CN112624103B - 一种基于壳聚糖的碳电极材料的制备方法 - Google Patents

一种基于壳聚糖的碳电极材料的制备方法 Download PDF

Info

Publication number
CN112624103B
CN112624103B CN202011585887.7A CN202011585887A CN112624103B CN 112624103 B CN112624103 B CN 112624103B CN 202011585887 A CN202011585887 A CN 202011585887A CN 112624103 B CN112624103 B CN 112624103B
Authority
CN
China
Prior art keywords
electrode material
chitosan
carbon electrode
carbon
ascorbic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011585887.7A
Other languages
English (en)
Other versions
CN112624103A (zh
Inventor
胡中爱
王成娟
李志敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN202011585887.7A priority Critical patent/CN112624103B/zh
Publication of CN112624103A publication Critical patent/CN112624103A/zh
Application granted granted Critical
Publication of CN112624103B publication Critical patent/CN112624103B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种基于壳聚糖的碳电极材料的制备方法,是将壳聚糖,抗坏血酸,FeCl3加入二次水中,在80~90℃下搅拌直至形成均匀的低粘性红棕色溶胶,干燥,即得到碳前驱体材料;将前驱体材料在氮气气氛中进行两步退火处理,即可得到碳电极材料。本发明以壳聚糖作为碳源,FeCl3作为制孔剂,抗坏血酸作为还原剂,Fe3+与壳聚糖和抗坏血酸之间能够形成稳定的化学键,有利于形成丰富的孔结构,从而有利于高比电容的形成。本发明制备方法简单,易于操作,原料来源广泛、价格低廉、绿色环保且利用率高,制备的碳电极材料石墨化程度高,且显示出较高的比电容和良好的倍率性能,可应用于超级电容器、电池等柔性能量转化和存储器件。

Description

一种基于壳聚糖的碳电极材料的制备方法
技术领域
本发明涉及一种碳电极材料的制备方法,尤其涉及一种基于壳聚糖的碳电极材料的制备方法,属于生物质材料和电化学材料制备领域。
背景技术
随着全球经济和人口激增等问题的出现,能源短缺和环境污染问题一直是人类面临的挑。这些问题的加剧使得电能代替石油是一种必然的趋势。近年来,超级电容器(SCs)作为一种很有前景的储能设备受到了人们的关注,与锂离子电池相比,它具有更快的充放电周期、更高的功率密度,既具备传统电池的高储能能力又有传统电容器的高供电能力,弥补了传统电容器与电池之间的差距,被视为理想的电化学储能设备。
对于SCs而言,电极材料对其性能起着关键性的作用。根据不同的储能机理可将超级电容器的电极材料分为两类:(1)以碳材料为主的双电层电极材料(2)以过渡金属(氢)氧化物和导电聚合物为主的赝电容电极材料。常见的碳基电极材料主要有:活性炭、碳纳米管、石墨烯、碳纤维、模板碳、多孔碳等。其中多孔碳材料以孔隙结构丰富、比表面积大、稳定性好、原料来源广泛、价格低廉、制备工艺简单且绿色环保等优点,受到研究者的广泛关注。然而,多孔碳材料属于双电层储能机理,大多数使用生物质衍生碳材料的研究具有低的比电容或较差的倍率性能,同时得到的电极材料石墨化程度低。
发明内容
针对上述技术问题,本发明的目的是提供一种具有高比电容、良好倍率性能和较高石墨化程度的基于壳聚糖的碳电极材料的制备方法。
一、碳电极材料的制备
(1)将壳聚糖、抗坏血酸、FeCl3加入二次水中,在80~90℃下搅拌直至形成均匀的低粘性红棕色溶胶,在50~70℃下干燥10~12h,即得到碳前驱体材料。其中,所述抗坏血酸、壳聚糖、FeCl3的质量比为1:1:1~1:2:4;所述壳聚糖、抗坏血酸、FeCl3在二次水中的浓度为0.02~0.12g/mL。
(2)将前驱体材料在氮气气氛中进行两步退火处理,首先以3~5℃/min的速率升温至300~500℃,保持30~100min,然后再升温至700~900℃,保持100~180min,用HCl和二次水洗涤,50~70℃下干燥,即可得到碳电极材料。
二、碳电极材料的结构表征
1、场发射扫描电镜(FE-SEM)分析
图1a,b为本发明制备的碳电极材料在不同放大倍数下的场发射扫描电镜(FE-SEM)图片。从图中可以观察到碳电极材料是相互交联的类石墨烯纳米片层结构,且具有开放的孔道结构。
2、X衍射谱图(XRD)分析
图2为本发明制备的碳电极材料的X衍射(XRD)谱图。从图谱中可以看到,该材料在24.1°和43.3°处有两个衍射峰,分别对应于无序微晶面(002)和石墨型碳(100)晶面,表明该材料以无定形结构的形式存在。
3、拉曼(Raman)分析
图3为本发明制备的碳电极材料的拉曼(Raman)谱图。从图谱中可以看到,该材料在1327cm-1(D带)和1598cm-1(G带)有两个尖峰,分别代表石墨化碳和石墨层的缺陷和紊乱程度。D峰和G峰的强度比为0.95,表明虽然该材料具有较高的石墨化程度,但仍然以无定形结构的形式存在。
三、电化学性能测试
电化学性能测试是在室温下利用电化学工作站CHI660E(辰华,上海,中国)在三电极体系中完成的。下面通过电化学工作站CHI660E对本发明制备的碳电极材料的电化学性能进行详细说明。
1、工作电极的制备
在三电极体系下,使用玻碳电极(直径5mm)作为集流体。将4mg碳电极材料和0.7mg乙炔黑的混合固体粉充分研磨,加入到0.4mL质量分数为0.25wt%的Nafion溶液中超声分散形成悬浮液,然后用移液枪量取6μL上述悬浮液滴于玻碳电极表面,室温下干燥。
2、电化学性能测试
以上述制备的电极作为工作电极,饱和甘汞和碳棒分别作为参比电极和对电极组成三电极体系,1mol/LNaSO4溶液作为电解质溶液进行电化学性能测试。如图4所示为本发明制备的碳电极材料在不同扫速下的循环伏安(CV)曲线。从图中的可以看出:当扫速从5mV/s增加到50mV/s时,可观察到曲线呈矩形形状基本保持不变,这是由于碳电极材料典型的双电层储能机理。
图5为本发明制备的碳电极材料在不同电流密度下的恒电流充放电(GCD)曲线。从图中的可以看出:随着电流密度由1A/g增大到10A/g时,比电容分别为262,244,240,230,226,222F/g且所有曲线仍保持对称的等腰三角形形状,表明该电极材料具有良好的电化学可逆性,同时从数据中也可看出该碳电极材料具有较高的比电容和良好的倍率性能。
图6为本发明制备的碳电极材料在频率范围为0.1Hz~100kHz,偏置电压为0.9V下测得的交流阻抗图。曲线由两部分组成包括高频区的半圆和低频区的直线,半圆与实部的第一个交点表示等效串联电阻(Rs),它代表电解液中的离子电阻,电解液与电极材料之间的界面电阻,电极材料自身的电阻以及电极材料与导电集流体之间接触电阻的总和,高频区半圆的直径表示电荷转移电阻(Rct),低频区直线的斜率表示电解液的扩散电阻。从图中可看出:本发明制备的碳电极材料具有较低的等效串联电阻和电荷转移电阻,电解液的扩散阻力较低,离子传输速度较快;低频区的直线与虚轴接近平行也表明该电极材料具有良好的电容性质。
综上所述,本发明和现有技术相比具有以下优点:
1、本发明以富含多氨基和多羟基的生物质材料壳聚糖天然高分子作为碳源,FeCl3作为制孔剂,抗坏血酸作为还原剂制备碳电极材料,Fe3+与壳聚糖和抗坏血酸之间能够形成稳定的化学键,有利于形成丰富的孔结构,从而有利于高比电容的形成。
2、本发明解决了使用生物质衍生碳材料制备碳电极材料石墨化程度低,以及具有低比电容或低倍率性能的问题,制备的碳电极材料石墨化程度高,并显示出较高的比电容和良好的倍率性能,可应用于超级电容器、电池等柔性能量转化和存储器件。
3、本发明制备方法简单,易于操作,原料来源广泛、价格低廉、绿色环保且利用率高。
附图说明
图1为为本发明制备的碳电极材料在不同放大倍数下的场发射扫描电镜(FE-SEM)图片。
图2为本发明制备的碳电极材料的X衍射(XRD)谱图。
图3为本发明制备的碳电极材料的拉曼(Raman)谱图。
图4为本发明制备的碳电极材料在不同扫速下的循环伏安(CV)曲线。
图5为本发明制备的碳电极材料在不同电流密度下的恒电流充放电(GCD)曲线。
图6为本发明制备的碳电极材料在频率范围为0.1Hz~100kHz,偏置电压为0.9V下测得的交流阻抗图。
具体实施方式
下面通过具体实施例对本发明碳电极材料的制备及电化学性能作进一步详细的说明。
使用的仪器和试剂:电子天平(北京赛多利斯仪器有限公司)用于称量药品;恒温磁力搅拌器(90-1上海沪西分析仪器厂);CHI660E电化学工作站(上海辰华仪器公司)用于电化学性能测试;FE-SEM(Ultra Plus,CarlZeiss,Germany)场发射扫描电子显微镜用于材料的形貌表征;由粉末X-射线衍射仪(XRD;D/Max-2400,Cu靶: λ=0.15418nm,扫描速率为5℃/min,管电压为40kV,管电流为60mA)对材料的晶体结构进行分析;拉曼光谱采用inVia拉曼光谱仪(Renishawλ=514nm)完成。壳聚糖(山东荣宜达纤维有限公司);抗坏血酸(上海中秦化学试剂有限公司);FeCl3(西陇化工股份有限公司)。实验过程中使用的水均为二次水,实验所用的试剂均为分析纯。
实施例1
(1)碳电极材料的制备:将2g壳聚糖,1g抗坏血酸和3gFeCl3加入35mL二次水中,在85℃下搅拌直至形成均匀的低粘性红棕色溶胶,在60℃下干燥10h,即可得碳前驱体材料;将前驱体材料在氮气气氛中进行两步退火处理,首先以3℃/min的速率升温至300℃,保持60min,然后再升温至800℃,保持120min,最后用1mol/L的HCl和二次水多次洗涤,最后在60℃下干燥,即可得碳电极材料。
(2)工作电极的制备:在三电极体系下,使用玻碳电极(直径5mm)作为集流体。将4mg碳电极材料和0.7mg乙炔黑的混合固体粉充分研磨,加入到0.4mL质量分数为0.25wt%的Nafion溶液中超声分散形成悬浮液,然后用移液枪量取6μL上述悬浮液滴于玻碳电极表面,室温下干燥。
(3)电化学性能测试:以上述制备的电极作为工作电极,饱和甘汞和碳棒分别作为参比电极和对电极组成三电极体系,1mol/LNaSO4溶液作为电解质溶液进行电化学性能测试。测试结果表明,当电流密度为1A/g时,碳电极材料的比电容可以达262F/g。
实施例2
(1)碳电极材料的制备:将2g壳聚糖,2g抗坏血酸和2gFeCl3加入35mL二次水中,在85℃下搅拌直至形成均匀的低粘性红棕色溶胶,在60℃下干燥10h,即可得碳前驱体材料;将前驱体材料在氮气气氛中进行两步退火处理,首先以3℃/min的速率升温至400℃,保持60min,然后再升温至800℃,保持120min,最后用1mol/L的HCl和二次水多次洗涤,最后在60℃下干燥,即可得碳电极材料。
(2)工作电极的制备及电化学性能测试过程同实施例1,当电流密度为1A/g时,碳电极材料的比电容为243F/g。
实施例3
(1)碳电极材料的制备:将2g壳聚糖,1g抗坏血酸和4gFeCl3加入35mL二次水中,在85℃下搅拌直至形成均匀的低粘性红棕色溶胶,在60℃下干燥10h,即可得碳前驱体材料;将前驱体材料在氮气气氛中进行两步退火处理,首先以3℃/min的速率升温至500℃,保持60min,然后再升温至700℃,保持120min,最后用1mol/L的HCl和二次水多次洗涤,最后在60℃下干燥,即可得碳电极材料。
(2)工作电极的制备及电化学性能测试过程同实施例1,当电流密度为1A/g时,碳电极材料的比电容为250F/g。

Claims (5)

1.一种基于壳聚糖的碳电极材料的制备方法,包括以下步骤:
(1)将壳聚糖、抗坏血酸、FeCl3加入二次水中,在80~90℃下搅拌直至形成均匀的低粘性红棕色溶胶,干燥,即得到碳前驱体材料;
(2)将前驱体材料在氮气气氛中进行两步退火处理,首先以3~5℃/min的速率升温至300~500℃,保持30~100min,然后再升温至700~900℃,保持100~180min,用HCl和二次水洗涤,干燥,即可得到碳电极材料。
2.如权利要求1所述一种基于壳聚糖的碳电极材料的制备方法,其特征在于:步骤(1)中,所述抗坏血酸、壳聚糖、FeCl3的质量比为1:1:1~1:2:4。
3.如权利要求1所述一种基于壳聚糖的碳电极材料的制备方法,其特征在于:步骤(1)中,所述壳聚糖、抗坏血酸、FeCl3在二次水中的浓度为0.02~0.12g/mL。
4.如权利要求1所述一种基于壳聚糖的碳电极材料的制备方法,其特征在于:步骤(1)中,所述干燥是在50~70℃下干燥10~12h。
5.如权利要求1所述一种基于壳聚糖的碳电极材料的制备方法,其特征在于:步骤(2)中,干燥温度为50~70℃。
CN202011585887.7A 2020-12-29 2020-12-29 一种基于壳聚糖的碳电极材料的制备方法 Active CN112624103B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011585887.7A CN112624103B (zh) 2020-12-29 2020-12-29 一种基于壳聚糖的碳电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011585887.7A CN112624103B (zh) 2020-12-29 2020-12-29 一种基于壳聚糖的碳电极材料的制备方法

Publications (2)

Publication Number Publication Date
CN112624103A CN112624103A (zh) 2021-04-09
CN112624103B true CN112624103B (zh) 2023-04-07

Family

ID=75286006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011585887.7A Active CN112624103B (zh) 2020-12-29 2020-12-29 一种基于壳聚糖的碳电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN112624103B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114261960A (zh) * 2021-12-28 2022-04-01 南京林业大学 吡啶n-b构型掺杂到石墨烯纳米带/非晶碳材料及其制备方法与应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212285B2 (en) * 2012-02-08 2015-12-15 Council Of Scientific & Industrial Research Electronically conducting carbon and carbon-based material by pyrolysis of dead leaves and other similar natural waste
WO2015145155A1 (en) * 2014-03-28 2015-10-01 The University Of Manchester Reduced graphene oxide barrier materials
CN104445177B (zh) * 2014-12-16 2016-09-28 中国科学院宁波材料技术与工程研究所 一种石墨烯的制备方法及石墨烯
CN105314629B (zh) * 2015-11-27 2017-08-11 燕山大学 一种生物质碳源直接制备共掺杂三维石墨烯电极材料的方法
CN108689412A (zh) * 2017-04-12 2018-10-23 中国科学院苏州纳米技术与纳米仿生研究所 一种气凝胶微粉及其制备方法
CN111825078B (zh) * 2019-04-22 2021-12-10 南京大学 一种制备三维石墨烯泡沫体材料的方法
CN110514728B (zh) * 2019-07-29 2020-05-12 宁德师范学院 高灵敏的Fe-PANI/Pt@Au多巴胺电化学检测电极及其制备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Chitosan-ZnO/polyaniline ternary nanocomposite for high-performance supercapacitor";Pandiselvi K. et al;《Ionics》;20131116;第551-561页 *
"功能化金纳米材料的合成、性质及其在化学发光传感器中的应用研究";王伟;《中国博士学位论文全文数据库工程科技Ⅰ辑》;20090715;第B020-34页 *

Also Published As

Publication number Publication date
CN112624103A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
Cheng et al. Green needle coke-derived porous carbon for high-performance symmetric supercapacitor
Meng et al. Double perovskite La2CoMnO6 hollow spheres prepared by template impregnation for high-performance supercapacitors
Wei et al. Metal-organic framework-derived hollow CoS nanobox for high performance electrochemical energy storage
Ding et al. Facile and large-scale chemical synthesis of highly porous secondary submicron/micron-sized NiCo2O4 materials for high-performance aqueous hybrid AC-NiCo2O4 electrochemical capacitors
Liao et al. Hydrothermal synthesis of mesoporous MnCo2O4/CoCo2O4 ellipsoid-like microstructures for high-performance electrochemical supercapacitors
Ruibin et al. Monodisperse carbon microspheres derived from potato starch for asymmetric supercapacitors
Li et al. Facile synthesis of CoS porous nanoflake for high performance supercapacitor electrode materials
Ren et al. CoS2 hollow nanocubes derived from Co-Co Prussian blue analogue: High-performance electrode materials for supercapacitors
Feng et al. Construction of 3D hierarchical porous NiCo2O4/graphene hydrogel/Ni foam electrode for high-performance supercapacitor
Jiang et al. Ultrafine SnO2 in situ modified graphite felt derived from metal–organic framework as a superior electrode for vanadium redox flow battery
Xiao et al. Porous biomass carbon derived from peanut shells as electrode materials with enhanced electrochemical performance for supercapacitors
Pang et al. Mesoporous NiCo 2 O 4 nanospheres with a high specific surface area as electrode materials for high-performance supercapacitors
CN104362001B (zh) 二氧化锰/石墨烯/多孔碳复合材料的制备及其作为超级电容器电极材料的应用
Xu et al. N/O co-doped porous interconnected carbon nanosheets from the co-hydrothermal treatment of soybean stalk and nickel nitrate for high-performance supercapacitors
Ji et al. Ni/MnO2 doping pulping lignin-based porous carbon as supercapacitors electrode materials
Gutturu et al. Effect of reaction time and PVP contents on morphologies of hierarchical 3D flower‐like ZnCo2O4 microstructures for energy storage devices
Xing et al. Revealing the impacting factors of cathodic carbon catalysts for Li-CO2 batteries in the pore-structure point of view
Wei et al. Inherently porous Co3O4@ NiO core–shell hierarchical material for excellent electrochemical performance of supercapacitors
Li et al. A manganese oxide/biomass porous carbon composite for high-performance supercapacitor electrodes
Zhang et al. One-step hydrothermal synthesis of NiCo2S4 nanoplates/nitrogen-doped mesoporous carbon composites as advanced electrodes for asymmetric supercapacitors
Cai et al. Utilization of high‑sulfur-containing petroleum coke for making sulfur-doped porous carbon composite material and its application in supercapacitors
Dang et al. Facile synthesis of rod-like nickel-cobalt oxide nanostructure for supercapacitor with excellent cycling stability
Gong et al. Preparation of mesocarbon microbeads as anode material for lithium-ion battery by co‑carbonization of FCC decant oil and conductive carbon black
Chen et al. In-situ growth of core-shell NiCo2O4@ Ni-Co layered double hydroxides for all-solid-state flexible hybrid supercapacitor
Liu et al. Highly nitrogen-doped graphene anchored with Co3O4 nanoparticles as supercapacitor electrode with enhanced electrochemical performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant