CN112610604A - 一种基于电磁力调节的气磁混合支承误差补偿方法 - Google Patents

一种基于电磁力调节的气磁混合支承误差补偿方法 Download PDF

Info

Publication number
CN112610604A
CN112610604A CN202011618534.2A CN202011618534A CN112610604A CN 112610604 A CN112610604 A CN 112610604A CN 202011618534 A CN202011618534 A CN 202011618534A CN 112610604 A CN112610604 A CN 112610604A
Authority
CN
China
Prior art keywords
error
point
electromagnetic force
compensation method
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011618534.2A
Other languages
English (en)
Other versions
CN112610604B (zh
Inventor
杨涛
刘敬坤
刘梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Longtian Jinggong Technology Co ltd
Original Assignee
Sichuan Longtian Jinggong Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Longtian Jinggong Technology Co ltd filed Critical Sichuan Longtian Jinggong Technology Co ltd
Priority to CN202011618534.2A priority Critical patent/CN112610604B/zh
Publication of CN112610604A publication Critical patent/CN112610604A/zh
Application granted granted Critical
Publication of CN112610604B publication Critical patent/CN112610604B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0402Bearings not otherwise provided for using magnetic or electric supporting means combined with other supporting means, e.g. hybrid bearings with both magnetic and fluid supporting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0451Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • F16C32/0622Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings via nozzles, restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0662Details of hydrostatic bearings independent of fluid supply or direction of load
    • F16C32/067Details of hydrostatic bearings independent of fluid supply or direction of load of bearings adjustable for aligning, positioning, wear or play

Abstract

本发明公开了一种基于电磁力调节的气磁混合支承误差补偿方法,根据各个位置的误差及刚度,控制器输出相应的电磁力,逐点对误差进行校准。本发明与现有技术相比,具有如下的优点和有益效果:在整个有效行程范围内,不同位置所需要的校准力是不同的,通过逐点测量误差及刚度,采用一定的力‑位移转换算法,实现误差补偿;在大幅度降低制造难度的前提下,减少误差及提高刚度。

Description

一种基于电磁力调节的气磁混合支承误差补偿方法
技术领域
本发明涉及气磁混合支承,具体涉及一种基于电磁力调节的气磁混合支承误差补偿方法。
背景技术
在超精密机床、计量仪器和大科学装置用精密姿态调整机构等超精密工程应用领域,需要用到超精密气体静压支承。为实现超高精度控制需求,目前,工程实施过程中,有3种技术可实现。
1)气体静压支承技术
采用超精密气体静压支承技术,可实现超高精度控制需求,在加工制造上,需要将轴承、导轨等气体静压支承功能部件研磨到极高的精度。
2)气体流量闭环控制气体静压支承技术
在气体静压支承的基础上,增加节流控制和位置反馈模块,通过闭环控制,实现超高精度控制需求。其具体原理为,通过位移传感器检测径向位移,并分离出气体静压支承误差,根据一定的控制算法生成控制信号,经过放大器放大后,送给控制阀,调节节流孔节流作用,改变气体压场分布,从而控制气膜合力的大小和方向,提高气体静压支承精度。
3)电磁力闭环控制气体静压支承技术
在气体静压支承基础上,增加电磁支承和位置反馈模块,通过闭环控制,实现超高精度控制需求。其具体原理为,通过位移传感器检测位移量(回转运动的径向位移、轴向位移,直线运动的法向位移),并分离出误差,根据一定的控制算法生成控制信号,经过放大器放大后,送给电磁支承,闭环调节电磁支承对转子或导轨的电磁吸力,提高气体静压支承精度。
要实现超高精度控制需求,对于无主动控制的超精密气体静压支承,要求极高的研磨精度,制造成本极高且极难实现;对于采用闭环主动控制(节流控制或电磁力控制)的超精密气体静压支承,需要反馈系统,并对位移信号进行处理,不仅系统结构复杂,控制也复杂,可靠性低。
发明内容
本发明所要解决的技术问题是克服现有技术的不足,目的在于提供一种基于电磁力调节的气磁混合支承误差补偿方法,解决非主动控制型气体静压支承的加工制造难度高、闭环主动控制型气体静压支承结构及其控制复杂且可靠性低的问题。
本发明通过下述技术方案实现:一种基于电磁力调节的气磁混合支承误差补偿方法,根据各个位置的误差及刚度,控制器输出相应的电磁力,逐点对误差进行校准。
进一步的,根据各个位置的误差及刚度,采用力-位移转换算法,控制器输出相应的电磁力,实现误差补偿。
进一步的,具体步骤包括静态校准:驱动支承到各个位置,保持静止状态;逐点测量气浮支承刚度;逐点测量误差;根据各个位置的误差及刚度,控制器输出相应的电磁力,逐点对误差进行校准。
进一步的,具体步骤包括动态校准:逐点测量气浮支承刚度;驱动支承连续运动;连续测量各个位置的误差;根据各个位置的误差及刚度,控制器输出相应的电磁力,逐点对误差进行校准。
进一步的,具体步骤包括:
1)静态校准;
a.驱动支承到各个位置,保持静止状态;b.逐点测量气浮支承刚度;c.逐点测量误差;d.根据各个位置的误差及刚度,控制器输出相应的电磁力,逐点对误差进行校准;
2)动态校准
e.驱动支承连续运动;f.连续测量各个位置的误差;g.根据各个位置的误差及刚度,控制器输出相应的电磁力,逐点对误差进行校准。
进一步的,所述的支承为转台或导轨。
进一步的,所述的误差为回转误差、直线度误差、轴摆误差中的至少一种。
本发明与现有技术相比,具有如下的优点和有益效果:
1、在整个有效行程范围内,不同位置所需要的校准力是不同的,通过逐点测量误差及刚度,采用一定的力-位移转换算法,实现误差补偿;
2、在大幅度降低制造难度的前提下,减少误差及提高刚度。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为本发明刚度曲线测量示意图
图2是本发明误差曲线测量示意图。
图3是经过开环控制后的误差曲线校准图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例
一种基于电磁力调节的气磁混合支承误差补偿方法,具体为气磁混合支承开环控制方法,依次进行静态校准和动态校准,包括如下步骤:
1)静态校准
a.驱动转台或导轨到各个位置,保持静止状态;
b.逐点测量气浮支承刚度,多点拟合平滑刚度曲线,如图1所示;
c.逐点测量回转误差、直线度误差、轴摆误差中的至少一种,多点拟合平滑误差曲线,如图2所示;
d.根据各个位置的回转误差、直线度误差、轴摆误差及刚度,采用力-位移转换算法,控制器输出相应的电磁力,逐点对回转误差、直线度误差、轴摆误差进行校准,通过电磁力校准误差,误差大幅度降低,形成波动平缓的误差曲线,如图3所示。
2)动态校准
e.驱动转台或导轨连续运动;
f.连续测量各个位置的回转误差、直线度误差、轴摆误差中的至少一种;
g.根据各个位置的回转误差、直线度误差、轴摆误差及刚度,采用力-位移转换算法,控制器输出相应的电磁力,逐点对回转误差、直线度误差、轴摆误差进行校准。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种基于电磁力调节的气磁混合支承误差补偿方法,其特征在于:根据各个位置的误差及刚度,控制器输出相应的电磁力,逐点对误差进行校准。
2.根据权利要求1所述的基于电磁力调节的气磁混合支承误差补偿方法,其特征在于:根据各个位置的误差及刚度,采用力-位移转换算法,控制器输出相应的电磁力,实现误差补偿。
3.根据权利要求1所述的基于电磁力调节的气磁混合支承误差补偿方法,其特征在于,具体步骤包括静态校准:驱动支承到各个位置,保持静止状态;逐点测量气浮支承刚度;逐点测量误差;根据各个位置的误差及刚度,控制器输出相应的电磁力,逐点对误差进行校准。
4.根据权利要求1所述的基于电磁力调节的气磁混合支承误差补偿方法,其特征在于,具体步骤包括动态校准:逐点测量气浮支承刚度;驱动支承连续运动;连续测量各个位置的误差;根据各个位置的误差及刚度,控制器输出相应的电磁力,逐点对误差进行校准。
5.根据权利要求1所述的基于电磁力调节的气磁混合支承误差补偿方法,其特征在于,具体步骤包括:
1)静态校准;
a.驱动支承到各个位置,保持静止状态;
b.逐点测量气浮支承刚度;
c.逐点测量误差;
d.根据各个位置的误差及刚度,控制器输出相应的电磁力,逐点对误差进行校准;
2)动态校准
e.驱动支承连续运动;
f.连续测量各个位置的误差;
g.根据各个位置的误差及刚度,控制器输出相应的电磁力,逐点对误差进行校准。
6.根据权利要求3、4或5所述的基于电磁力调节的气磁混合支承误差补偿方法,其特征在于:所述的支承为转台或导轨。
7.根据权利要求1~5任一所述的基于电磁力调节的气磁混合支承误差补偿方法,其特征在于:所述的误差为回转误差、直线度误差、轴摆误差中的至少一种。
CN202011618534.2A 2020-12-30 2020-12-30 一种基于电磁力调节的气磁混合支承误差补偿方法 Active CN112610604B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011618534.2A CN112610604B (zh) 2020-12-30 2020-12-30 一种基于电磁力调节的气磁混合支承误差补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011618534.2A CN112610604B (zh) 2020-12-30 2020-12-30 一种基于电磁力调节的气磁混合支承误差补偿方法

Publications (2)

Publication Number Publication Date
CN112610604A true CN112610604A (zh) 2021-04-06
CN112610604B CN112610604B (zh) 2022-10-14

Family

ID=75249682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011618534.2A Active CN112610604B (zh) 2020-12-30 2020-12-30 一种基于电磁力调节的气磁混合支承误差补偿方法

Country Status (1)

Country Link
CN (1) CN112610604B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0054617A1 (en) * 1980-12-24 1982-06-30 National Aeronautics And Space Administration Linear magnetic bearings
JPH05306715A (ja) * 1990-12-20 1993-11-19 Yaskawa Electric Corp 磁気軸受の制御方法
US20010048257A1 (en) * 1997-04-28 2001-12-06 Ntn Corporation. Combined externally pressurized gas-magnetic bearing assembly and spindle device utilizing the same
US6353273B1 (en) * 1997-09-15 2002-03-05 Mohawk Innovative Technology, Inc. Hybrid foil-magnetic bearing
CN1710800A (zh) * 2005-07-08 2005-12-21 北京航空航天大学 一种精确补偿磁悬浮控制力矩陀螺支承刚度的磁轴承控制系统
CN101158376A (zh) * 2007-11-15 2008-04-09 苏州大学 磁悬浮电机轴承结构
TW201108570A (en) * 2009-06-24 2011-03-01 Victor Iannello System, devices, and/or methods for managing magnetic bearings
WO2014074891A1 (en) * 2012-11-08 2014-05-15 Waukesha Bearings Corporation Hybrid bearing
CN106870634A (zh) * 2015-12-10 2017-06-20 斯凯孚磁浮机电有限公司 用于在高速下平衡旋转机器的转子的平衡方法
CN111288081A (zh) * 2019-12-11 2020-06-16 燕山大学 一种单自由度磁液双悬浮轴承控制系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0054617A1 (en) * 1980-12-24 1982-06-30 National Aeronautics And Space Administration Linear magnetic bearings
JPH05306715A (ja) * 1990-12-20 1993-11-19 Yaskawa Electric Corp 磁気軸受の制御方法
US20010048257A1 (en) * 1997-04-28 2001-12-06 Ntn Corporation. Combined externally pressurized gas-magnetic bearing assembly and spindle device utilizing the same
US6353273B1 (en) * 1997-09-15 2002-03-05 Mohawk Innovative Technology, Inc. Hybrid foil-magnetic bearing
CN1710800A (zh) * 2005-07-08 2005-12-21 北京航空航天大学 一种精确补偿磁悬浮控制力矩陀螺支承刚度的磁轴承控制系统
CN101158376A (zh) * 2007-11-15 2008-04-09 苏州大学 磁悬浮电机轴承结构
TW201108570A (en) * 2009-06-24 2011-03-01 Victor Iannello System, devices, and/or methods for managing magnetic bearings
WO2014074891A1 (en) * 2012-11-08 2014-05-15 Waukesha Bearings Corporation Hybrid bearing
CN106870634A (zh) * 2015-12-10 2017-06-20 斯凯孚磁浮机电有限公司 用于在高速下平衡旋转机器的转子的平衡方法
CN111288081A (zh) * 2019-12-11 2020-06-16 燕山大学 一种单自由度磁液双悬浮轴承控制系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘暾: "超精气磁轴承混合轴系的研究", 《中国机械工程》 *
陈素平: "数控车床静压气体轴系回转误差补偿及控制方法的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Also Published As

Publication number Publication date
CN112610604B (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
CN100559315C (zh) 一种双框架磁悬浮控制力矩陀螺控制系统
US9429208B2 (en) Vibration isolator with zero stiffness whose angle degree of freedom is decoupled with spherical air bearing
US6170622B1 (en) Anti-vibration apparatus and anti-vibration method thereof
US9898000B2 (en) Planar positioning system and method of using the same
CN101219520B (zh) 分度装置
CN116182765B (zh) 基于磁悬浮轴承的位移传感器的自校准控制方法及装置
US11784084B2 (en) High precision air bearing stage with capability of parasitic error compensation
JP2019105317A (ja) ボールねじユニットの診断システムおよびモータ制御システム
KR101318211B1 (ko) 5 자유도 운동 오차 보정 기능을 갖는 능동 보정형 스테이지 및 그 운동 오차 보정 방법
CN112610604B (zh) 一种基于电磁力调节的气磁混合支承误差补偿方法
KR20060069362A (ko) 지지 유닛 및 상기 지지 유닛을 사용한 이동 테이블 장치및 선형 이동 안내 장치
US6232738B1 (en) Vertical axis translation mechanism
JP2005195606A (ja) X−yステージ装置
CN103062284A (zh) 双层气浮正交解耦与柔性膜角度解耦的零刚度隔振器
CN103062285B (zh) 共面气浮正交解耦与柔性膜角度解耦的零刚度隔振器
CN103062321B (zh) 共面气浮正交解耦与滑动关节轴承角度解耦的零刚度隔振器
CN101520606B (zh) 非接触长行程多自由度纳米精密工作台
CN101388356B (zh) 载物台装置
CN112963449B (zh) 一种基于声悬浮和可变节流的气体静压主轴
CN105928705B (zh) 一种可以万向锁紧的气膜性能检测装置
US6307284B1 (en) Positioning apparatus, information recording/reproducing apparatus, and inspection apparatus
JP2001140883A (ja) 静圧軸受装置
JP2018129356A (ja) Xyステージ移動機構
JP2001263444A (ja) フリクションフリー・ドライブシステム
CN112254950A (zh) 一种超精密主轴回转精度测量装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant