CN112604661A - 亲水磁性锆基-有机金属碳骨架材料及其制备方法和应用 - Google Patents
亲水磁性锆基-有机金属碳骨架材料及其制备方法和应用 Download PDFInfo
- Publication number
- CN112604661A CN112604661A CN202011597972.5A CN202011597972A CN112604661A CN 112604661 A CN112604661 A CN 112604661A CN 202011597972 A CN202011597972 A CN 202011597972A CN 112604661 A CN112604661 A CN 112604661A
- Authority
- CN
- China
- Prior art keywords
- solution
- magnetic
- zirconium
- organic metal
- pda
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/223—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
- B01J20/226—Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0211—Compounds of Ti, Zr, Hf
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28009—Magnetic properties
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/285—Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G83/00—Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
- C08G83/008—Supramolecular polymers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
- G01N30/08—Preparation using an enricher
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
- G01N30/14—Preparation by elimination of some components
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/72—Mass spectrometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/88—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/34—Organic compounds containing oxygen
- C02F2101/345—Phenols
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
- G01N2030/062—Preparation extracting sample from raw material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
- G01N2030/065—Preparation using different phases to separate parts of sample
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/88—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
- G01N2030/8809—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
- G01N2030/884—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
本发明属于磁性纳米吸附材料和环保技术领域,具体为一种亲水磁性锆基‑有机金属碳骨架材料及其制备方法和应用。本发明的亲水磁性锆基‑有机金属碳骨架材料,包含使用氨基功能化的对苯二甲酸作为亲水功能区的氨基,并且加入磁性Fe3O4微粒来简化富集进程和促进收集水体样本中的材料回收;该亲水磁性锆基‑有机金属碳骨架材料作为双酚磁性固相萃取的吸附剂,可以提升双酚的富集能力以及缩短分离时间。为实现同步测定,在分析时选用具有协同干扰作用的五种双酚,所建立的磁性固相萃取方法对痕量双酚类物质的检测具有省时、高选择性和灵敏度,表明亲水磁性锆基‑有机金属碳骨架材料在水分析中具有广阔的应用前景。
Description
技术领域
本发明属于磁性纳米吸附材料和环保技术领域,具体涉及一种亲水磁性锆基-有机金属碳骨架材料及其制备方法和选择性富集检测微量水样中双酚类物质的应用。
背景技术
目前,被广泛使用的双酚类物质(Bisphenols,BPs)作为一种典型的内分泌干扰物已经开始对人体健康造成威胁,BPs可以改变动物正常的荷尔蒙系统,造成一些不良的健康影响,包括形态改变、生育能力下降和性别分化等等。许多环境调查报告BPs会在大气、地表水、沉积物、土壤、室内灰尘、食品甚至人类血清和尿液中积累。然而,在这些环境介质中,由于BPs丰度通常较低,且环境基质较为复杂,在直接分析BPs时很难保持较高的灵敏度和选择性。因此,环境样品在质谱检测分析前通常需要分离富集,这是测定各种样品中内分泌干扰物的常用技术。已有各种各样的预处理富集BPs的方法,在这些方法中,一些传统的技术例如液液萃取和固相萃取,都很耗时且常涉及到有机溶剂的大量使用,这些有机溶剂对环境和人体健康均有害。为了解决这些问题,近年来发展了固相微萃取(SPME)等有机无溶剂方法,并越来越多地关注于吸附剂的合成,以提高富集和选择效率。
金属有机碳骨架(Metal-organic frameworks,MOFs)材料,是一类由连接单元(金属离子或金属簇)与供电子基有机配体通过配位作用自组装形成的具有多高有序孔隙的晶体材料,同时是沸石和碳纳米管之外的又一类重要的新型多孔材料。因其孔径大小可调、大比表面积、丰富无机位点、高热稳定性,获得了很多潜在的应用,如分离和浓缩的工具由于其相对较高的表面积,不同类型的功能性位点和易于功能化以及可修改性。它们被广泛应用于吸附、富集、分离和催化等领域.在过去的几年里,他们已经成功地用不同的工艺去除不同类型的危险化学品。同时,Zr-MOF是以锆为中心的金属团簇,以对苯二甲酸或其修饰衍生物为有机配体,具有均匀性和相对稳定的晶体结构特征。然而,大多数介孔MOFs是疏水的,不能很好地分散在水基质中。因此,为了能更好的富集测定水体中残存的微量双酚类物质,本发明利用氨基功能化对苯二甲酸制备了一种含有-NH2基团的Zr-MOF亲水性功能基团。在Zr-MOF制备时,加入2-氨基对苯二甲酸和磁性Fe3O4微球,使其表面亲水性加强,内核带有磁性,可通过外磁场对材料进行回收,简化了富集过程,便于从水样中收集回收材料。
为了提高BPs的富集性能,减小材料合成的难度和缩短分离时间,本发明提出了一种亲水性的磁性氨基化MOFs制备方法,可实现同时富集测定5种BPs。制备的MOFs具有较强的磁响应性、良好的亲水性和与BPs的强结合性,在BPs富集方面具有良好的应用前景。
发明内容
本发明的目的是提供一种能对水体样本中微量双酚类物质高效富集的亲水磁性锆基-有机金属碳骨架材料及其制备方法和应用。
本发明提供的新型亲水磁性锆基-有机金属碳骨架材料,包括:被加入用来简化萃取进程的磁性四氧化三铁微粒,提升吸附剂稳定性和亲水性的聚多巴胺以及锆-氨基功能化有机金属框架,记为Fe3O4@PDA@UiO-66-NH2。该材料具有较强的磁响应性、良好的亲水性、独特的介孔结构和与BPs的强结合性,具有较好的灵敏度。本发明的亲水磁性锆基-有机金属碳骨架材料由下述制备方法得到。
本发明所述的亲水磁性锆基-有机金属碳骨架材料的制备方法,具体步骤为(参见图1):
(1)首先,采用溶剂热反应法合成Fe3O4微粒;具体流程为:将六水合三氯化铁溶解于乙二醇中,至溶液澄清透明后加入无水醋酸钠,加入到乙二醇溶液中后的六水合三氯化铁浓度为0.03~1.0mol/L,醋酸钠的浓度为0.01~0.05mol/L,经充分搅拌超声后转移至反应釜中,在100~450℃下加热10~20小时,反应完毕后待反应釜冷却至室温,用去离子水和无水乙醇充分洗涤所得产物,于40~75℃下真空干燥;
(2)其次,在基础溶液中磁性区表面聚合多巴胺,记所得产物为Fe3O4@PDA;制备具体流程为:将步骤(1)获得的纳米Fe3O4颗粒加至pH为8~9的Tris-HCl缓冲液中,超声分散处理5~10min,得到混合液,记为溶液A;将多巴胺盐酸盐加至pH为8~9的Tris-HCl缓冲液中,超声分散处理1~2min,得到混合液,记为溶液B;混合溶液A和溶液B,其中,Fe3O4:Tris:多巴胺盐酸盐质量比为(0.1~0.2):(0.3~0.5):1;在室温条件下机械搅拌5~10h,得到颗粒状物质,极为Fe3O4@PDA,通过磁性分离收集,然后用去离子水和乙醇充分洗涤,于40~75℃下真空干燥;
(3)最后,通过一步反应合成目标产物,具体流程为:将Fe3O4@PDA和氯化锆(ZrCl4)加入二甲基甲酰胺(DMF)中,室温下搅拌1~3h;之后往溶剂中加入2-氨基对苯二甲酸直至系统温度升至115~125℃,并搅拌45~60min,其中加入的Fe3O4@PDA:ZrCl4:2-氨基对苯二甲酸质量比为(4~5):(8~10):(12~14);最后通过进一步磁性分离,并用DMF和乙醇充分洗涤至少三次,得到最终产物亲水磁性锆基-有机金属碳骨架材料,记为Fe3O4@PDA@UiO-66-NH2,于40~75℃下真空干燥。
如上所述本发明制备亲水磁性锆基-有机金属碳骨架材料具有优异的性能,可用于对水体样本中微量双酚类物质高效富集,其富集分离的具体步骤如下:
首先,将水样加标至5种BPs标准溶液为10~50μg/L,放置在一个装有聚四氟乙烯硅胶隔片的小瓶中;并在该水体样品中加入Fe3O4@PDA@UiO-66-NH2 10~50mg,震荡富集10~40min后弃上清,外加磁场将物质与水溶液分离;最后用1~5ml甲醇/乙腈/丙酮/异丙醇洗脱材料上的双酚,连续震荡洗脱10~40min,取上清液至LC-MS进一步定量检测。
技术效果
利用液相色谱法和串联质谱法进行样本分析及量化。从每个分析物中可以得到良好的线性关系,并且相关系数r>0.990。检测限(LOD)和定量限(LOQ)都分别处于0.013-0.290ug/L(S/N=3)和0.088-1.800ug/L(S/N=10)。测得加标湖水体样本中重复性标准偏差在0.57-1.67%。在本研究中,LC-MS分析整个预处理过程的时间从传统富集方法的3-5h缩短到Fe3O4@PDA@UiO-66-NH2MSPE的1h,这与快速磁分离提取和吸附剂的性能有关。此外,用于洗脱的有机溶剂的量大大减少,每个样品仅用1ml来洗脱BPs。值得一提的是,五种目标双酚类化合物的LODs在0.013-0.290ppm/L之间,低于SBSE等最新提议技术的报告数据(如表1)。当先进的磁性固相萃取(MSPE)方法应用于测定真实湖水体样本中的五种双酚可以得到满意的结果,最大萃取效率高达78.2%。先进的MSPE使用Fe3O4@PDA@UiO-66-NH2作为吸附剂,具有节省时间,对微量双酚分析的高选择性和高敏感性等特点,且为BPA、BPB、BPS、BPAP和BPAF赢得了良好的线性范围、低检测极限和中间精度,表明Fe3O4@PDA@UiO-66-NH2用作水中BPs的合适吸附剂,在水分析中包括BPs的检测及通过吸附去除BPs方面有广泛应用前景。
附图说明
图1为Fe3O4@PDA@UiO-66-NH2合成图示。
图2为双酚类物质(BPs)的富集流程图示。
图3为Fe3O4@PDA@UiO-66-NH2的傅里叶红外谱图。
图4为Fe3O4@PDA@UiO-66-NH2的XRD谱图。
图5为Fe3O4@PDA@UiO-66-NH2氮气吸附等温线以及孔径分布图。
图6为不同富集条件对Fe3O4@PDA@UiO-66-NH2富集BPs效率的影响。其中,(a)材料用量,(b)吸附时间,(c)pH,(d)洗脱时间,(e)洗脱溶剂种类。
图7为加标(BPs=50μg/L)湖水样品直接检测(a)和加入Fe3O4@PDA@UiO-66-NH2富集洗脱后(b)用LC-MS分析的离子色谱图。
图8为Fe3O4@PDA@UiO-66-NH2在三次循环重复使用时对湖水样品中五种双酚类化合物的富集效率。
具体实施方式
下面结合附图和实施例对本发明作进一步详细的说明。
实施例1:亲水磁性锆基-有机金属碳骨架材料的合成
(1)将FeCl3·6H2O(1.35g)和CH3COONa(3.60g)溶解在75ml的乙二醇中,搅拌40min直到得到一份均匀的溶液;然后将溶液转移至聚四氟乙烯作内衬的不锈钢高压釜中,在200℃的温度下放置16h;将反应后的溶液冷却至接近室温;通过磁性分离获得的黑色磁性Fe3O4圆粒,经过去离子水和乙醇洗涤至少三次,最后在50℃的干燥箱中干燥;
(2)将0.18g氨基丁三醇和0.60g多巴胺盐酸溶解在去离子水中,配制得到三羟甲基氨基甲烷缓冲液;将1.20gFe3O4加入到750ml三羟甲基氨基甲烷缓冲液中,在室温条件下机械搅拌5h,得到Fe3O4@PDA,通过磁性分离收集,然后用去离子水和乙醇洗涤至少三次,得到中间产物,记为Fe3O4@PDA,放置在50℃的真空干燥箱中干燥;
(3)将0.50g Fe3O4@PDA和0.80gZrCl4(9mM)加入375ml的DMF(二甲基甲酰胺)中,室温下搅拌1h;之后往溶剂中加入0.12g的2-氨基对苯二甲酸直至系统温度升至120℃,并搅拌45min;最后通过进一步磁性分离,并用DMF和乙醇洗涤至少三次,得到最终产物亲水磁性锆基-有机金属碳骨架材料,记为Fe3O4@PDA@UiO-66-NH2,并在50℃真空干燥箱中干燥。
实施例2:将实施例1得到的亲水磁性锆基-有机金属碳骨架材料作为固相萃取剂用于双酚类物质的分离富集检测:
考察Fe3O4@PDA@UiO-66-NH2用量对富集效率的影响
将一个10ml的去离子水样品,加标至5种BPs标准溶液为50μg/L,放置在一个装有聚四氟乙烯硅胶隔片的小瓶中。并在该水体样品中加入Fe3O4@PDA@UiO-66-NH210mg、20mg、30mg、40mg和50mg,溶液pH调节至7,震荡富集30min后磁性分离,弃上清;最后用1ml甲醇洗脱材料上的双酚类物质,连续震荡洗脱30min,取上清液至LC-MS进一步定量检测。由图6a)可知,当吸附剂质量达到40mg时,富集效率已经基本达到最大,因此本发明选择的吸附剂用量为40mg。
实施例3:考察不同吸附时间对富集效率的影响
按照实施例2所述的方法富集水样中双酚类物质,将一个10ml的去离子水样品,加标至5种BPs标准溶液为50μg/L,并在该水体样品中加入Fe3O4@PDA@UiO-66-NH240mg,溶液pH调节至7,震荡富集10min、20min、30min、40min后磁性分离,弃上清;最后用1ml甲醇洗脱材料上的双酚类物质,连续震荡洗脱30min,取上清液至LC-MS进一步定量检测。由图6b)可知,当吸附时间达到30min时,富集效率已经基本达到最大,因此本发明选择的吸附时间为30min。
实施例4:考察pH对富集效率的影响
按照实施例2所述的方法富集水样中双酚类物质,将一个10ml的去离子水样品,加标至5种BPs标准溶液为50μg/L,并在该水体样品中加入Fe3O4@PDA@UiO-66-NH240mg,溶液pH调节至3、7、11,震荡富集30min后磁性分离,弃上清;最后用1ml甲醇洗脱材料上的双酚类物质,连续震荡洗脱30min,取上清液至LC-MS进一步定量检测。由图6c)可知,当pH=7时,富集效率基本都达到最大,因此本发明选择的吸附条件pH为7。
实施例5:考察不同洗脱时间对富集效率的影响
按照实施例2所述的方法富集水样中双酚类物质,将一个10ml的去离子水样品,加标至5种BPs标准溶液为50μg/L,并在该水体样品中加入Fe3O4@PDA@UiO-66-NH240mg,溶液pH调节至7,震荡富集30min后磁性分离,弃上清;最后用1ml甲醇洗脱材料上的双酚类物质,连续震荡洗脱10min、20min、30min、40min,取上清液至LC-MS进一步定量检测。由图6d)可知,当洗脱时间达到30min时,富集效率已经基本达到最大,因此本发明选择的吸附时间为30min。
实施例6:考察不同洗脱剂的种类对富集效率的影响
按照实施例2所述的方法富集水样中双酚类物质,将一个10ml的去离子水样品,加标至5种BPs标准溶液为50μg/L,并在该水体样品中加入Fe3O4@PDA@UiO-66-NH240mg,溶液pH调节至7,震荡富集30min后磁性分离,弃上清;最后用1ml甲醇/乙腈/丙酮/异丙醇洗脱材料上的双酚类物质,连续震荡洗脱30min,取上清液至LC-MS进一步定量检测。由图6e)可知,当洗脱洗脱剂为甲醇时,富集效率已经基本达到最大,因此本发明选择的吸附时间为甲醇。
实施例7:将实施例1得到的亲水磁性锆基-有机金属碳骨架材料作为固相萃取剂用于湖泊水样双酚类物质的分离富集检测:
将一个10ml的湖泊水样样品,加标至5种BPs标准溶液为50μg/L,放置在一个装有聚四氟乙烯硅胶隔片的小瓶中。并在该水体样品中加入Fe3O4@PDA@UiO-66-NH2 40mg,溶液pH调节至7,震荡富集30min后弃上清,外加磁场将物质与水溶液分离;最后用1ml甲醇洗脱材料上的双酚,连续震荡洗脱30min,取上清液至LC-MS进一步定量检测。图7为加标水样直接上样检测和加入材料富集洗脱后的离子色谱图,经富集后微量BPs才可以被检测到。
实施例8:考察所制备的材料的可回收利用性:
将实施例7使用过的亲水磁性锆基-有机金属碳骨架材料经充分洗涤和干燥后,再次作为固相萃取剂用于湖泊水样双酚类物质的分离富集检测,重复实施例7的方法步骤,重复三次实验操作,可由图8得知,本发明制备的材料至少可重复利用三次,富集效率基本保持稳定。
表1.Fe3O4@PDA@UiO-66-NH2与已有研究报道的提取材料测定BPs的数据比较。
a MISMS: Molecularly imprinted sponge mesoporous silica.
b THPE-DMIP: 1,1,1-tris (4-hydroxyphenyl) ethane - Dummy molecularlyimprinted polymers
c SBSE: Stir bar sorptive extraction.
d DLLME: Dispersive liquid–liquid microextraction
参考文献
[1]X.L.Sun,J.C.Wang,Y.Li,J.Jin,B.Q.Zhang,S.M.Shah,X.L.Wang,J.P.Chen,Highly selective dummy molecularly imprinted polymer as a solid-phaseextraction sorbent for five bisphenols in tap and river water,J.Chromatogr.A1343(2014)33-41.
[2]Gallart-Ayala,H.,Moyano,E.and Galceran,M.T.,2011.Analysis ofbisphenols in soft drinks by on-line solid phase extraction fast liquidchromatography tandem mass spectrometry.Anal Chim Acta 683,227-233.
[3]J.J.Yang,Y.Li,J.C.Wang,X.L.Sun,R.Cao,H.Sun,C.N.Huang,J.P.Chen,Molecularly imprinted polymer microspheres prepared by Pickering emulsionpolymerization for selective solid-phase extraction of eight bisphenols fromhuman urine samples,Anal.Chim.Acta.872(2015)35-45.
[4]X.L.Sun,J.C.Wang,Y.Li,J.Jin,J.J.Yang,F.Li,S.M.Shah,J.P.Chen,Highlyclass-selective solid-phase extraction of bisphenols in milk,sediment andhuman urine samples using well-designed dummy molecularly imprinted polymers,J.Chromatogr.A 1360(2014)9-16.
[5]Xu,Z.G.,Yang,Z.L.and Liu,Z.M.,2014.Development of dual-templatesmolecularly imprinted stir bar sorptive extraction and its application forthe analysis of environmental estrogens in water and plastic samples.Journalof Chromatography A 1358,52-59.
[6]Vela-Soria,F.,Ballesteros,O.,Zafra-Gomez,A.,Ballesteros,L.andNavalon,A.,2014.A multiclass method for the analysis of endocrine disruptingchemicals in human urine samples.Sample treatment by dispersive liquid-liquidmicroextraction.Talanta 129,209-218.
[7]Z.H.Deng,X.Wang,X.L.Wang,C.L.Gao,L.Dong,M.L.Wang,R.S.Zhao,A core-shell structured magnetic covalent organic framework(type Fe3O4@COF)as asorbent for solid-phase extraction of endocrine-disrupting phenols prior totheir quantitation by HPLC,Microchim.Acta.186(2)(2019)。
Claims (4)
1.一种亲水磁性锆基-有机金属碳骨架材料的制备方法,其特征在于,具体步骤为:
(1)首先,采用溶剂热反应法合成Fe3O4微粒;具体流程为:将六水合三氯化铁溶解于乙二醇中,至溶液澄清透明后加入无水醋酸钠,加入到乙二醇溶液中后的六水合三氯化铁浓度为0.03~1.0mol/L,醋酸钠的浓度为 0.01~0.05mol/L,经充分搅拌超声后转移至反应釜中,在100~450℃下加热10~20小时,反应完毕后待反应釜冷却至室温,用去离子水和无水乙醇充分洗涤所得产物,于40~75℃下真空干燥;
(2)其次,在基础溶液中磁性区表面聚合多巴胺,记所得产物为Fe3O4@PDA;制备具体流程为:将步骤(1)获得的纳米Fe3O4颗粒加至pH 为8~9的Tris-HCl缓冲液中,超声分散处理5~10min,得到混合液,记为溶液A;将多巴胺盐酸盐加至pH为 8~9的Tris-HCl 缓冲液中,超声分散处理1~2min,得到混合液,记为溶液B;混合溶液A和溶液B,其中,Fe3O4:Tris:多巴胺盐酸盐质量比为(0.1~0.2):(0.3~0.5):1;在室温条件下机械搅拌5~10h,得到颗粒状物质,极为Fe3O4@PDA,通过磁性分离收集,然后用去离子水和乙醇充分洗涤,于40~75℃下真空干燥;
(3)最后,通过一步反应合成目标产物,具体流程为:将Fe3O4@PDA和氯化锆加入二甲基甲酰胺中,室温下搅拌1~3h;之后往溶剂中加入2-氨基对苯二甲酸直至系统温度升至115~125℃,并搅拌45~60min,其中加入的Fe3O4@PDA:ZrCl4:2-氨基对苯二甲酸质量比为(4~5):(8~10):(12~14);最后通过进一步磁性分离,并用DMF和乙醇充分洗涤至少三次,得到最终产物亲水磁性锆基-有机金属碳骨架材料,记为Fe3O4@PDA@UiO-66-NH2,于40~75℃下真空干燥。
2.一种由权利要求1所述制备方法得到的亲水磁性锆基-有机金属碳骨架材料。
3.如权利要求2所述的亲水磁性锆基-有机金属碳骨架材料在对水体样本中微量双酚类物质高效富集中应用。
4.根据权利要求3所述的应用,其富集分离的具体步骤如下:
首先,将水样加标至5种BPs标准溶液为10~50μg/L,放置在一个装有聚四氟乙烯硅胶隔片的小瓶中;并在该水体样品中加入Fe3O4@PDA@UiO-66-NH2 10~50mg,震荡富集10~40min后弃上清,外加磁场将物质与水溶液分离;最后用1~5ml甲醇/乙腈/丙酮/异丙醇洗脱材料上的双酚,连续震荡洗脱10~40min,取上清液至LC-MS进一步定量检测。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011597972.5A CN112604661A (zh) | 2020-12-29 | 2020-12-29 | 亲水磁性锆基-有机金属碳骨架材料及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011597972.5A CN112604661A (zh) | 2020-12-29 | 2020-12-29 | 亲水磁性锆基-有机金属碳骨架材料及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112604661A true CN112604661A (zh) | 2021-04-06 |
Family
ID=75249133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011597972.5A Pending CN112604661A (zh) | 2020-12-29 | 2020-12-29 | 亲水磁性锆基-有机金属碳骨架材料及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112604661A (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113391009A (zh) * | 2021-06-11 | 2021-09-14 | 广州质量监督检测研究院 | 磁性多孔碳纳米材料在萃取食品中双酚类物质中的应用 |
CN113877543A (zh) * | 2021-11-03 | 2022-01-04 | 上海工程技术大学 | 手性金属有机框架功能化复合材料及其制备方法和应用 |
CN114849650A (zh) * | 2022-05-09 | 2022-08-05 | 南京大学 | 一种双表面特性磁改性锆系MOFs吸附剂的制备方法及应用 |
CN114942286A (zh) * | 2022-05-17 | 2022-08-26 | 复旦大学 | 一种亲水性多肽的检测方法 |
CN115722203A (zh) * | 2022-11-08 | 2023-03-03 | 中国科学院上海高等研究院 | 用于去除水中有机膦的钇-铕-锆-对苯二甲酸基复合磁性吸附材料、制备方法及其应用 |
CN116116395A (zh) * | 2023-01-12 | 2023-05-16 | 辽宁大学 | 一种基于UiO-66-NH2的固相微萃取材料及其制备方法和应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103894161A (zh) * | 2014-04-09 | 2014-07-02 | 复旦大学 | 一种磁性金属有机骨架复合材料的合成方法及其应用 |
US20160199810A1 (en) * | 2015-01-12 | 2016-07-14 | University Of Southern California | Regenerative adsorbents of modified amines on solid supports |
CN109433158A (zh) * | 2018-09-29 | 2019-03-08 | 四川大学 | 用于多模式肽段富集的磁性纳米复合材料及其制备方法与应用 |
CN109603762A (zh) * | 2018-12-27 | 2019-04-12 | 南京大学 | 一种基于金属有机骨架材料的吸附膜、制备方法及应用 |
WO2019209493A1 (en) * | 2018-04-24 | 2019-10-31 | Lawrence Livermore National Security, Llc | Additive manufacturing of hierarchical three-dimensional micro-architected aerogels |
CN110658280A (zh) * | 2019-10-21 | 2020-01-07 | 天津师范大学 | 一种基于磁性金属有机骨架复合材料检测双酚类化合物的方法 |
-
2020
- 2020-12-29 CN CN202011597972.5A patent/CN112604661A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103894161A (zh) * | 2014-04-09 | 2014-07-02 | 复旦大学 | 一种磁性金属有机骨架复合材料的合成方法及其应用 |
US20160199810A1 (en) * | 2015-01-12 | 2016-07-14 | University Of Southern California | Regenerative adsorbents of modified amines on solid supports |
WO2019209493A1 (en) * | 2018-04-24 | 2019-10-31 | Lawrence Livermore National Security, Llc | Additive manufacturing of hierarchical three-dimensional micro-architected aerogels |
CN109433158A (zh) * | 2018-09-29 | 2019-03-08 | 四川大学 | 用于多模式肽段富集的磁性纳米复合材料及其制备方法与应用 |
CN109603762A (zh) * | 2018-12-27 | 2019-04-12 | 南京大学 | 一种基于金属有机骨架材料的吸附膜、制备方法及应用 |
CN110658280A (zh) * | 2019-10-21 | 2020-01-07 | 天津师范大学 | 一种基于磁性金属有机骨架复合材料检测双酚类化合物的方法 |
Non-Patent Citations (1)
Title |
---|
YUAN YUANA等: "Development of a hydrophilic magnetic amino-functionalized metal-organic framework for the highly efficient enrichment of trace bisphenols in river water samples", 《TALANTA》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113391009A (zh) * | 2021-06-11 | 2021-09-14 | 广州质量监督检测研究院 | 磁性多孔碳纳米材料在萃取食品中双酚类物质中的应用 |
CN113877543A (zh) * | 2021-11-03 | 2022-01-04 | 上海工程技术大学 | 手性金属有机框架功能化复合材料及其制备方法和应用 |
CN114849650A (zh) * | 2022-05-09 | 2022-08-05 | 南京大学 | 一种双表面特性磁改性锆系MOFs吸附剂的制备方法及应用 |
CN114849650B (zh) * | 2022-05-09 | 2023-03-10 | 南京大学 | 一种双表面特性磁改性锆系MOFs吸附剂的制备方法及应用 |
CN114942286A (zh) * | 2022-05-17 | 2022-08-26 | 复旦大学 | 一种亲水性多肽的检测方法 |
CN115722203A (zh) * | 2022-11-08 | 2023-03-03 | 中国科学院上海高等研究院 | 用于去除水中有机膦的钇-铕-锆-对苯二甲酸基复合磁性吸附材料、制备方法及其应用 |
CN115722203B (zh) * | 2022-11-08 | 2024-03-29 | 中国科学院上海高等研究院 | 用于去除水中有机膦的钇-铕-锆-对苯二甲酸基复合磁性吸附材料、制备方法及其应用 |
CN116116395A (zh) * | 2023-01-12 | 2023-05-16 | 辽宁大学 | 一种基于UiO-66-NH2的固相微萃取材料及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112604661A (zh) | 亲水磁性锆基-有机金属碳骨架材料及其制备方法和应用 | |
Jia et al. | A novel metal-organic framework composite MIL-101 (Cr)@ GO as an efficient sorbent in dispersive micro-solid phase extraction coupling with UHPLC-MS/MS for the determination of sulfonamides in milk samples | |
Yan et al. | Magnetic covalent triazine framework for rapid extraction of phthalate esters in plastic packaging materials followed by gas chromatography-flame ionization detection | |
Liu et al. | Magnetic nanoparticle of metal-organic framework with core-shell structure as an adsorbent for magnetic solid phase extraction of non-steroidal anti-inflammatory drugs | |
Lirio et al. | Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples | |
Dai et al. | A combined experimental/computational study on metal-organic framework MIL-101 (Cr) as a SPE sorbent for the determination of sulphonamides in environmental water samples coupling with UPLC-MS/MS | |
Li et al. | Magnetic metal-organic nanotubes: an adsorbent for magnetic solid-phase extraction of polychlorinated biphenyls from environmental and biological samples | |
Guo et al. | Preconcentration and determination of trace elements with 2-aminoacetylthiophenol functionalized Amberlite XAD-2 by inductively coupled plasma–atomic emission spectrometry | |
Zhou et al. | Restricted access magnetic imprinted microspheres for directly selective extraction of tetracycline veterinary drugs from complex samples | |
Yuan et al. | Development of a hydrophilic magnetic amino-functionalized metal-organic framework for the highly efficient enrichment of trace bisphenols in river water samples | |
Xu et al. | Bifunctional monomer magnetic imprinted nanomaterials for selective separation of tetracyclines directly from milk samples | |
Luo et al. | Novel molecularly imprinted polymer using 1-(α-methyl acrylate)-3-methylimidazolium bromide as functional monomer for simultaneous extraction and determination of water-soluble acid dyes in wastewater and soft drink by solid phase extraction and high performance liquid chromatography | |
CN105688869B (zh) | 一种磁性金属‑有机纳米管材料的制备方法及其应用 | |
Cheng et al. | A highly sensitive and selective method for the determination of ceftiofur sodium in milk and animal-origin food based on molecularly imprinted solid-phase extraction coupled with HPLC-UV | |
Wang et al. | High-efficiency recognition and detection of sulindac in sewage using hydrophilic imprinted resorcinol-formaldehyde resin magnetic nano-spheres as SPE adsorbents combined with HPLC | |
Jia et al. | Zwitterion-functionalized polymer microspheres-based solid phase extraction method on-line combined with HPLC–ICP-MS for mercury speciation | |
Özer et al. | Dummy molecularly imprinted microbeads as solid-phase extraction material for selective determination of phthalate esters in water | |
Tian et al. | Hydrophilic magnetic molecularly imprinted nanobeads for efficient enrichment and high performance liquid chromatographic detection of 17beta-estradiol in environmental water samples | |
Li et al. | Magnetic metal-organic frameworks nanocomposites for negligible-depletion solid-phase extraction of freely dissolved polyaromatic hydrocarbons | |
Qiao et al. | Novel molecularly imprinted stir bar sorptive extraction based on an 8-electrode array for preconcentration of trace exogenous estrogens in meat | |
Yuan et al. | Fe3O4/graphene molecularly imprinted composite for selective separation of catecholamine neurotransmitters and their analysis in rat brain tissues | |
Li et al. | Metal organic framework/chitosan foams functionalized with polyethylene oxide as a sorbent for enrichment and analysis of bisphenols in beverages and water | |
CN110618224B (zh) | 一种[H2Nmim][NTf2]@UiO-66-Br纳米复合材料及其应用 | |
Zhang et al. | A Ce 3+-imprinted functionalized potassium tetratitanate whisker sorbent prepared by surface molecularly imprinting technique for selective separation and determination of Ce 3+ | |
Chen et al. | Simultaneous enrichment of bisphenols and polyfluoroalkyl substances by cyclodextrin-fluorinated covalent organic frameworks membrane in food packaging samples |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20210406 |