CN112630192A - 双样品同步检测的高灵敏度光子晶体光纤传感器 - Google Patents

双样品同步检测的高灵敏度光子晶体光纤传感器 Download PDF

Info

Publication number
CN112630192A
CN112630192A CN202011433808.0A CN202011433808A CN112630192A CN 112630192 A CN112630192 A CN 112630192A CN 202011433808 A CN202011433808 A CN 202011433808A CN 112630192 A CN112630192 A CN 112630192A
Authority
CN
China
Prior art keywords
air hole
small air
layer
holes
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011433808.0A
Other languages
English (en)
Inventor
邴丕彬
武桂芳
袁胜
李忠洋
刘庆
许若辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Water Resources and Electric Power
Original Assignee
North China University of Water Resources and Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Water Resources and Electric Power filed Critical North China University of Water Resources and Electric Power
Priority to CN202011433808.0A priority Critical patent/CN112630192A/zh
Publication of CN112630192A publication Critical patent/CN112630192A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/35374Particular layout of the fiber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/3538Optical fibre sensor using a particular arrangement of the optical fibre itself using a particular type of fiber, e.g. fibre with several cores, PANDA fiber, fiber with an elliptic core or the like

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开一种双样品同步检测的高灵敏度光子晶体光纤传感器,包括基底,围绕基底中心布设小空气孔,基底中心为纤芯,在小空气孔上部的基底上设置有上部大空气孔A,在小空气孔下部的基底上设置有下部大空气孔B,所述小空气孔以基底中心为中心由内向上呈辐射状设置三层小空气孔,距离中心最近的为第一层小空气孔,向外依次为第二层小空气孔和第三层小空气孔,第二层小空气孔为椭圆孔,第一层小空气孔和第三层小空气孔为圆孔,在上部大空气孔A和下部大空气孔B的平面上均沉积一层相同厚度的金纳米薄膜。本发明具有灵敏度高、方便制备、检测效率高等特点,更利于用在传感器生产实践中。

Description

双样品同步检测的高灵敏度光子晶体光纤传感器
技术领域
本发明涉及光子晶体光纤领域,具体涉及基于表面等离子体共振的双样品同步检测的光子晶体光纤传感器。
背景技术
光子晶体光纤(Photonic Crystal Fiber,PCF)是在二维光子晶体的基础上发展出来的一种特殊光纤,也是目前被广泛研究的一种新型光纤。与传统光纤相比,PCF在设计上具有很大的自由度,使其在双折射、平坦和负色散、有效面积和非线性等方面具有灵活性。因此,PCF成为传感器领域的研究焦点。PCF早期由于拉制工艺和拉制精度的影响并不能实现大规模的应用,由于最近几年工艺的成熟,可以将圆形光纤制成D型光纤,然后在平面上进行金膜的涂覆,由于平面上的金属涂层能够更好地接触到待测液体,传感效果更加突出,这也是当前研究的热点领域之一。
表面等离子体共振(Surface Plasmon Resonance,SPR)是一种物理光学现象,SPR产生的原因是由于光在介质表面发生全内反射时会产生倏逝波,倏逝波能够激发金属表面的自由电子振荡,产生表面等离子体。表面等离子体与倏逝波的频率和波数相等时形成SPR。由于共振振荡对边界附近的任何微小的折射率变化都非常敏感,因而,SPR是一种非常有前景的传感检测手段。随着科学技术的深入发展,人们将PCF和SPR技术结合,并用于环境监测、水测试、癌症检测、食品质量控制等,在过去的几十年中进行了大量的研究。
发明内容
基于SPR-PCF在传感器中的应用,研究人员已经取得了许多成就,但也存在一些问题,比如:人们一味的追求PCF结构的新颖,导致结构设计的过于复杂,不容易制备;分析物折射率的可探测范围窄;传感探测的灵敏度低;只有一个待测液体的检测通道;这些都极大地限制了PCF传感器的应用范围和功能,寻求突破迫在眉睫。
本发明的目的是提出一种结构简单的基于双样品同步检测的光子晶体光纤传感器,并具有灵敏度高、方便制备、检测效率高等特点,更利于用在传感器生产实践中。
本发明的目的通过以下技术方案来实现:
一种双样品同步检测的高灵敏度光子晶体光纤传感器,包括基底,围绕基底中心布设小空气孔,基底中心为纤芯,在小空气孔上部的基底上设置有上部大空气孔A,在小空气孔下部的基底上设置有下部大空气孔B,所述小空气孔以基底中心为中心由内向上呈辐射状设置三层小空气孔,距离中心最近的为第一层小空气孔,向外依次为第二层小空气孔和第三层小空气孔,第二层小空气孔为椭圆孔,第一层小空气孔和第三层小空气孔为圆孔,在上部大空气孔A和下部大空气孔B的平面上均沉积一层相同厚度的金纳米薄膜。
上述双样品同步检测的高灵敏度光子晶体光纤传感器,所述三层小空气孔呈正六角形排列。
上述双样品同步检测的高灵敏度光子晶体光纤传感器,所述第一层小空气孔和第三层小空气孔的半径均为0.4μm,相邻小空气孔之间的间距为2μm,即相邻两小空气孔的中心之间的间距为2μm。
上述双样品同步检测的高灵敏度光子晶体光纤传感器,所述第二层小空气孔的长轴半径和短轴半径分别为0.6μm、0.4μm,其中长轴与上部大空气孔的平面平行。
上述双样品同步检测的高灵敏度光子晶体光纤传感器,所述上部大空气孔和下部大空气孔分别位于纤芯的正上和正下方,半径为5.3μm,与纤芯垂直距离均为6μm。
上述双样品同步检测的高灵敏度光子晶体光纤传感器,上部大空气孔的平面上镀金纳米薄膜的厚度和下部大空气孔的平面上镀金纳米薄膜的厚度均为40nm。
上述双样品同步检测的高灵敏度光子晶体光纤传感器,所述上部大空气孔和下部大空气孔均为D型孔,但D型孔的平面部分对应小空气孔排列。
采用上述技术方案,本发明的有益效果是:
本发明采用典型的六角形双包层结构,大空气孔通道与纤芯的垂直距离H较常规PCF传感器大,SPP模式的有效折射率提高,有利于SPP模式和纤芯模式的耦合,能够有效提高该传感器的波长灵敏度,且该传感器更适用于高折射率样品的检测。该传感器的波长灵敏度最高达到16200nm/RIU和15800nm/RIU,折射率检测范围为1.35-1.41。
本发明中,小空气孔阵列的第二层为椭圆形空气孔,破环了光纤的旋转对称性,PCF绝大多数能量被限制在纤芯中传输,泄漏到金膜表面的能量减少,纤芯能量损耗也就相应大大降低,因此无需在大空气孔通道内额外添加高折射率介质层,能够有效降低操作复杂性,使得本发明更加切实可行。
附图说明
图1是本发明的结构示意图
图2 是纤芯模式的电场分布示意图
图3为待测液体A折射率为1.33时,待测液体B折射率在1.35-1.41时传感器的吸收曲线图。
图4为待测液体A折射率为1.33时,共振波长与灵敏度随待测液体B的折射率变化曲线图。
图5为待测液体B折射率为1.40时,待测液体A折射率在1.35-1.41时传感器的吸收曲线图。
图6为待测液体B折射率为1.40时,共振波长与灵敏度随待测液体A的折射率变化曲线图。
具体实施方式
以下结合附图1、图2、图3、图4、图5和图6具体详细地说明本发明的结构及工作过程。
一种双样品同步检测的高灵敏度光子晶体光纤传感器,包括基底1,基底材料选择性能稳定的二氧化硅,折射率为1.45,围绕基底中心布设小空气孔3,基底中心为纤芯,还包括大空气孔5,大空气孔为微流体通道,在小空气孔上部的基底上设置有上部大空气孔A,在小空气孔下部的基底上设置有下部大空气孔B,所述小空气孔以纤芯中心为中心由内向上呈辐射状设置三层小空气孔,距离中心最近的为第一层小空气孔,向外依次为第二层小空气孔4和第三层小空气孔,第二层小空气孔为椭圆孔,第一层小空气孔和第三层小空气孔为圆孔,在上部大空气孔A和下部大空气孔B的平面上均沉积一层相同厚度的金纳米薄膜2。传感器在使用过程中,沿上部大空气孔通道平面侧和下部大空气孔平面侧进行平抛,可以直接将光纤浸入微流体中,降低制造工艺难度。
本发明双样品同步检测的高灵敏度光子晶体光纤传感器,所述三层小空气孔呈正六角形排列,所述第一层小空气孔和第三层小空气孔的半径均为0.4μm,相邻小空气孔之间的间距L为2μm,即相邻两小空气孔的中心之间的间距为2μm。
本发明双样品同步检测的高灵敏度光子晶体光纤传感器,所述第二层小空气孔的长轴半径和短轴半径分别为0.6μm、0.4μm,其中长轴与上部大空气孔的平面平行。
本发明双样品同步检测的高灵敏度光子晶体光纤传感器,所述上部大空气孔和下部大空气孔分别位于纤芯的正上方和正下方,半径为5.3μm,与纤芯垂直距离H均为6μm。
本发明双样品同步检测的高灵敏度光子晶体光纤传感器,上部大空气孔的平面上镀金纳米薄膜的厚度和下部大空气孔的平面上镀金纳米薄膜的厚度均为40nm。
本发明双样品同步检测的高灵敏度光子晶体光纤传感器,所述上部大空气孔和下部大空气孔均为D型孔,但D型孔的平面部分对应小空气孔排列。
当入射的某一波长的TM波与金纳米薄膜的表面等离子波满足相位匹配,此时纤芯模式与表面等离子体模式(SPP mode)在金属界面处发生能量耦合,纤芯模式中的光能量会转移到金属表面,即产生了SPR,输出的光谱上会出现吸收峰。当金纳米薄膜表面邻近的介质折射率发生变化时,吸收峰的位置也会随之产生移动。由于金属纳米层表面产生的SPR对周围的介质环境极为敏感,将金属表面邻近物质折射率的微小变化转换成可测量的吸收峰的位移,实现折射率的检测,从而达到传感的目的。本发明中,大空气孔通道与纤芯的垂直距离H=6μm。如图2所示,由于H值较常规PCF传感器大,SPP模式的有效折射率提高,有利于SPP模式和纤芯模式的耦合,能够有效提高该传感器的波长灵敏度,且该传感器更适用于高折射率样品的检测;另一方面,绝大多数能量被限制在纤芯中传输,泄漏到金膜表面的能量减少,纤芯能量损耗也就相应大大降低,因此无需在大空气孔通道内额外添加高折射率介质层,能够有效降低操作复杂性,使得本发明更加切实可行。
从上述可知,A、B通道填充待测液体,则A、B通道的金纳米薄膜均发生SPR,因此在检测谱上可观测到两个共振峰,如图3所示。上微流体通道A填充液体的折射率na=1.33始终保持不变,下微流体通道B填充液体的折射率nb发生变化时,上微流体通道A的共振波长保持在589nm附近,共振峰无明显变化,并不受下微流体通道B填充液体的折射率变化的影响。由于小空气孔阵列的第二层为椭圆形空气孔,破环了光纤的旋转对称性,很大部分能量在低损耗空气孔中传输,大大降低了光纤损耗,如图3插图所示。当待测液体折射率nb在1.35-1.41范围内变化时,共振波长与灵敏度变化如图4所示,对应的共振波长分别为621nm、642nm、668nm、701nm、744nm、804nm、966nm。可以看出两通道的待测液体折射率差别越大,对应的共振波长间距越宽,即不同待测液体的鉴别能力越强。下微流体通道B检测的折射率波长灵敏度最高为16200nm/RIU,假设光谱仪最小可分辨0.01nm,此时传感器的分辨率可达6.2×10-7RIU。
同理,下微流体通道B填充液体的折射率nb=1.40始终保持不变,上微流体通道A填充液体的折射率na发生变化时,下微流体通道B的共振波长保持在804nm附近,共振峰无明显变化,并不受上微流体通道A填充液体的折射率变化的影响,如图5所示。当待测液体折射率na在1.35-1.41范围内变化时,共振波长与灵敏度变化如图6所示,对应的共振波长分别为624nm、639nm、668nm、701nm、744nm、806nm、964nm。A通道检测的折射率波长灵敏度最高为15800nm/RIU,假设光谱仪最小可分辨0.01nm,此时传感器的分辨率可达6.33×10-7RIU。
基于六角形结构的光纤是目前市场上最为简单的结构,拉制工艺已经很成熟。本发明将六角形双包层空气孔结构和D型平面结构相结合,在确保结构简单,方便制造生产的同时,波长灵敏度也大大提高,双样品通道的波长灵敏度最高可达到16200nm/RIU和15800nm/RIU,在高灵敏度检测领域内具有广阔的应用前景。本发明所设计的传感器结构可根据具体实际需求设计。例如,在癌症细胞检测方面,癌症细胞是被认为液体形式,有自己的折射率,因此可以将癌细胞当作待测液体填充到A、B通道内。(1)可将癌细胞1封装在A通道内,仅利用B通道实现癌细胞2传感检测,降低操作难度;(2)A、B通道双样品检测同步进行,根据检测光谱中峰值的变化规律,确定癌细胞1、2折射率,提高检测效率。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的技术人员来说,在不脱离本发明整体构思前提下,还可以作出若干改变和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。

Claims (7)

1.一种双样品同步检测的高灵敏度光子晶体光纤传感器,包括基底,其特征在于:围绕基底中心布设小空气孔,基底中心为纤芯,在小空气孔上部的基底上设置有上部大空气孔A,在小空气孔下部的基底上设置有下部大空气孔B,所述小空气孔以基底中心为中心由内向上呈辐射状设置三层小空气孔,距离中心最近的为第一层小空气孔,向外依次为第二层小空气孔和第三层小空气孔,第二层小空气孔为椭圆孔,第一层小空气孔和第三层小空气孔为圆孔,在上部大空气孔A和下部大空气孔B的平面上均沉积一层相同厚度的金纳米薄膜。
2.根据权利要求1所述的双样品同步检测的高灵敏度光子晶体光纤传感器,其特征在于:所述三层小空气孔呈正六角形排列。
3.根据权利要求1所述的双样品同步检测的高灵敏度光子晶体光纤传感器,其特征在于:所述第一层小空气孔和第三层小空气孔的半径均为0.4μm,相邻小空气孔之间的间距为2μm。
4.根据权利要求1所述的双样品同步检测的高灵敏度光子晶体光纤传感器,其特征在于:所述第二层小空气孔的长轴半径和短轴半径分别为0.6μm、0.4μm,其中长轴与上部大空气孔的平面平行。
5.根据权利要求1所述的双样品同步检测的高灵敏度光子晶体光纤传感器,其特征在于:所述上部大空气孔和下部大空气孔分别位于纤芯的正上和正下方,半径为5.3μm,与纤芯垂直距离均为6μm。
6.根据权利要求1所述的所述的双样品同步检测的高灵敏度光子晶体光纤传感器,其特征在于:上部大空气孔的平面上镀金纳米薄膜的厚度和下部大空气孔的平面上镀金纳米薄膜的厚度均为40nm。
7.根据权利要求1所述的所述的双样品同步检测的高灵敏度光子晶体光纤传感器,其特征在于:所述上部大空气孔和下部大空气孔均为D型孔,但D型孔的平面部分对应小空气孔排列。
CN202011433808.0A 2020-12-10 2020-12-10 双样品同步检测的高灵敏度光子晶体光纤传感器 Pending CN112630192A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011433808.0A CN112630192A (zh) 2020-12-10 2020-12-10 双样品同步检测的高灵敏度光子晶体光纤传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011433808.0A CN112630192A (zh) 2020-12-10 2020-12-10 双样品同步检测的高灵敏度光子晶体光纤传感器

Publications (1)

Publication Number Publication Date
CN112630192A true CN112630192A (zh) 2021-04-09

Family

ID=75309483

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011433808.0A Pending CN112630192A (zh) 2020-12-10 2020-12-10 双样品同步检测的高灵敏度光子晶体光纤传感器

Country Status (1)

Country Link
CN (1) CN112630192A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113359227A (zh) * 2021-06-29 2021-09-07 华北水利水电大学 高灵敏度双芯双样品同步检测的光子晶体光纤传感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060291789A1 (en) * 2003-12-19 2006-12-28 Crystal Fibre A/S Photonic crystal fibres comprising stress elements
CN102608068A (zh) * 2012-03-09 2012-07-25 天津理工大学 一种新型结构的光子晶体光纤spr传感模型
CN108152881A (zh) * 2018-01-26 2018-06-12 西安邮电大学 一种2到5微米波段范围内的硫系高双折射光子晶体光纤
CN110441261A (zh) * 2019-08-15 2019-11-12 华北水利水电大学 一种双通道同步检测的光子晶体光纤传感器
CN214310159U (zh) * 2020-12-10 2021-09-28 华北水利水电大学 一种高灵敏度双样品同步检测光子晶体光纤传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060291789A1 (en) * 2003-12-19 2006-12-28 Crystal Fibre A/S Photonic crystal fibres comprising stress elements
CN102608068A (zh) * 2012-03-09 2012-07-25 天津理工大学 一种新型结构的光子晶体光纤spr传感模型
CN108152881A (zh) * 2018-01-26 2018-06-12 西安邮电大学 一种2到5微米波段范围内的硫系高双折射光子晶体光纤
CN110441261A (zh) * 2019-08-15 2019-11-12 华北水利水电大学 一种双通道同步检测的光子晶体光纤传感器
CN214310159U (zh) * 2020-12-10 2021-09-28 华北水利水电大学 一种高灵敏度双样品同步检测光子晶体光纤传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FENG LIU ET AL: "Refractive index sensing characteristics of D-shape double core photonic crystal fiber based on surface plasmon resonance", 《PROC. OF SPIE》, 19 October 2016 (2016-10-19), pages 1 - 8, XP060078752, DOI: 10.1117/12.2244472 *
刘旭安等: "基于椭圆孔包层和微型双孔纤芯的新型高双折射光子晶体光纤", 《光子学报》, vol. 40, no. 11, 15 November 2011 (2011-11-15), pages 1728 - 1732 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113359227A (zh) * 2021-06-29 2021-09-07 华北水利水电大学 高灵敏度双芯双样品同步检测的光子晶体光纤传感器
CN113359227B (zh) * 2021-06-29 2022-11-08 华北水利水电大学 高灵敏度双芯双样品同步检测的光子晶体光纤传感器

Similar Documents

Publication Publication Date Title
Chaudhary et al. Advances in photonic crystal fiber-based sensor for detection of physical and biochemical parameters—A review
Rifat et al. Photonic crystal fiber based plasmonic sensors
Rifat et al. A novel photonic crystal fiber biosensor using surface plasmon resonance
Rifat et al. Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach
CN110441261B (zh) 一种双通道同步检测的光子晶体光纤传感器
Akowuah et al. A novel compact photonic crystal fibre surface plasmon resonance biosensor for an aqueous environment
CN112858186A (zh) 一种基于d型双金属涂层的双折射pcf折射率传感器
CN111521582A (zh) 一种近红外波段双d型光子晶体光纤spr传感器
Ahmed et al. Highly sensitive U-shaped micro-channel photonic crystal fiber–based plasmonic biosensor
Ali et al. An overview of Au & photonic crystal fiber of sensors
CN112268873A (zh) 一种基于双芯双侧抛型pcf-spr传感器
CN109596573B (zh) 基于表面等离子体共振的新d型结构光子晶体光纤传感器
CN109405858A (zh) 一种新型d型微结构光纤传感器及其制备方法
Zhang et al. Review of different coupling methods with whispering gallery mode resonator cavities for sensing
CN214310159U (zh) 一种高灵敏度双样品同步检测光子晶体光纤传感器
Chauhan et al. Fiber optic plasmonic sensors based on theoretical analysis: A review
CN112630192A (zh) 双样品同步检测的高灵敏度光子晶体光纤传感器
CN113030003B (zh) 一种基于厚度复用薄层宽带太赫兹指纹痕量检测传感器
CN111175249B (zh) 用于低折射率检测的近红外串联pcf-spr传感器
CN103048293B (zh) 涂覆介质层的增强型光微流体传感装置和方法
CN208968567U (zh) 一种新型d型微结构光纤传感器
CN111077111A (zh) 一种基于低折射率的探针型近红外石墨烯pcf传感器
CN212059888U (zh) 一种纤芯上移型光子晶体光纤传感器
Arafin et al. Numerical analysis and detection of cancer cells using a dual-core gold coated plasmonic biosensor
CN113405991A (zh) 双通道同步检测的光子晶体光纤传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination