃;
(4)采用湿法转移法,将3层的片层石墨烯转移至步骤(3)的硅片的窗口区域的WSe2纳米片膜上;
(5)在硅片的氧化层上涂抹导电层(导电银浆),硅片背面涂抹背电极In-Ga合金即得Gr/WSe2/Si太阳能电池;
本实施例Gr/WSe2/Si太阳能电池在100mW白光照射下的电流-电压特征曲线可知,WSe2纳米片引入电池后经过测试,得到的电池的明场曲线,其转换效率可以达7.38%。
实施例9:一种Gr/MoTe2/Si太阳能电池的制备方法,具体步骤如下:
(1)以石墨为阳极,MoTe2晶体为阴极,在季铵盐/乙腈溶液中恒压电化学反应10h得到季铵离子插层MoTe2晶体,季铵离子插层MoTe2晶体置于DMF/PVP溶液中超声剥离2h,经异丙醇洗涤7次得到MoTe2纳米片悬浮液(异丙醇悬浮液);其中季铵盐为四己基氯化铵,四己基氯化铵/乙腈溶液中四己基氯化铵的浓度为0.2mol/L,恒压电化学反应的电压为10V,DMF/PVP溶液中DMF浓度为0.2mol/L;
(2)硅片窗口区域外进行封胶带处理以保留窗口区域外的氧化层,然后在质量浓度为2%HF溶液中反应3min去除窗口区域和硅片背面的氧化层,去除硅片氧化层上的胶带,依次经丙酮、乙醇和去离子水的超声清洗,吹干得到预处理硅片;其中硅片为1×1cm2,硅片窗口区域为0.3×0.3cm2
(3)将步骤(1)MoTe2纳米片悬浮液超声处理2h使MoTe2纳米片分散均匀,预处理硅片的窗口区域引入MoTe2纳米片悬浮液,烘干成膜得到MoTe2纳米片膜;引入方法为旋涂,旋涂速度为3000rpm,时间为30S;成膜温度为70℃;
(4)采用湿法转移法,将3层的片层石墨烯转移至步骤(3)的硅片的窗口区域的MoTe2纳米片膜上;
(5)在硅片的氧化层上涂抹导电层(导电银浆),硅片背面涂抹背电极In-Ga合金即得Gr/MoTe2/Si太阳能电池;
本实施例Gr/MoTe2/Si太阳能电池在100mW白光照射下的电流-电压特征曲线可知,MoTe2纳米片引入电池后经过测试,得到的电池的明场曲线,其转换效率可以达5.84%。
实施例9:一种Gr/WTe2/Si太阳能电池的制备方法,具体步骤如下:
(1)以石墨为阳极,WTe2晶体为阴极,在季铵盐/乙腈溶液中恒压电化学反应10h得到季铵离子插层WTe2晶体,季铵离子插层WSe2晶体置于DMF/PVP溶液中超声剥离2h,经异丙醇洗涤7次得到WTe2纳米片悬浮液(异丙醇悬浮液);其中季铵盐为四丁基氟化铵,四丁基氟化铵/乙腈溶液中四丁基氟化铵的浓度为0.2mol/L,恒压电化学反应的电压为10V,DMF/PVP溶液中DMF浓度为0.2mol/L;
(2)硅片窗口区域外进行封胶带处理以保留窗口区域外的氧化层,然后在质量浓度为2%HF溶液中反应3min去除窗口区域和硅片背面的氧化层,去除硅片氧化层上的胶带,依次经丙酮、乙醇和去离子水的超声清洗,吹干得到预处理硅片;其中硅片为1×1cm2,硅片窗口区域为0.3×0.3cm2
(3)将步骤(1)WSe2纳米片悬浮液超声处理2h使WTe2纳米片分散均匀,预处理硅片的窗口区域引入WTe2纳米片悬浮液,烘干成膜得到WTe2纳米片膜;引入方法为旋涂,旋涂速度为3000rpm,时间为30S;成膜温度为70℃;
(4)采用湿法转移法,将3层的片层石墨烯转移至步骤(3)的硅片的窗口区域的WSe2纳米片膜上;
(5)在硅片的氧化层上涂抹导电层(导电银浆),硅片背面涂抹背电极In-Ga合金即得Gr/WTe2/Si太阳能电池;
本实施例Gr/WTe2/Si太阳能电池在100mW白光照射下的电流-电压特征曲线可知,WSe2纳米片引入电池后经过测试,得到的电池的明场曲线,其转换效率可以达8.12%。
上面对本发明的具体实施例作了详细说明,但是本发明并不限于上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (9)

1.一种Gr/MX2/Si太阳能电池的制备方法,其特征在于,具体步骤如下:
(1)以石墨为阳极,MX2晶体为阴极,在季铵盐/乙腈溶液中恒压电化学反应得到季铵离子插层MX2晶体,季铵离子插层MX2晶体置于DMF/PVP溶液中超声剥离,洗涤得到MX2纳米片悬浮液;
(2)硅片窗口区域外进行封胶处理以保留窗口区域外的氧化层,然后在HF溶液中反应去除窗口区域和硅片背面的氧化层,去除硅片氧化层上的胶,清洗吹干得到预处理硅片;
(3)将步骤(1)MX2纳米片悬浮液超声处理,预处理硅片的窗口区域引入MX2纳米片悬浮液,烘干得到MX2纳米片膜;
(4)采用湿法转移法,将片层石墨烯转移至步骤(3)的硅片的窗口区域的MX2纳米片膜上;
(5)在硅片的氧化层上涂抹导电层,硅片背面涂抹背电极即得Gr/MX2/Si太阳能电池。
2.根据权利要求1所述Gr/MX2/Si太阳能电池的制备方法,其特征在于:步骤(1)MX2晶体为MoS2、WS2、MoSe2、WSe2、MoTe2或WTe2,季铵盐为氟化季铵、氯化季铵、溴化季铵或碘化季铵。
3.根据权利要求2所述Gr/MX2/Si太阳能电池的制备方法,其特征在于:氟化季铵为四己基氟化铵、四乙基氟化铵、四丙基氟化铵或四丁基氟化铵;氯化季铵为四己基氯化铵、四乙基氯化铵、四丙基氯化铵或四丁基氯化铵;溴化季铵为四己基溴化铵、四乙基溴化铵、四丙基溴化铵或四丁基溴化铵;碘化季铵为四己基碘化铵、四乙基碘化铵、四丙基碘化铵或四丁基碘化铵。
4.根据权利要求1所述Gr/MX2/Si太阳能电池的制备方法,其特征在于:季铵盐/乙腈溶液中季铵盐的浓度为0.1~2mol/L,DMF/PVP溶液中DMF浓度为0.1~2mol/L。
5.根据权利要求1所述Gr/MX2/Si太阳能电池的制备方法,其特征在于:恒压电化学反应的电压为0.5~50V,时间为1~24h。
6.根据权利要求1所述Gr/MX2/Si太阳能电池的制备方法,其特征在于:步骤(2)HF溶液的质量浓度为1%~10%,反应时间为1~10min。
7.根据权利要求1所述Gr/MX2/Si太阳能电池的制备方法,其特征在于:步骤(3)MX2纳米片膜的厚度为1~8nm。
8.根据权利要求1所述Gr/MX2/Si太阳能电池的制备方法,其特征在于:步骤(4)片层石墨烯为1~6层。
9.根据权利要求1所述Gr/MX2/Si太阳能电池的制备方法,其特征在于:步骤(5)导电层为Au或Ag,背电极为Al或In-Ga合金。
CN202011519084.1A 2020-12-21 2020-12-21 一种Gr/MX2/Si太阳能电池的制备方法 Pending CN112635620A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011519084.1A CN112635620A (zh) 2020-12-21 2020-12-21 一种Gr/MX2/Si太阳能电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011519084.1A CN112635620A (zh) 2020-12-21 2020-12-21 一种Gr/MX2/Si太阳能电池的制备方法

Publications (1)

Publication Number Publication Date
CN112635620A true CN112635620A (zh) 2021-04-09

Family

ID=75320744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011519084.1A Pending CN112635620A (zh) 2020-12-21 2020-12-21 一种Gr/MX2/Si太阳能电池的制备方法

Country Status (1)

Country Link
CN (1) CN112635620A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103275355A (zh) * 2013-05-20 2013-09-04 中国科学技术大学 一种有机改性二硫化钼纳米片层及其制备方法
CN103579419A (zh) * 2013-11-13 2014-02-12 苏州科技学院 一种石墨烯/MoS2/Si 异质结薄膜太阳能电池及其制备方法
CN107863416A (zh) * 2017-10-11 2018-03-30 昆明理工大学 一种柔性石墨烯硅太阳能电池的制备方法
CN108640154A (zh) * 2018-06-15 2018-10-12 西南交通大学 一种二硫化钼纳米材料及其制备方法
CN109553093A (zh) * 2018-12-29 2019-04-02 厦门十维科技有限公司 电化学溶胀制备石墨烯分散液的制备方法
CN109950332A (zh) * 2019-03-26 2019-06-28 昆明理工大学 一种perc柔性石墨烯/硅太阳能电池的制备方法
CN110117807A (zh) * 2019-03-09 2019-08-13 深圳市中科墨磷科技有限公司 一种二维材料-过渡金属异质结薄片的制备方法
CN110216279A (zh) * 2019-03-09 2019-09-10 深圳市中科墨磷科技有限公司 一种过渡金属掺杂二维薄片的制备方法
WO2019245990A1 (en) * 2018-06-18 2019-12-26 The Regents Of The University Of California General solution-processable approach to high-quality two-dimensional ink materials for printable high-performance large-area and low-cost devices

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103275355A (zh) * 2013-05-20 2013-09-04 中国科学技术大学 一种有机改性二硫化钼纳米片层及其制备方法
CN103579419A (zh) * 2013-11-13 2014-02-12 苏州科技学院 一种石墨烯/MoS2/Si 异质结薄膜太阳能电池及其制备方法
CN107863416A (zh) * 2017-10-11 2018-03-30 昆明理工大学 一种柔性石墨烯硅太阳能电池的制备方法
CN108640154A (zh) * 2018-06-15 2018-10-12 西南交通大学 一种二硫化钼纳米材料及其制备方法
WO2019245990A1 (en) * 2018-06-18 2019-12-26 The Regents Of The University Of California General solution-processable approach to high-quality two-dimensional ink materials for printable high-performance large-area and low-cost devices
CN109553093A (zh) * 2018-12-29 2019-04-02 厦门十维科技有限公司 电化学溶胀制备石墨烯分散液的制备方法
CN110117807A (zh) * 2019-03-09 2019-08-13 深圳市中科墨磷科技有限公司 一种二维材料-过渡金属异质结薄片的制备方法
CN110216279A (zh) * 2019-03-09 2019-09-10 深圳市中科墨磷科技有限公司 一种过渡金属掺杂二维薄片的制备方法
CN109950332A (zh) * 2019-03-26 2019-06-28 昆明理工大学 一种perc柔性石墨烯/硅太阳能电池的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUI MAO ET AL: "Ultrathin 1T-MoS2 Nanoplates Induced by Quaternary Ammonium-Type Ionic Liquids on Polypyrrole/Graphene Oxide Nanosheets and Its Irreversible Crystal Phase Transition During Electrocatalytic Nitrogen Reduction", 《ACS APPL. MATER. INTERFACES》 *
JALAL AZADMANJIRI ET AL: "Graphene-Supported 2D transition metal dichalcogenide van der waals heterostructures", 《APPLIED MATERIALS TODAY》 *
YUKA TSUBOI ET AL: "Enhanced Photovoltaic Performances of Graphene/Si Solar Cells by Insertion of an MoS2 Thin Film", 《NANOSCALE》 *

Similar Documents

Publication Publication Date Title
CN105932080B (zh) 异质结太阳能电池及其制备方法
CN107946471B (zh) 一种基于硅纳米线阵列的异质结光伏电池及其制备方法
AU2020429125B2 (en) Tandem photovoltaic device and production method
CN113707734B (zh) 具有空穴选择钝化结构的晶硅/钙钛矿叠层太阳电池
CN103296123B (zh) P-型碳量子点/n-型硅纳米线阵列异质结太阳能电池及其制备方法
CN114975691A (zh) 一种具有选择性发射极的钝化接触太阳电池及其制备方法、组件和系统
CN113644142A (zh) 一种具有钝化接触的太阳能电池及其制备方法
CN108417719B (zh) 一种硅基核壳结构光伏电池及其制备方法
CN107946384A (zh) 一种硅‑pedot:pss杂化太阳能电池及其制备方法
CN108258124B (zh) 一种异质结光伏电池及其制备方法
CN108878594B (zh) 一种硅异质结光伏电池及其制造方法
CN217881546U (zh) 具有选择性发射极的钝化接触太阳电池及组件和系统
CN108963021B (zh) 一种基于化学修饰的黑磷材料太阳能电池及制备方法
CN113097388B (zh) 一种基于复合电子传输层的钙钛矿电池及其制备方法
CN112635620A (zh) 一种Gr/MX2/Si太阳能电池的制备方法
CN118315453A (zh) 一种背接触电池及其制造方法
CN117690984A (zh) 电子钝化接触结构及其制备方法、太阳能电池
CN216488096U (zh) 异质结电池及光伏组件
CN114122155B (zh) 一种含有火焰合成镍金纳米球阵列的砷化镓太阳电池及其制备
CN109192798B (zh) P型单晶硅hit光伏电池及其制造方法
CN116111008A (zh) 异质结电池的制备方法
CN114038924A (zh) 一种基于rie等离子刻蚀制绒的背接触异质结太阳电池
BR112019001351B1 (pt) Método para fabricar um dispositivo fotovoltaico
CN110444616B (zh) 一种超薄晶硅太阳电池及其制备方法
CN113066874A (zh) 异质结太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination