CN112634214A - 一种结合节点属性与多层次拓扑的脑网络分类方法 - Google Patents
一种结合节点属性与多层次拓扑的脑网络分类方法 Download PDFInfo
- Publication number
- CN112634214A CN112634214A CN202011480046.XA CN202011480046A CN112634214A CN 112634214 A CN112634214 A CN 112634214A CN 202011480046 A CN202011480046 A CN 202011480046A CN 112634214 A CN112634214 A CN 112634214A
- Authority
- CN
- China
- Prior art keywords
- brain
- network
- node
- brain network
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000004556 brain Anatomy 0.000 title claims abstract description 142
- 238000000034 method Methods 0.000 title claims abstract description 59
- 239000011159 matrix material Substances 0.000 claims abstract description 36
- 238000007781 pre-processing Methods 0.000 claims abstract description 9
- 238000012353 t test Methods 0.000 claims abstract description 7
- 238000002372 labelling Methods 0.000 claims abstract description 4
- 238000012847 principal component analysis method Methods 0.000 claims abstract description 4
- 239000013598 vector Substances 0.000 claims description 20
- 230000009467 reduction Effects 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 4
- 230000001186 cumulative effect Effects 0.000 claims description 4
- 238000000513 principal component analysis Methods 0.000 claims description 4
- 238000012549 training Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 3
- 238000009499 grossing Methods 0.000 claims description 3
- 230000004886 head movement Effects 0.000 claims description 3
- 238000012952 Resampling Methods 0.000 claims description 2
- 238000000692 Student's t-test Methods 0.000 claims description 2
- 230000002159 abnormal effect Effects 0.000 abstract description 9
- 238000003745 diagnosis Methods 0.000 abstract description 7
- 201000000980 schizophrenia Diseases 0.000 abstract description 7
- 230000002146 bilateral effect Effects 0.000 description 14
- 238000012706 support-vector machine Methods 0.000 description 11
- 210000001320 hippocampus Anatomy 0.000 description 9
- 238000011160 research Methods 0.000 description 9
- 230000005856 abnormality Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 210000004326 gyrus cinguli Anatomy 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000000284 extract Substances 0.000 description 5
- 230000000971 hippocampal effect Effects 0.000 description 5
- 230000008451 emotion Effects 0.000 description 4
- 238000002599 functional magnetic resonance imaging Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 4
- 210000003478 temporal lobe Anatomy 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000002360 prefrontal effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000002790 cross-validation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 210000005153 frontal cortex Anatomy 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 208000020016 psychiatric disease Diseases 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 208000014644 Brain disease Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004763 bicuspid Anatomy 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000013145 classification model Methods 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 230000003931 cognitive performance Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000001652 frontal lobe Anatomy 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002197 limbic effect Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 231100000915 pathological change Toxicity 0.000 description 1
- 230000036285 pathological change Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000008925 spontaneous activity Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2135—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
- G06T7/33—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30016—Brain
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011480046.XA CN112634214A (zh) | 2020-12-15 | 2020-12-15 | 一种结合节点属性与多层次拓扑的脑网络分类方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011480046.XA CN112634214A (zh) | 2020-12-15 | 2020-12-15 | 一种结合节点属性与多层次拓扑的脑网络分类方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112634214A true CN112634214A (zh) | 2021-04-09 |
Family
ID=75313166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011480046.XA Pending CN112634214A (zh) | 2020-12-15 | 2020-12-15 | 一种结合节点属性与多层次拓扑的脑网络分类方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112634214A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113344883A (zh) * | 2021-06-10 | 2021-09-03 | 华南师范大学 | 一种多层形态学脑网络构建方法、智能终端及存储介质 |
CN113706459A (zh) * | 2021-07-15 | 2021-11-26 | 电子科技大学 | 一种自闭症患者异常脑区的检测及模拟修复装置 |
CN115715677A (zh) * | 2021-08-24 | 2023-02-28 | 深圳先进技术研究院 | 情绪识别模型的训练方法、训练装置、设备及存储介质 |
CN117357132A (zh) * | 2023-12-06 | 2024-01-09 | 之江实验室 | 一种基于多层脑网络节点参与系数的任务执行方法及装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110162549A (zh) * | 2019-04-01 | 2019-08-23 | 深圳市中电数通智慧安全科技股份有限公司 | 一种火灾数据分析方法、装置、可读存储介质及终端设备 |
-
2020
- 2020-12-15 CN CN202011480046.XA patent/CN112634214A/zh active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110162549A (zh) * | 2019-04-01 | 2019-08-23 | 深圳市中电数通智慧安全科技股份有限公司 | 一种火灾数据分析方法、装置、可读存储介质及终端设备 |
Non-Patent Citations (2)
Title |
---|
崔晓红: ""无偏脑网络分析方法研究及其在阿尔茨海默症中的应用"", 《中国优秀博硕士学位论文全文数据库(博士)基础科学辑》 * |
肖继海: ""节点属性和拓扑信息相结合的脑网络聚类模型"", 《计算机工程与科学》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113344883A (zh) * | 2021-06-10 | 2021-09-03 | 华南师范大学 | 一种多层形态学脑网络构建方法、智能终端及存储介质 |
CN113706459A (zh) * | 2021-07-15 | 2021-11-26 | 电子科技大学 | 一种自闭症患者异常脑区的检测及模拟修复装置 |
CN113706459B (zh) * | 2021-07-15 | 2023-06-20 | 电子科技大学 | 一种自闭症患者异常脑区的检测及模拟修复装置 |
CN115715677A (zh) * | 2021-08-24 | 2023-02-28 | 深圳先进技术研究院 | 情绪识别模型的训练方法、训练装置、设备及存储介质 |
CN115715677B (zh) * | 2021-08-24 | 2023-07-07 | 深圳先进技术研究院 | 情绪识别模型的训练方法、训练装置、设备及存储介质 |
CN117357132A (zh) * | 2023-12-06 | 2024-01-09 | 之江实验室 | 一种基于多层脑网络节点参与系数的任务执行方法及装置 |
CN117357132B (zh) * | 2023-12-06 | 2024-03-01 | 之江实验室 | 一种基于多层脑网络节点参与系数的任务执行方法及装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112634214A (zh) | 一种结合节点属性与多层次拓扑的脑网络分类方法 | |
CN107909117B (zh) | 基于脑功能网络特征对早晚期轻度认知障碍的分类装置 | |
CN113616184B (zh) | 基于多模态磁共振图像的脑网络建模与个体预测方法 | |
CN110598793B (zh) | 一种大脑功能网络特征分类方法 | |
CN111524606A (zh) | 一种基于随机森林算法的肿瘤数据统计方法 | |
CN113040715A (zh) | 一种基于卷积神经网络的人脑功能网络分类方法 | |
CN110491501B (zh) | 一种青少年孤独症大脑功能网络模型分析方法 | |
CN112418337B (zh) | 基于脑功能超网络模型的多特征融合数据分类方法 | |
CN112002428B (zh) | 以独立成分网络为参照的全脑个体化脑功能图谱构建方法 | |
CN107358022A (zh) | 一种大脑功能网络的模块化分析方法 | |
CN116503680B (zh) | 基于脑图谱的脑影像结构化分析和脑疾病分类系统 | |
CN113947157B (zh) | 一种基于层次聚类和结构方程模型的动态脑效应连接网络生成方法 | |
CN117172294B (zh) | 一种稀疏脑网络的构建方法、系统、设备和存储介质 | |
CN113693563A (zh) | 一种基于超图注意力网络的脑功能网络分类方法 | |
CN115272295A (zh) | 基于时域-空域联合状态的动态脑功能网络分析方法及系统 | |
CN114612691A (zh) | 一种基于复杂脑网络的阿尔茨海默症特征提取及分类方法 | |
CN107256408B (zh) | 一种大脑功能网络的关键路径搜索方法 | |
CN116523839A (zh) | 帕金森病辅助分析系统 | |
Wang et al. | Effective graph kernels for evolving functional brain networks | |
CN113283465B (zh) | 一种弥散张量成像数据分析方法及装置 | |
CN113516186A (zh) | 一种面向脑疾病分类的模块化特征选择方法 | |
CN113298038B (zh) | 用于辅助诊断ad的多频脑网络区分子网络对的构建方法 | |
CN114862834B (zh) | 一种静息态功能磁共振影像数据分类方法 | |
WO2024192673A1 (zh) | 帕金森病辅助分析系统及方法 | |
CN116912559A (zh) | 一种基于神经游走的脑网络图嵌入方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Cui Xiaohong Inventor after: Xiao Jihai Inventor after: Li Dandan Inventor after: Xiang Jie Inventor after: Li Haifang Inventor after: Xiao Dong Inventor before: Xiao Jihai Inventor before: Cui Xiaohong Inventor before: Xiao Dong Inventor before: Li Dandan Inventor before: Xiang Jie Inventor before: Li Haifang |
|
CB03 | Change of inventor or designer information | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210409 |
|
RJ01 | Rejection of invention patent application after publication |