CN112625930B - 一种酵母重组菌及其在减少蛋鸡盲肠氨气产生中的应用 - Google Patents

一种酵母重组菌及其在减少蛋鸡盲肠氨气产生中的应用 Download PDF

Info

Publication number
CN112625930B
CN112625930B CN202011236345.9A CN202011236345A CN112625930B CN 112625930 B CN112625930 B CN 112625930B CN 202011236345 A CN202011236345 A CN 202011236345A CN 112625930 B CN112625930 B CN 112625930B
Authority
CN
China
Prior art keywords
gene
recombinant
glna
gdha
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011236345.9A
Other languages
English (en)
Other versions
CN112625930A (zh
Inventor
王燕
冯坤娴
王玮
吴银宝
米见对
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN202011236345.9A priority Critical patent/CN112625930B/zh
Publication of CN112625930A publication Critical patent/CN112625930A/zh
Application granted granted Critical
Publication of CN112625930B publication Critical patent/CN112625930B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0016Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with NAD or NADP as acceptor (1.4.1)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/02Breeding vertebrates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • A23K10/18Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/70Feeding-stuffs specially adapted for particular animals for birds
    • A23K50/75Feeding-stuffs specially adapted for particular animals for birds for poultry
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/01Oxidoreductases acting on the CH-NH2 group of donors (1.4) with NAD+ or NADP+ as acceptor (1.4.1)
    • C12Y104/01002Glutamate dehydrogenase (1.4.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/01Acid-ammonia (or amine)ligases (amide synthases)(6.3.1)
    • C12Y603/01002Glutamate-ammonia ligase (6.3.1.2)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Animal Husbandry (AREA)
  • Environmental Sciences (AREA)
  • Birds (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Physiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种酵母重组菌及其在减少蛋鸡盲肠氨气产生中的应用。本发明的酵母重组菌是将含有gdhA基因和glnA基因的重组表达载体转化毕赤酵母GS115菌株后得到。本发明通过基因工程手段,将凝结芽胞杆菌中glnA基因以及屎肠球菌中gdhA基因导入毕赤酵母中,构建双基因重组菌,该双基因重组菌能高效表达谷氨酸脱氢酶和谷氨酰胺合成酶,并能降低蛋鸡盲肠中75%的氨气排放,成本低廉,易于培养,并具有无残留、无副作用、不产生抗性等优点,有着广泛应用的前景。

Description

一种酵母重组菌及其在减少蛋鸡盲肠氨气产生中的应用
技术领域
本发明属于生物技术领域,具体涉及一种酵母重组菌及其在减少蛋鸡盲肠氨气产生中的应用。
背景技术
畜禽舍产生的臭气约70%来源于畜禽体盲肠发酵和排泄物发酵。因此,对畜禽肠道微生物进行调控是目前畜禽体臭气减排的主要手段。益生菌具有成本低、操作简单、无毒无害无污染、安全性高、不产生抗性等优势,被广泛应用于畜禽生产。虽氨氮降解菌筛选与培育已有大量基础研究,但应用于动物体氨气减排的益生菌的研究较少且氨气减排效果较低。
发明内容
本发明的目的在于提供一种酵母重组菌及其在减少蛋鸡盲肠氨气产生中的应用。
本发明的目的通过下述技术方案实现:
一种酵母重组菌,含有谷氨酸脱氢酶基因gdhA和谷氨酰胺合成酶基因glnA;
所述的酵母重组菌,是将含有gdhA基因和glnA基因的重组表达载体转化毕赤酵母GS115菌株后得到;
所述的重组表达载体,其基底载体优选pPICZA质粒;
所述的重组表达载体经线性化处理后转化毕赤酵母GS115菌株。
上述的酵母重组菌可以应用于减少蛋鸡盲肠氨气的产生;
在存在甲醇诱导表达的情况下,上述酵母重组菌的表达逐日增强,在第5天达到峰值,谷氨酸脱氢酶的酶比活力从5.31U/mg提高至15.23U/mg;谷氨酰胺合成酶的酶比活力从4.32U/mg增长至13.14U/mg;在存在甲醇诱导表达的情况下,上述酵母重组菌对培养基中的氨氮去除率高达74.8%。
优选地,在向蛋鸡喂食饲料的同时,喂食经过诱导表达的上述酵母重组菌菌液,可以有效降低蛋鸡盲肠的氨气产量;
进一步优选地,所述诱导表达的条件是:菌液接种量2%、摇瓶装液量为10%、2%的甲醇添加量、诱导表达5天;
特别优选地,在体外模拟蛋鸡盲肠发酵底物的产气试验中,每500mg发酵底物搭配3mL经过诱导表达的上述酵母重组菌菌液,可以大幅降低氨气产气量;
所述的发酵底物为常用的蛋鸡饲料。
本发明相对于现有技术具有如下的优点及效果:
本发明通过基因工程手段,将凝结芽胞杆菌中glnA基因以及屎肠球菌中gdhA基因导入毕赤酵母中,构建双基因重组菌,该双基因重组菌能高效表达谷氨酸脱氢酶和谷氨酰胺合成酶,并能降低蛋鸡盲肠中75%的氨气排放,成本低廉,易于培养,并具有无残留、无副作用、不产生抗性等优点,有着广泛应用的前景。
附图说明
图1为本发明的酵母重组菌在体外对模拟蛋鸡盲肠发酵底物氨气产量的影响。
图2为本发明的酵母重组菌在体外对模拟蛋鸡盲肠环境中理化指标的影响。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1:双基因重组菌的构建
(1)载体选择与引物设计:所用酵母的表达载体为pPICZA,根据载体的多克隆位点以gdhA基因和glnA基因编码区所不含的酶切位点,来确定基因两端所能添加的酶切位点。根据gdhA基因和glnA基因的基因序列,使用Primer5软件自行设计合成引物GDH(F)、GDH(R)和GS(F)、GS(R)。在gdhA基因的上下游分别添加EcoR I和Kpn I酶切位点序列,在glnA基因的上下游分别添加Kpn I和Not I酶切位点序列。
表1:合成引物信息
Figure BDA0002766797460000031
(2)以屎肠球菌和凝结芽孢杆菌作为模板,以GDH(F)和GDH(R)作为引物合成gdhA基因序列,以GS(F)和GS(R)作为引物合成glnA基因序列。
PCR反应体系如下:TaKaRa Ex Taq 0.5μL;10×Ex Taq Buffer 5μL;dNTPMixture 4μL;上下游引物(10μM)各1μL;DNA模板1μL;ddH2O 37.5μL。PCR反应参数为:95℃预变性3min;(95℃变性30s;55℃退火90s;72℃延伸1min)×30个循环;72℃再延伸10min;4℃保存。
PCR产物用1.0%琼脂糖电泳鉴定,得到长度约为1350bp和1340bp的条带,经过测序鉴定,与目标基因序列相一致,表明目的基因序列成功扩增出来。用OMEGA公司胶回收试剂盒Gel Extraction Kit进行目标条带回收和纯化。
(3)酵母表达质粒的扩增:将pPICZA质粒转化进DH5α感受态细胞中。将已转化的DH5α感受态细胞均匀涂布到博来霉素(Zeocin)浓度为50μg/mL的LB固体培养基中,于37℃的生化培养箱内倒置培养12-16h。挑取含有pPICZA质粒的DH5α单菌落于Zeocin浓度为50μg/mL的LB液体培养基中,置于37℃的摇床200rpm振荡培养过夜。取2μL菌液为模板,引物为酵母表达载体的通用引物5’AOX和3’AOX。PCR反应体系如下:TaKaRa Ex Taq 0.5μL;10×ExTaq Buffer 5μL;dNTP Mixture 4μL;上下游引物各1μL;DNA模板2μL;ddH2O 36.5μL。PCR反应参数为:95℃预变性3min;(95℃变性30sec;55℃退火90sec;72℃延伸1min)×30个循环;72℃再延伸10min;4℃保存。PCR产物用1.0%琼脂糖凝胶电泳鉴定,得到长度约为3300bp的条带。
(4)目的基因与表达质粒的酶切连接:
使用EcoR I酶和Kpn I酶双酶切gdhA扩增产物。反应体系如下:20μL的基因;5μL的10×Buffer K;2.5μL的EcoR I;2.5μL的Kpn I;20μL的ddH2O。
使用Kpn I酶和Not I酶双酶切glnA扩增产物,反应体系如下:20μL的基因;5μL的10×Buffer K;2.5μL的Kpn I;2.5μL的Not I;20μL的ddH2O。
使用EcoR I酶和Not I酶双酶切pPICZA载体,反应体系如下:20μL的基因;5μL的10×Buffer K;2.5μL的EcoR I;2.5μL的Not I;20μL的ddH2O。
将配好的体系混匀离心、37℃水浴酶切过夜,双酶切后切下目的条带,使用DNA胶回收试剂盒回收目的基因。将gdhA基因与glnA基因双酶切产物连成目的大片段,目的大片段连入pPICZA载体,形成重组载体pPICZA-gdhA/glnA。
(5)重组质粒转化毕赤酵母感受态细胞:重组表达载体经Pme I线性化处理,参照毕赤酵母转化试剂盒转化毕赤酵母GS115菌株,经YPDA固体培养基联合Zeocin进行筛选,得到双基因重组菌。
对转化完成的重组酵母进行PCR鉴定,使用OMEGA酵母DNA提取试剂盒Yeast DNAKit提取重组酵母的DNA,以重组酵母的DNA为模板,分别以GDH(F)和GDH(R)、以GS(F)和GS(R)作为上下游引物进行PCR验证。PCR产物用1.0%琼脂糖凝胶电泳鉴定,得到长度约为1350bp和1340bp的条带,经过测序鉴定(SEQ.ID.NO.5和SEQ.ID.NO.6),与目标基因序列相一致,说明双基因重组菌构建成功。
实施例2:实施例1构建的双基因重组菌的功能检测
将实施例1获得的双基因重组菌接种于含有Zeocin的YPDA液体培养基中,于30℃,200rpm的摇床培养1天;按1%的量接种于装有50mL BMGY培养基的500mL的三角瓶中,于30℃,200rpm的摇床培养至OD600为2-6;菌液转移至50mL的灭菌离心管中,离心收集菌体;将收集的菌体转移至装有50mL BMMY的500mL的三角瓶中,并加入甲醇,使甲醇浓度为1%,于30℃,200rpm的摇床培养144h。每隔24h取样并补加甲醇,确保其终浓度为1%。诱导表达后,该双基因重组菌能有效表达谷氨酸脱氢酶和谷氨酰胺合成酶,表达产物的分子量约为50kDa和55kDa,经数据库对比,大小相一致,结果表明目的蛋白得到正确表达。
该诱导条件下,双基因重组菌所表达的目的蛋白的酶比活力及其表达量在第5天达到峰值,其谷氨酸脱氢酶的酶比活力从5.31U/mg提高至15.23U/mg;谷氨酰胺合成酶的酶比活力从4.32U/mg增长至13.14U/mg。在氨氮浓度为0.1%的YNB培养基中,经诱导表达的双基因重组菌的氨氮去除率高达74.8%。
在此基础上,通过对诱导表达进行条件的优化,最终得到较佳的诱导表达条件为10%的摇瓶装液量、菌液接种量2%、2%的甲醇添加量、诱导表达5天。
实施例3:实施例1构建的双基因重组菌对蛋鸡盲肠的氨气减排效果
以33周龄罗曼粉产蛋鸡为试验材料,以蛋鸡饲料(表2)为发酵底物(购自惠州市乐夫农业科技有限公司),体外发酵验证双基因重组菌对产蛋鸡模拟盲肠环境中氨气产量的影响。
表2:蛋鸡饲料的成分组成及营养水平
Figure BDA0002766797460000051
试验设一个空白组(CK)、原菌组、空载菌组、gdhA基因重组菌、glnA基因重组菌和双基因重组菌组,每个试验组6个重复(表3)。所添加的菌株为经过诱导表达后的酵母原菌、空载菌、gdhA基因重组菌、glnA基因重组菌以及双基因重组菌。
按实施例2最后摸索到的诱导表达条件,每个试验组进行诱导表达。
按常规体外发酵试验方法进行试验,即以60只33周龄罗曼粉产蛋鸡盲肠内容物作为发酵菌源。屠宰后取其盲肠内容物混匀,按1:3(W/V)加入39℃预热的缓冲溶液(NH4HCO38.0g,NaHCO3 70.0g,加去离子水定容至2000mL),过滤,在42℃下持续通入二氧化碳(CO2),制成发酵菌源液。
将474mL超纯水、237mL缓冲溶液、237mL常量元素溶液(Na2HPO4 5.7g,KH2PO46.2g,MgSO4·7H2O 0.6g,加去离子水定容至1000mL)、1.22mL 0.1%刃天青溶液、0.12mL微量元素溶液(CaCl2·2H2O 13.2g,MnCl2·4H2O 10.0g,CoCl2·6H2O 1.0g,FeCl2·6H2O0.8g,加去离子水定容至100mL)混合,通入10min的CO2,加入50mL还原剂溶液,再持续通CO2至无色,得接种液。
将发酵菌源液与接种液按体积比1:2混匀,作为体外发酵液。在发酵管中加入500mg发酵底物(即蛋鸡饲料)、3mL经过诱导表达的菌液和30mL体外发酵液,排尽空气,用止水夹密封,置于42℃摇床中以60rpm培养12h。用硫酸吸收液收集发酵管气体,采集发酵液测定其pH值以及电导率,另取发酵液保存于-80℃冰箱,用于其他相关指标的测定。
结果如图1和图2所示。
表3体外发酵试验处理设计
Figure BDA0002766797460000061
图1表明,在体外发酵试验中,双基因重组菌的氨气产量显著低于其余各组(P<0.05)。与CK组对比,原菌组、空载菌组、gdhA基因重组菌组、glnA基因重组菌组和双基因重组菌组的氨气产量分别降低了37%、38%、64%、66%和75%。
图2为重组菌对产蛋鸡模拟盲肠环境中理化指标的影响。
图2a为重组菌对发酵液中pH的影响,与CK组、原菌组、空载菌组、gdhA基因重组菌组、glnA基因重组菌组相比,双基因重组菌的添加会显著降低发酵液的pH值(P<0.05)。
图2b为重组菌对发酵液中铵态氮的影响,与CK组、原菌组、空载菌组、gdhA基因重组菌组、glnA基因重组菌组相比,双基因重组菌的添加会显著降低发酵液中铵态氮的含量(P<0.05)。
图2c为重组菌对发酵液中硝态氮的影响,与CK组、原菌组、空载菌组、gdhA基因重组菌组、glnA基因重组菌组相比,双基因重组菌的添加会显著增加发酵液中硝态氮的含量(P<0.05)。
图2d为重组菌对发酵液中尿素的影响,与CK组、原菌组、空载菌组、gdhA基因重组菌组、glnA基因重组菌组相比,双基因重组菌的添加会显著降低发酵液中尿素的含量(P<0.05)。
图2e为重组菌对发酵液中尿酸的影响,与CK组、原菌组、空载菌组、gdhA基因重组菌组、glnA基因重组菌组相比,双基因重组菌的添加会显著降低发酵液中尿酸的含量(P<0.05)。
图2f为重组菌对发酵液中脲酶活性的影响,与CK组、原菌组、空载菌组、gdhA基因重组菌组、glnA基因重组菌组相比,双基因重组菌的添加会显著降低发酵液中的脲酶活性(P<0.05)。
通过体外发酵试验的结果表明,双基因重组菌株可降低发酵液的pH值和铵态氮含量,刺激铵态氮向硝态氮转化;发酵液中尿酸和尿素的含量以及脲酶的活性也降低,从而减少氨气的排放。铵态氮和氨气在液态介质中会相互转化,并保持动态平衡。发酵液pH值的降低,一方面抑制了氨气产生,另一方面促进了铵态氮向稳定的硝态氮转化,使氨气的产量减少。微生物氮代谢的最终产物为尿酸,尿酸在尿酸酶的作用下产生尿素,尿素在肠道微生物分泌的多种酶的作用下分解产生氨气,因此,尿酸和尿素含量的降低也在一定程度上抑制了氨气的产生。此外,脲酶活性的降低也抑制尿素的转化,进一步降低了氨气的产生。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
序列表
<110> 华南农业大学
<120> 一种酵母重组菌及其在减少蛋鸡盲肠氨气产生中的应用
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> GDH(F)
<400> 1
cggaattcat gacaaacgca acagaatatg ttcaagca 38
<210> 2
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> GDH(R)
<400> 2
ggggtacctc aaactaaacc ttcgctgcca ttgc 34
<210> 3
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> GS(F)
<400> 3
ggggtaccat gcctaagttt acacgtgaag atattttgaa ga 42
<210> 4
<211> 48
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> GS(R)
<400> 4
ataagaatgc ggccgcttaa tacatttcga tatactggtc gcgttccc 48
<210> 5
<211> 1350
<212> DNA
<213> Enterococcus faecium
<220>
<223> gdhA基因
<400> 5
atgacaaacg caacagaata tgttcaagca attcaagaaa agctacatca aaaggatcaa 60
gggcaagaag aatttttaca agcaatcgat gaattcatgc ccacggttat gtcttttttg 120
gacactcatc ccgaatatat cgaaaagaat atcttagaac ttttaacgga accagaaaga 180
gttattcaat ttcgagtgcc ttggcaagat gatgaaggaa actggcgagt aaatagaggg 240
taccgtatcc aatacaactc agctatcggc ccttataaag gtggattgcg cttccatcct 300
agtgtcaatc taagtatctt gaaatttttg gcttttgaac agattttcaa gaatagttta 360
accggtctgc caatcggtgg aggaaaaggc ggaagtgact tcgatcctaa aggaaaatct 420
gataatgaga tcatgcgttt ttgtcaaagt ttcatgctgg aattgtcaaa acatatcggc 480
ccatcgattg atgttcctgc gggagatatc ggtgtaggag ctagagaaat cggctatttg 540
ttcggcgaat ataaacgatt gaaaaaatat gatactggtg tgttgacagg taaacctttg 600
gatttttggg gaagtaagat acgtacggaa gctactggtt atggattagt gtattatgtc 660
aaacatctat tgaacgaaga aaaagattca tttaatcaaa aaacagtttt tgtttccgga 720
agcgggaatg tagccattta tgcaatcgaa aaagtgcaag agctaggcgg gaaagttgtt 780
acatgttcag attctagcgg gtacatctat gatccagaag gaatagatgt gaaactattg 840
aaagaagtca aagaaatcaa tagacaacgt ttgacggaat acgcaaacca acgtccttct 900
gctatttatc atgctggaga atctgtttgg acattgaaag aaaaagcgga tatcgctttg 960
ccatgtgcta ctcaaaatga aatagacgaa agcttggccg aaatcttagt agaaaatggg 1020
atcaaaatcg tagcagaagg cgctaatatg ccatgtacag taaaagctgt ttctgttctt 1080
catgaagcag gcgtgtggta ttgtccagga aaagctgcta atgctggagg agtagcagta 1140
tctgctttag aaatgagtca gaacgtccag cgattgactt gggaaagaga gcaagtggat 1200
gagcagctgg atcaaatcat ggaaacgatt taccatacgt gtcgccaaac agcagccgag 1260
tacggcgacg aaaaaaatct gcttcttgga gcaaatgttg ctggatttga aaaagttgcc 1320
aaagcaatgg cagcagaagg tttagtttga 1350
<210> 6
<211> 1338
<212> DNA
<213> Bacillus coagulans
<220>
<223> glnA基因
<400> 6
atgcctaagt ttacacgtga agatattttg aagaatgccg aagaacaaaa tgtgaaattc 60
atccgcttgc agttcacgga tattttgggg acgattaaaa acgtggaaat cccgctcagc 120
cagcttgaaa aagcgctcga caataaaatc atgttcgacg gctcttcgat tgaagggttt 180
gtccggattg aagaatcgga tatgtatctg tatccggact atgatacatg ggtcattttc 240
ccgtggaccg ctgagaaagg gaaagtcgcc cgtctgattt gcgatattta taatccggac 300
ggcaccccgt ttgaaggtga tccgcggaat aatttgaaac gggtattgaa agaaatggaa 360
gaacttggct tcacgagttt taatcttggg cctgaaccgg aattcttcct cttcaagctg 420
aatgaaaaaa atgaaccgac actggagctg aacgacaacg gcggctattt tgacctggcg 480
ccgacggacc ttggcgaaaa ctgccggcgc gacatcgtat tggaactcga ggaaatgggc 540
tttgaaattg aagcgtccca ccatgaagtt gcacccggcc agcacgaaat tgattttaaa 600
tatgcggatg cagtcagggc atgcgacaat atccagacct ttaaactggt ggtcaagacg 660
attgcacgca aacatggcct gcatgcgacg tttatgccga aaccgttgtt tggcgtgaac 720
ggttccggga tgcacaccaa tctttcgctt tttaaaggaa aagaaaatgc attctatgac 780
ccgaacgatg cagaactgca gctgagcgat acggcatacc agttcattgc cggcattatg 840
aagcatgctt cgaactttac ggctgtcacg aatccgacgg tgaactccta taaacggctt 900
gtgccgggtt atgaagcgcc ttgttatgtt gcctggtccg ctcgcaaccg cagcccgctc 960
atgcggattc cggcttcccg cggtttaagc acgcgcgttg aggtgcgcag cgttgacccg 1020
tctgccaatc cgtatctcgc gctcgccgtc ctgttaaaag cagggcttga cggcatcgcg 1080
aacaaattgc aggcgccgga accggtcgac cgcaacatct atgtcatgac gaaagaagaa 1140
agagaagaag ccggcattgt cgacctcccg ggcacactgc tgcaggcgct ggaaaactta 1200
aaatcggatg atgtaatggt agacgccctt ggcgatcaca ttctcgaaca cttccttgaa 1260
gctaaggaaa ttgaatggga tatgttccgc acacaagtcc accaatggga acgcgaccag 1320
tatatcgaaa tgtattaa 1338

Claims (3)

1.酵母重组菌在减少蛋鸡盲肠氨气产生中的应用,其特征在于,所述酵母重组菌含有谷氨酸脱氢酶基因gdhA和谷氨酰胺合成酶基因glnA,是将含有gdhA基因和glnA基因的重组表达载体转化毕赤酵母GS115菌株后得到;
所述的重组表达载体,其基底载体为pPICZA质粒,通过如下方法构建得到:
合成引物GDH(F)、GDH(R)和GS(F)、GS(R),并在gdhA基因的上下游分别添加EcoR I和Kpn I酶切位点序列,在glnA基因的上下游分别添加Kpn I和Not I酶切位点序列;
以屎肠球菌和凝结芽孢杆菌作为模板,以GDH(F)和GDH(R)作为引物合成gdhA基因序列,以GS(F)和GS(R)作为引物合成glnA基因序列,进行PCR反应;
将pPICZA质粒转化进DH5α感受态细胞中;将已转化的DH5α感受态细胞均匀涂布到博来霉素浓度为50μg/mL的LB固体培养基中,于37℃的生化培养箱内倒置培养12-16h;挑取含有pPICZA质粒的DH5α单菌落于Zeocin浓度为50μg/mL的LB液体培养基中,置于37℃的摇床200rpm振荡培养过夜;取2μL菌液为模板,引物为酵母表达载体的通用引物5’AOX和3’AOX,进行PCR反应;
使用EcoR I酶和Kpn I酶双酶切gdhA扩增产物;使用Kpn I酶和Not I酶双酶切glnA扩增产物;使用EcoR I酶和Not I酶双酶切pPICZA载体;将配好的体系混匀离心、37℃水浴酶切过夜,双酶切后切下目的条带,使用DNA胶回收试剂盒回收目的基因;将gdhA基因与glnA基因双酶切产物连成目的大片段,目的大片段连入pPICZA载体,形成重组载体pPICZA-gdhA/glnA;
所述的重组表达载体经线性化处理后转化毕赤酵母GS115菌株;
在向蛋鸡喂食饲料的同时,喂食经过诱导表达的所述的酵母重组菌菌液;
所述诱导表达的条件是:菌液接种量2%、摇瓶装液量为10%、2%的甲醇添加量、诱导表达5天。
2.根据权利要求1所述的应用,其特征在于:在体外模拟蛋鸡盲肠发酵底物的产气试验中,每500mg发酵底物搭配3mL经过诱导表达的所述的酵母重组菌菌液。
3.根据权利要求2所述的应用,其特征在于:所述的发酵底物为蛋鸡饲料。
CN202011236345.9A 2020-11-09 2020-11-09 一种酵母重组菌及其在减少蛋鸡盲肠氨气产生中的应用 Active CN112625930B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011236345.9A CN112625930B (zh) 2020-11-09 2020-11-09 一种酵母重组菌及其在减少蛋鸡盲肠氨气产生中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011236345.9A CN112625930B (zh) 2020-11-09 2020-11-09 一种酵母重组菌及其在减少蛋鸡盲肠氨气产生中的应用

Publications (2)

Publication Number Publication Date
CN112625930A CN112625930A (zh) 2021-04-09
CN112625930B true CN112625930B (zh) 2023-06-23

Family

ID=75303003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011236345.9A Active CN112625930B (zh) 2020-11-09 2020-11-09 一种酵母重组菌及其在减少蛋鸡盲肠氨气产生中的应用

Country Status (1)

Country Link
CN (1) CN112625930B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023180398A1 (en) * 2022-03-23 2023-09-28 Boehringer Ingelheim International Gmbh Bacterial glutamine synthetase as selection marker in mammalian cells

Also Published As

Publication number Publication date
CN112625930A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
Yuan et al. Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1, 5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil
Horz et al. Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling
Zheng et al. Competitive interactions between methane-and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil
Yang et al. Response of methanotrophs and methane oxidation on ammonium application in landfill soils
Yun et al. Diversity of methanotrophs in Zoige wetland soils under both anaerobic and aerobic conditions
US20140148346A1 (en) Methods of identifying and classifying organohalide-respiring bacteria
CN105481955B (zh) 速生水生植物硝酸盐转运蛋白GeNRT2.1及其编码基因与应用
Zhang et al. Microbial population dynamics and changes in main nutrients during the acidification process of pig manures
Malin et al. Ability of DNA content and DGGE analysis to reflect the performance condition of an anaerobic biowaste fermenter
Ishikawa et al. Denitrification in soil amended with thermophile-fermented compost suppresses nitrate accumulation in plants
Dohrmann et al. Bacterial community structure in experimental methanogenic bioreactors and search for pathogenic clostridia as community members
Zhang et al. Response of ammonium oxidizers to the application of nitrogen fertilizer in an alpine meadow on the Qinghai-Tibetan Plateau
Syed et al. Assessment of farm soil, biochar, compost and weathered pine mulch to mitigate methane emissions
CN107075551A (zh) 7‑脱氢胆固醇和维生素d3的制造法
CN112625930B (zh) 一种酵母重组菌及其在减少蛋鸡盲肠氨气产生中的应用
CN102517306A (zh) 四氢嘧啶合成酶基因、重组载体、重组工程菌及其应用
Boison et al. The rice field cyanobacteria Anabaena azotica and Anabaena sp. CH1 express vanadium-dependent nitrogenase
Jhala Yogeshvari et al. Rapid methods for isolation and screening of methane degrading bacteria
Holmes et al. Molecular analysis of enrichment cultures of marine methane oxidising bacteria
Lee et al. Archaeal diversity during composting of pig manure and mushroom cultural waste based on 16S rRNA sequence
Kravchenko et al. Molecular analysis of high-affinity methane-oxidizing enrichment cultures isolated from a forest biocenosis and agrocenoses
Yang et al. Isolation and characterization of novel denitrifying bacterium Geobacillus sp. SG-01 strain from wood chips composted with swine manure
Murrell et al. Detection of methylotrophic bacteria in natural samples by molecular probing techniques
CN104109679B (zh) 一种甲醛脱氢酶基因CcFALDH及应用
CN105200022B (zh) 萤火虫荧光素酶热稳定性改造的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant