CN112615046A - 一种锂电池固态电解质界面层原位调控的方法 - Google Patents

一种锂电池固态电解质界面层原位调控的方法 Download PDF

Info

Publication number
CN112615046A
CN112615046A CN202011356987.2A CN202011356987A CN112615046A CN 112615046 A CN112615046 A CN 112615046A CN 202011356987 A CN202011356987 A CN 202011356987A CN 112615046 A CN112615046 A CN 112615046A
Authority
CN
China
Prior art keywords
lithium
solid electrolyte
battery
electrolyte membrane
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011356987.2A
Other languages
English (en)
Other versions
CN112615046B (zh
Inventor
孙呈郭
安百钢
郑金刚
李峰
刘少军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Liaoning USTL
Original Assignee
University of Science and Technology Liaoning USTL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Liaoning USTL filed Critical University of Science and Technology Liaoning USTL
Priority to CN202011356987.2A priority Critical patent/CN112615046B/zh
Publication of CN112615046A publication Critical patent/CN112615046A/zh
Application granted granted Critical
Publication of CN112615046B publication Critical patent/CN112615046B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/44Electrochemical polymerisation, i.e. oxidative or reductive coupling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/516Charge transport ion-conductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种锂电池固态电解质界面层原位调控的方法,该方法包括以下步骤:(1)将有机聚合物、有机单体、锂盐形成的溶液浇铸于聚四氟乙烯模具中,采用分段式真空干燥,获得固态电解质膜;(2)将所述的固态电解质膜按照“正极材料‑电解质膜‑负极材料”的顺序装成电池;(3)将组装的电池在温度50~80℃,电压0~2.5V,4.9~5.1μA的恒电流下,进行电化学聚合,在固体电极电解质界面形成电子/离子混合导体的聚合物导电层。本发明通过在固体电解质膜中生长出导电聚合物,在原子层面上将电极和电解质界面紧密连接起来,可以有效解决电极与电解质膜界面接触不好、阻抗过大的问题,明显改善固态锂离子电池界面稳定性、循环稳定性及倍率性能。

Description

一种锂电池固态电解质界面层原位调控的方法
技术领域
本发明属于全固态锂电池技术领域,特别是一种锂电池固态电解质界面层原位调控的方法。
背景技术
全固态锂离子电池被认为是下一代具有高安全性和高能量密度的二次电池,固态电解质代替液态电解质能够有效地解决传统锂离子电池中有机电解液易燃、易爆的缺点,又能与金属锂负极兼容,减缓电解质膜与锂金属电极之间的界面劣化,防止枝晶生长,同时又能够实现高比容量性能。
然而,电极和固态电解质之间的固固接触存在严重的界面接触阻抗,接触不好,导致锂离子在界面迁移受阻;电池在长期循环过程中界面易恶化,抗氧化降解能力差,锂离子电池的容量利用率降低,循环稳定性衰退快,电池的循环寿命短。
发明内容
针对全固态锂离子电池电极和固态电解质界面接触不好,阻抗过大,导致固态锂离子电池在充放电过程中循环稳定性和倍率性能较差的问题,本发明的提供了一种锂电池固态电解质界面层原位调控的方法。本发明通过原位电化学使有机单体在电极/电解质膜界面发生聚合,形成导电聚合物。由于导电聚合物是从在电解质膜中生长出来,能够在原子规模上将电极和电解质界面紧密连接起来,形成的聚合物导电层,其既能够传导电子又不影响锂离子的迁移,从而改善固-固界面接触不好的问题,提高电极/电解质界面稳定性,电池的循环稳定性。
为实现上述目的,本发明采用以下技术方案实现。
在固态电极电解质界面原位制备聚合物导电层,所述的聚合物导电层由有机单体、有机聚合物、锂盐通过电化学原位聚合得到。
所述的有机单体为噻吩、吡咯、苯胺、2,2`-联二噻吩、3-溴噻吩、3-氰基噻吩、N-取代基吡咯、3-十二烷基噻吩中的一种或任意两种的混合物;所述有机单体质量占电解膜质量的7~20%。
所述的有机聚合物为聚氧化乙烯、聚甲基丙烯酸甲酯、聚丙烯腈、聚偏氟乙烯-六氟丙烯共聚物中的一种或多种的混合物,所述的有机聚合物质量为电解膜质量的65~85%。
所述的锂盐为双三氟甲磺酰亚胺基锂、高氯酸锂、草酸锂、二氟草酸硼酸锂中的一种或任意两种的混合物;所述的锂盐质量占电解膜质量的10~40%。
所述的一种锂电池固态电解质界面层原位调控的方法,包括如下技术步骤:
(1)将有机聚合物、有机单体、锂盐形成的溶液浇铸于直径为85~95cm圆形的聚四氟乙烯模具中,采用分段式真空干燥,获得固态电解质膜;
(2)将所述的固态电解质膜按照“正极材料-电解质膜-负极材料”的顺序装成电池;
(3)将组装的电池在温度50~80℃,电压0~2.5V,4.9~5.1μA的恒电流下,进行电化学聚合,在固体电极电解质界面形成电子/离子混合导体的聚合物导电层。
所述分段式真空干燥条件为首先在压力0.03~0.05Mpa,温度35-50℃,干燥23~25h;然后在压力0.05~0.1Mpa,温度35~50℃,干燥23~25h。
所述的正极材料为磷酸铁锂、钴酸锂、三元电极材料及不锈钢片;所述的负极材料为金属锂片、石墨。
对于组装的不对称电池,利用蓝电充放电仪,电压优选1.5~2.0V,电流4.9~5.1μA,恒流充放电290~310次;对于组装的对称电池,在电化学工作站上,电压优选0~1.0V,电流4.9~5.1μA,恒流充放电290~310次。
本发明设计原理是:有机单体噻吩、吡咯、苯胺及其衍生物在一定电压的驱动下,通过电化学催化,会在电极/电解质界面层原位聚合,形成“离子/电子导电聚合物。由于导电聚合物是从电解质膜中生长出来,能够在原子层面上将电极和电解质界面紧密连接起来,形成的聚合物导电层具有较好的稳定性和电子传输能力,可有效消除电极/电解质界面的空间电荷层,促进锂离子的扩散和电子的传输;同时噻吩、吡咯、苯胺及其衍生物等形成的导电聚合物具有较好抗高压分解能力,进一步增强了界面的稳定性,抵抗固态电池长期循环过程中界面的氧化降解。高稳定、致密接触的界面是维持了固态离子电池良好容量性能和长期循环稳定性的重要动力。
与现有技术相比,本发明的有益效果如下:
(1)本发明通过原位电化学催化,将有机单体在电极-电解膜界面聚合成导电聚合物,可增强固态电解质膜-电极间的电子传输能力,降低界面阻抗,提高离子导电率、电池界面稳定性、阻止副反应发生。
(2)本发明可促进锂在负极和金属锂界面的均匀沉积、抑制锂枝晶生长,提高正负两极与电解膜界面层的稳定性、致密性,该方法简单、高效,适合商业化。
附图说明
图1为固态电极电解质界面原位制备聚合物导电层示意图,形成的离子/电子导电聚合物界面层数码图片。
图2为原位电化学形成离子/电子导电聚合物颗粒形貌表征及电解质膜形貌表征,其中,a为离子/电子导电聚合物颗粒光学显微镜图片,b、d为离子/电子导电聚合物颗粒扫描电镜图,c为离子/电子导电聚合物界面层的电解质膜表面原子力显微镜图。
图3为原位电化学形成离子/电子导电聚合物界面层的非对称锂电池切面界面表征。其中,a为正极-电解质膜-负极全截面界面扫描电镜图,b为负极-电解质膜截面界面扫描电镜图,c为正极-电解质膜截面界面扫描电镜图。
图4为电池内部离子/电子导电聚合物界面层形成前后交流阻抗对比图。其中,a为对称电池在电压促使下,离子/电子导电聚合物界面层形成过程中,恒流充放电不同循环圈数交流阻抗对比,b为非对称全电池在电压促使下,离子/电子导电聚合物界面层形成前后交流阻抗对比图。
图5为非对称全电池性能图,其中,a为测试不同倍率下的电压-比容量,b为2C大倍率条件下长循环性能。
具体实施方式
以下将结合具体实例对本发明做进一步阐述。
【实施例1】
所述的一种锂电池固态电解质界面层原位调控的方法,在固态电极电解质界面原位制备聚合物导电层,包括如下技术步骤:
有机单体噻吩、有机聚合物PEO、锂盐双三氟甲磺酰亚胺基锂质量分别占电解膜质量的7.7%、77%和15.3%,得到的1.30g的固态电电解质溶解在20ml乙腈中,其中磁力搅拌溶解18-36h,形成均一、透明的溶液,浇铸于直径为90cm圆形的聚四氟乙烯模具中,采用分段式真空干燥,条件为首先在压力0.03~0.05Mpa,温度35-50,℃干燥23~25h;然后在压力0.05~0.1Mpa,温度35~50℃,干燥23~25h,除去溶剂,获得固态电解质膜。
(2)将所述的固态电解质膜切成厚度为70μm的薄片,按照“正极材料-电解质膜-负极材料”的顺序装成CR2025型对称/非对称电池,见图1。
(3)将组装的电池在温度60℃,电压0~2.5V,5μA的恒电流下,进行电化学聚合,在固体电极电解质界面形成电子/离子混合导体界面层。
对于组装的不对称电池,利用蓝电充放电仪,电压优选1.5~2.0V和电流为5μA,恒流充放电300次;对于组装的对称电池,在电化学工作站上,电压优选0~1.0V和电流为5μA,恒流充放电300次。利用扫描电镜、原子力显微镜等设备对其进行形貌等特性表征,结果见图2-5。
【实施例2】
与实施例1不同的是,实施例2中以2,2`-联二噻吩作为有机单体,添加量与噻吩保持一致,其中PEO含量为77%、2,2`-联二噻吩含量占7.7%及双三氟甲磺酰亚胺基锂含量占15.3%,其余均相同,在此实施例中不再赘述。
【实施例3】
与实施例1不同的是,实施例3中以吡咯作为有机单体,添加量相比施例1增加一倍,其中PEO含量为71.4%、2,2`-联二噻吩含量占14.3%及双三氟甲磺酰亚胺基锂含量占14.3%,其余均相同,组装成CR2025型对称/不对称电池。对于组装的不对称电池,放置于蓝电充放电仪,设置充放电电压区间2~2.5V和电流为5μA,恒流充放电300次;对于组装的对称电池,在电化学工作站上,电压优选0~1.0V和电流为5μA,恒流充放电300次。其余步骤与实施例1相同,在此实施例中不再赘述。
【实施例4】
与实施例1不同的是,实施例4中高氯酸锂为锂盐取代双三氟甲磺酰亚胺基锂,添加质量相同,所用量占固态电电解质总量的15.3%。其余均相同,在此实施例中不再赘述。
以上对本发明实施例做了详细的阐述,需要强调的是,上述的阐述、说明仅为本发明的具体实施例,本发明包括但不局限于上述实施例,该技术领域相关技术人员应该清晰明了,凡在本发明的思想和原则之内所做的任何等效替换、辅助成分的添加、改进等,均应包含在本发明的保护范围和公开范围之内。

Claims (8)

1.一种锂电池固态电解质界面层原位调控的方法,其特征在于,在固态电极电解质界面原位制备聚合物导电层,所述的聚合物导电层由有机单体、有机聚合物、锂盐通过电化学原位聚合得到。
2.根据权利要求1所述的一种锂电池固态电解质界面层原位调控的方法,其特征在于,所述的有机单体为噻吩、吡咯、苯胺、2,2`-联二噻吩、3-溴噻吩、3-氰基噻吩、N-取代基吡咯、3-十二烷基噻吩中的一种或任意两种的混合物;所述有机单体质量占电解膜质量的7~20%。
3.根据权利要求1所述的一种锂电池固态电解质界面层原位调控的方法,其特征在于,所述的有机聚合物为聚氧化乙烯、聚甲基丙烯酸甲酯、聚丙烯腈、聚偏氟乙烯-六氟丙烯共聚物中的一种或多种的混合物,所述的有机聚合物质量为电解膜质量的65~85%。
4.根据权利要求1所述的一种锂电池固态电解质界面层原位调控的方法,其特征在于,所述的锂盐为双三氟甲磺酰亚胺基锂、高氯酸锂、草酸锂、二氟草酸硼酸锂中的一种或任意两种的混合物;所述的锂盐质量占电解膜质量的10~40%。
5.根据权利要求1所述的一种锂电池固态电解质界面层原位调控的方法,其特征在于,该方法包括如下技术步骤:
(1)将有机聚合物、有机单体、锂盐形成的溶液浇铸于直径为85~95cm圆形的聚四氟乙烯模具中,采用分段式真空干燥,获得固态电解质膜;
(2)将所述的固态电解质膜按照“正极材料-电解质膜-负极材料”的顺序装成电池;
(3)将组装的电池在温度50~80℃,电压0~2.5V,4.9~5.1μA的恒电流下,进行电化学聚合,在固体电极电解质界面形成电子/离子混合导体的聚合物导电层。
6.根据权利要求5所述的一种锂电池固态电解质界面层原位调控的方法,其特征在于,所述分段式真空干燥条件为首先在压力0.03~0.05Mpa,温度35-50℃,干燥23~25h;然后在压力0.05~0.1Mpa,温度35~50℃,干燥23~25h。
7.根据权利要求5所述的一种锂电池固态电解质界面层原位调控的方法,其特征在于,所述的正极材料为磷酸铁锂、钴酸锂、三元电极材料及不锈钢片;所述的负极材料为金属锂片、石墨。
8.根据权利要求5所述的一种锂电池固态电解质界面层原位调控的方法,其特征在于,对于组装的不对称电池,利用蓝电充放电仪,电压优选1.5~2.0V,电流4.9~5.1μA,恒流充放电290~310次;对于组装的对称电池,在电化学工作站上,电压优选0~1.0V,电流4.9~5.1μA,恒流充放电290~310次。
CN202011356987.2A 2020-11-27 2020-11-27 一种锂电池固态电解质界面层原位调控的方法 Active CN112615046B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011356987.2A CN112615046B (zh) 2020-11-27 2020-11-27 一种锂电池固态电解质界面层原位调控的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011356987.2A CN112615046B (zh) 2020-11-27 2020-11-27 一种锂电池固态电解质界面层原位调控的方法

Publications (2)

Publication Number Publication Date
CN112615046A true CN112615046A (zh) 2021-04-06
CN112615046B CN112615046B (zh) 2023-11-21

Family

ID=75225954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011356987.2A Active CN112615046B (zh) 2020-11-27 2020-11-27 一种锂电池固态电解质界面层原位调控的方法

Country Status (1)

Country Link
CN (1) CN112615046B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113588516A (zh) * 2021-07-27 2021-11-02 东南大学 一种导电聚合物用于固态电解质界面膜的可行性测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340368A (en) * 1993-08-04 1994-08-23 Valence Technology, Inc. Method for in situ preparation of an electrode composition
US5527434A (en) * 1992-01-18 1996-06-18 The University Of Newcastle Upon Tyne Process for the preparation of conductive polymers
US20020018926A1 (en) * 2000-07-10 2002-02-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Lithium secondary battery
CN109004229A (zh) * 2018-08-03 2018-12-14 中国地质大学(武汉) 一种锂离子电池正极材料添加剂及其正极材料和锂离子二次电池
CN109786675A (zh) * 2018-12-28 2019-05-21 中国电子科技集团公司第十八研究所 一种固态锂电池金属锂负极的界面修饰方法
CN111525181A (zh) * 2020-05-08 2020-08-11 上海空间电源研究所 一种低界面电阻的全固态电池及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527434A (en) * 1992-01-18 1996-06-18 The University Of Newcastle Upon Tyne Process for the preparation of conductive polymers
US5340368A (en) * 1993-08-04 1994-08-23 Valence Technology, Inc. Method for in situ preparation of an electrode composition
US20020018926A1 (en) * 2000-07-10 2002-02-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Lithium secondary battery
CN109004229A (zh) * 2018-08-03 2018-12-14 中国地质大学(武汉) 一种锂离子电池正极材料添加剂及其正极材料和锂离子二次电池
CN109786675A (zh) * 2018-12-28 2019-05-21 中国电子科技集团公司第十八研究所 一种固态锂电池金属锂负极的界面修饰方法
CN111525181A (zh) * 2020-05-08 2020-08-11 上海空间电源研究所 一种低界面电阻的全固态电池及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113588516A (zh) * 2021-07-27 2021-11-02 东南大学 一种导电聚合物用于固态电解质界面膜的可行性测试方法

Also Published As

Publication number Publication date
CN112615046B (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
CN108493486B (zh) 一种原位聚合固态电池的制备方法
CN110400932B (zh) 一种电化学电芯及其制备方法
EP3261164B1 (en) Gel polymer electrolyte, method for preparing same, and electrochemical device comprising same
CN112018430A (zh) 一种基于原位热聚合方法制备的复合固态电解质及其制备方法和应用
CN112133961B (zh) 一种凝胶电解质前驱体及其应用
CN109346767A (zh) 一种固态聚合物电解质及其在锂金属电池中的应用
US20220328873A1 (en) Polyoxymethylene-based all-solid-state polymer electrolyte prepared by in-situ ring-opening polymerization and application
CN108963332A (zh) 一种复合固体电解质材料及制备方法和全固态电池
CN102694158A (zh) 一种含硅锂负极、其制备方法及包含该负极的锂硫电池
CN111934020B (zh) 一种耐高压全固态锂电池界面层及其原位制备方法和应用
KR20190124518A (ko) 고체 전해질 전지용 양극 및 그를 포함하는 고체 전해질 전지
CN108365165A (zh) 一种新型电解质复合方式的固态锂电池及其制备方法
US20230098496A1 (en) All solid-state electrolyte composite based on functionalized metal-organic framework materials for lithium secondary battery and method for manufacturing the same
CN112635917A (zh) 一种用于碱金属基电池的高强度功能隔膜及制备方法和碱金属基电池
CN114976263A (zh) 正极和电解质一体化的固态电池及其制备方法
CN114300737A (zh) 一种原位固化电池的制备方法和锂离子电池
CN116487689A (zh) 低温运行的凝胶聚合物电解质、固态电池及其制备方法
CN115020802A (zh) 原位紫外光固化纳米纤维复合固态电解质及其制备方法和应用
CN112615046B (zh) 一种锂电池固态电解质界面层原位调控的方法
CN115714200B (zh) 一种选择性固化制备固态电池的方法
CN117613374A (zh) 稳定性提高的原位聚合凝胶聚合物电解质及其制备方法和应用
CN116864784A (zh) 一种正极-电解质一体化固态钠电池及其制备方法
CN111710901A (zh) 一种复合电解质膜及其制备方法
CN113394376B (zh) 一种耐高压固态电池复合正极及其制备方法
WO2014084182A1 (ja) 蓄電デバイス、およびそれに用いる電極並びに多孔質シート

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant