CN112600594A - 空频分组码识别方法、装置、计算机设备和存储介质 - Google Patents

空频分组码识别方法、装置、计算机设备和存储介质 Download PDF

Info

Publication number
CN112600594A
CN112600594A CN202011446847.4A CN202011446847A CN112600594A CN 112600594 A CN112600594 A CN 112600594A CN 202011446847 A CN202011446847 A CN 202011446847A CN 112600594 A CN112600594 A CN 112600594A
Authority
CN
China
Prior art keywords
frequency characteristic
correlation time
cross
frequency
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011446847.4A
Other languages
English (en)
Other versions
CN112600594B (zh
Inventor
闫文君
张聿远
凌青
张立民
刘传辉
朱子强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
School Of Aeronautical Combat Service Naval Aeronautical University Of People's Liberation Army
Original Assignee
School Of Aeronautical Combat Service Naval Aeronautical University Of People's Liberation Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by School Of Aeronautical Combat Service Naval Aeronautical University Of People's Liberation Army filed Critical School Of Aeronautical Combat Service Naval Aeronautical University Of People's Liberation Army
Priority to CN202011446847.4A priority Critical patent/CN112600594B/zh
Publication of CN112600594A publication Critical patent/CN112600594A/zh
Application granted granted Critical
Publication of CN112600594B publication Critical patent/CN112600594B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0891Space-time diversity

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Electromagnetism (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请提出一种空频分组码识别方法、装置、计算机设备和存储介质。其中,方法包括:获取多个接收信号样本各自的N×N维互相关时频特征图;将预设数量的N×N维互相关时频特征图作为一组,将每组内的N×N维互相关时频特征图进行叠加后取平均;将经过叠加后取平均得到的N×N维互相关时频特征图进行两两拼接,得到N×2N维互相关时频特征图;基于新得到的N×2N维互相关时频特征图,训练多级残差网络,直至多级残差网络的模型收敛;识别已获取的接收信号的N×2N维互相关时频特征图,并将接收信号的N×2N维互相关时频特征图输入至已经完成训练的多级残差网络,获得接收信号对应的空频分组码类别。解决非时钟同步和低信噪比下的识别问题。

Description

空频分组码识别方法、装置、计算机设备和存储介质
技术领域
本申请涉及无线通信技术领域,尤其涉及一种基于互相关特征图与多级残差网络的空频分组码识别方法、装置、计算机设备和存储介质。
背景技术
MIMO(Multiple-Input Multiple-Output,多进多出)系统是下一代无线通信体统中的关键技术。其中,空时分组码(Space-time block code,简称:STBC)和空频分组码(Space Frequency Block Code,简称:SFBC)的识别问题受到越来越多的关注,无论是在单载波系统中还是正交频分复用(OrthogonalFrequency Division Multiplexing,简称:OFDM),空间编码识别技术的研究越来越多。空间编码与OFDM技术结合的方式有两种,一种是对OFDM信号进行空时分组编码,称之为STBC-OFDM信号,另一种是对STBC信号进行OFDM编码,称之为SFBC-OFDM信号,目前对于SFBC-OFDM识别的算法还较少。
发明内容
本申请旨在至少在一定程度上解决上述的技术问题之一。
为此,本申请的第一个目的在于提出一种空频分组码识别方法,以实现针对SFBC-OFDM信号中的空间复用信号(SM-OFDM)和AL信号(AL-OFDM)进行识别,可以解决非时钟同步和低信噪比下的识别问题。
本申请的第二个目的在于提出一种空频分组码识别装置。
本申请的第三个目的在于提出计算机设备。
本申请的第四个目的在于提出一种非临时性计算机可读存储介质。
为达上述目的,本申请第一方面实施例提出了一种空频分组码识别方法,包括:
获取多个接收信号样本各自的N×N维互相关时频特征图;
将预设数量的N×N维互相关时频特征图作为一组,将每组内的N×N维互相关时频特征图进行叠加后取平均;
将经过叠加后取平均得到的N×N维互相关时频特征图进行两两拼接,得到N×2N维互相关时频特征图;
基于新得到的所述N×2N维互相关时频特征图,训练多级残差网络,直至所述多级残差网络的模型收敛;
识别已获取的接收信号的N×2N维互相关时频特征图,并将所述接收信号的N×2N维互相关时频特征图输入至已经完成训练的所述多级残差网络,获得所述接收信号对应的空频分组码类别。
为达上述目的,本申请第二方面实施例提出了一种空频分组码识别装置,包括:
获取模块,用于获取多个接收信号样本各自的N×N维互相关时频特征图;
处理模块,用于将预设数量的N×N维互相关时频特征图作为一组,将每组内的N×N维互相关时频特征图进行叠加后取平均;
拼接模块,用于将经过叠加后取平均得到的N×N维互相关时频特征图进行两两拼接,得到N×2N维互相关时频特征图;
训练模块,用于基于新得到的所述N×2N维互相关时频特征图,训练多级残差网络,直至所述多级残差网络的模型收敛;
预测识别模块,用于识别已获取的接收信号的N×2N维互相关时频特征图,并将所述接收信号的N×2N维互相关时频特征图输入至已经完成训练的所述多级残差网络,获得所述接收信号对应的空频分组码类别。
为达上述目的,本申请第三方面实施例提出了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现前述第一方面实施例所述的空频分组码识别方法。
为了实现上述目的,本申请第四方面实施例提出了一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现前述第一方面实施例所述的空频分组码识别方法。
根据本申请实施例的技术方案,通过对一维互相关幅值序列进行时频分析,得到接收信号二维互相关时频特征图,作为网络的训练样本,以适应深度学习方法的应用;将多张互相关特征图进行叠加后取平均,使得噪声干扰被削弱的同时峰值更加稳定,更利于神经网络对图片特征的提取;将两张N×N维互相关特征图进行拼接,使得新得到的N×2N维互相关特征图在不同时延下均有一组峰值处于图片中心,从而有效地解决了非时钟同步下的识别问题;通过对残差网络增加多级跨越连接,使浅层网络提取的细节信息和深层网络映射的高维特征能够进行深度融合,增强了网络结构的紧密性,大大提升了算法在低信噪比下的识别性能。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请实施例所提供的一种空频分组码识别方法的流程示意图;
图2是本申请实施例的样本数据预处理流程图;
图3是本申请实施例的时频分析后SM-OFDM信号和AL-OFDM信号的互相关特征图的示例图;
图4是本申请实施例的取均值前后互相关特征图对比的示例图;
图5是本申请实施例的图像拼接后AL-OFDM信号在不同时延下的互相关特征图的示例图;
图6是本申请实施例设计的多级残差网络结构示意图;
图7是本申请实施例的不同样本数下的识别准确率对比的示例图;
图8为本申请实施例提供的一种空频分组码识别装置的结构框图;以及
图9是根据本申请实施例提出的一种计算机设备的结构框图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的空频分组码识别方法、装置、计算机设备和存储介质。
图1为本申请实施例所提供的一种空频分组码识别方法的流程示意图。需要说明的是,本申请实施例的空频分组码识别方法可应用于本申请实施例的空频分组码识别装置,该空频分组码识别装置可被配置于计算机设备。如图1所示,该空频分组码识别方法可以包括如下步骤。
在步骤101中,获取多个接收信号样本各自的N×N维互相关时频特征图。
可选地,针对每个接收信号样本,可获取样本接收端上多根天线之间的一维互相关幅值序列,并将一维互相关幅值序列按OFDM块长度N进行划分,每行放置一块大小为1×N维的OFDM块,每N块OFDM块作为一组拼接成N×N维的互相关时频特征图。其中,作为一种示例,该天线的个数可为两个。由此,通过将一维序列拼接成二维特征图的方式,可以将原有稀疏的一维特征集中于特征图的某一列。因AL-OFDM信号互相关特征图存在一列峰值,而SM-OFDM信号不存在明显特征,故可以将信号识别问题转化为特征图识别问题,以适应深度学习方法的应用。
在步骤102中,将预设数量的N×N维互相关时频特征图作为一组,将每组内的N×N维互相关时频特征图进行叠加后取平均。
在一些实施例中,将预设数量的N×N维互相关时频特征图作为一组,将每组内的N×N维互相关时频特征图的对应位置进行相加操作后再取平均。其中,该预设数量的取值可由实际情况来决定,例如,互相关时频特征图样本的数量较多时,该预设数量可取一个较大的数值,互相关时频特征图样本的数量较少时,该预设数量可取一个较小的数值,作为一种示例,假设互相关时频特征图样本的数量为10000个,则该预设数量可为100。由此,通过将二维互相关时频特征图的对应位置进行相加操作后再取平均,可以有效削弱由于噪声随机性带来的波动问题,使得AL-OFDM信号的幅值特征更加稳定,从而可以更利于神经网络对图片特征的提取。
在步骤103中,将经过叠加后取平均得到的N×N维互相关时频特征图进行两两拼接,得到N×2N维互相关时频特征图。
在本申请实施例中,由于将经过叠加后取平均得到的N×N维互相关时频特征图进行两两拼接,使得每两张N×N维互相关时频特征图片可以拼接组成一张N×2N维的互相关时频特征图,那么在不同时延下,新得到的N×2N维互相关时频特征图中至少有一组峰值接近图片的中心位置。
举例而言,如图2所示,假设有10000个接收信号样本,对每个接收信号样本进行互相关特性分析,得到一维互相关幅值序列,对一维互相关幅值序列进行时频分析,即:将一维互相关幅值序列按OFDM块长度N进行划分,每行放置一块大小为1×N维的OFDM块,每N块OFDM块作为一组拼接成N×N维的时频特征图。如图3所示,通过将一维序列拼接成二维特征图的方式,可以将原有稀疏的一维特征集中于特征图的某一列。因AL-OFDM信号互相关特征图存在一列峰值,而SM-OFDM信号不存在明显特征,故可以将信号识别问题转化为特征图识别问题,以适应深度学习方法的应用。在得到10000个接收信号样本对应的10000张N×N维互相关时频特征图样本时,可将每100张N×N维互相关时频特征图样本作为一组,将每组内的N×N维互相关时频特征图进行叠加后取平均,此时经过叠加后取平均得到的N×N维互相关时频特征图的数量为100张。例如,如图4所示,为取均值前后互相关特征图对比示意图,使得通过将二维互相关时频特征图的对应位置进行相加操作后再取平均,可以有效削弱由于噪声随机性带来的波动问题,使得AL-OFDM信号的幅值特征更加稳定,从而可以更利于神经网络对图片特征的提取。
在将二维互相关时频特征图的对应位置进行相加操作后再取平均之后,可将经过叠加后取平均得到的N×N维互相关时频特征图进行两两拼接,可以得到50张N×2N维互相关时频特征图。例如,如图5所示,为图像拼接后AL-OFDM信号在不同时延下的互相关特征图,可见,在不同时延下,新得到的N×2N维互相关时频特征图中至少有一组峰值接近图片的中心位置:在时延t=0时,新的互相关特征图的一组峰值在OFDM符号的第一个子载波的位置,另一组峰值则恰好在图像的中心。同理,在各种时延情况下,当其中一组子载波的峰值在图片边缘时,另一组峰值则必然在接近图片中心的位置,通过该预处理方法使得各种时延下的互相关特征图总有一组特征处于图片中心,从而有效地解决非时钟同步下的空频分组码识别问题。
在步骤104中,基于新得到的N×2N维互相关时频特征图,训练多级残差网络,直至多级残差网络的模型收敛。
在一些实施例中,将新得到的N×2N维互相关时频特征图输入至多级残差网络,获得接收信号样本的空频分组码预测类别,并根据空频分组码预测类别和接收信号样本的真实类别,生成损失值,并根据损失值和预设的目标函数训练多级残差网络。
例如,将新得到的N×2N维互相关时频特征图输入至多级残差网络,获得多级残差网络输出层输出的空频分组码预测类别,并基于损失函数用来计算空频分组码预测类别和真实类别间的损失值,根据该损失值和目标函数训练多级残差网络。
作为一种示例,上述目标函数可为目标损失值。可选地,在按照损失函数对目标位置预设的原始词和预测词进行损失计算,得到损失值之后,可判断损失值和目标函数是否存在一定条件,比如损失值是否小于或等于目标损失值,若是,则表示模型已训练完成,将训练好的模型作为最终的用于空频分组码识别的多级残差网络。若损失值大于目标损失值,则表示模型需要继续训练,此时,可调整该模型的参数,并利用调整的模型对空频分组码的类别进行预测,并通过对空频分组码预测类别的正确与否回传损失值,直至损失值小于或等于目标损失值,表示此时模型已训练完成,将训练好的模型作为最终的用于空频分组码识别的多级残差网络。
需要说明的是,为了使得多级残差网络更加适用于空频分组码识别,本申请可构建适用于,空频分组码识别的网络结构。例如,如图6所示,本申请实施例的多级残差网络的网络主干的输入层的维度设计为N×2N,以适应SFBC-OFDM信号预处理图像的输入维度;每两个二级残差块之间增加了一个池化层,以缩小图片维度,减少训练参数量;考虑到输出层的分类类别较少,故将输出层设置为多层全连接,例如,为三层全连接,以防止因权值参数减少过快而导致特征信息丢失。
考虑到该互相关时频图像不同于一般的RPG视觉图片,其特征为两条平行排列的峰值,且分布较为稀疏,为了充分利用该峰值特征以提高识别性能,本申请实施例将基本残差单元中两层卷积的卷积核大小改为4×8,在增加卷积核大小的同时,将卷积核的横向维度设置为纵向的2倍,由于特征图较视觉图片的维度明显减少,故将每层卷积的卷积核个数减少为32,降低网络的空间复杂度。此外,各全连接层的单元数分别设置为128、64和2,除第一个池化层的池化窗大小为2×2外,其余各层的池化窗均设置为1×2。两个全连接层的激活函数设置为缩放指数线性单元(Scaled Exponential Linear Units,简称:SeLU)激活函数,最后一层全连接为Softmax激活函数,其余各卷积层的激活函数为线性整流函数(Rectified Linear Unit,简称:ReLU)激活函数。
在步骤105中,识别已获取的接收信号的N×2N维互相关时频特征图,并将接收信号的N×2N维互相关时频特征图输入至已经完成训练的多级残差网络,获得接收信号对应的空频分组码类别。
可选地,在对接收信号进行空频分组码识别时,可先获取接收端上两根天线之间的一维互相关幅值序列,并将一维互相关幅值序列按OFDM块长度N进行划分,每行放置一块大小为1×N维的OFDM块,每N块OFDM块作为一组拼接成N×N维的互相关时频特征图,并将该N×N维的互相关时频特征图,将预设数量的该N×N维的互相关时频特征图作为一组进行叠加后取平均,并将经过叠加后取平均得到的N×N维的互相关时频特征图进行两两拼接,得到接收信号的N×2N维互相关时频特征图,此时可将接收信号的N×2N维互相关时频特征图输入至已经完成训练的多级残差网络进行预测,可以预测得到空频分组码类别。
需要说明的是,使用不同数量的训练样本,训练得到的多级残差网络的识别准确率也会不同,例如,如图7所示,为不同样本数下的识别准确率对比。
根据本申请实施例的空频分组码识别方法,通过对一维互相关幅值序列进行时频分析,得到接收信号二维互相关时频特征图,作为网络的训练样本,以适应深度学习方法的应用;将多张互相关特征图进行叠加后取平均,使得噪声干扰被削弱的同时峰值更加稳定,更利于神经网络对图片特征的提取;将两张N×N维互相关特征图进行拼接,使得新得到的N×2N维互相关特征图在不同时延下均有一组峰值处于图片中心,从而有效地解决了非时钟同步下的识别问题;通过对残差网络增加多级跨越连接,使浅层网络提取的细节信息和深层网络映射的高维特征能够进行深度融合,增强了网络结构的紧密性,大大提升了算法在低信噪比下的识别性能。
图8为本申请实施例提供的一种空频分组码识别装置的结构框图。如图8所示,该空频分组码识别装置800可以包括:获取模块801、处理模块802、拼接模块803、训练模块804和预测识别模块805。
具体地,获取模块801用于获取多个接收信号样本各自的N×N维互相关时频特征图。在一些实施例中,获取模块801获取样本接收端上多根天线之间的一维互相关幅值序列,并将所述一维互相关幅值序列按OFDM块长度N进行划分,每行放置一块大小为1×N维的OFDM块,每N块OFDM块作为一组拼接成N×N维的时频特征图。
处理模块802用于将预设数量的N×N维互相关时频特征图作为一组,将每组内的N×N维互相关时频特征图进行叠加后取平均。
拼接模块803用于将经过叠加后取平均得到的N×N维互相关时频特征图进行两两拼接,得到N×2N维互相关时频特征图。
训练模块804用于基于新得到的N×2N维互相关时频特征图,训练多级残差网络,直至多级残差网络的模型收敛。在一些实施例中,训练模块804将新得到的所述N×2N维互相关时频特征图输入至多级残差网络,获得接收信号样本的空频分组码预测类别,并根据所述空频分组码预测类别和所述接收信号样本的真实类别,生成损失值,以及根据所述损失值和预设的目标函数训练所述多级残差网络。
预测识别模块805用于识别已获取的接收信号的N×2N维互相关时频特征图,并将接收信号的N×2N维互相关时频特征图输入至已经完成训练的多级残差网络,获得接收信号对应的空频分组码类别。
需要说明的是,前述对空频分组码识别方法实施例的解释说明也适用于该实施例的空频分组码识别装置,此处不再赘述。
根据本申请实施例的空频分组码识别装置,通过对一维互相关幅值序列进行时频分析,得到接收信号二维互相关时频特征图,作为网络的训练样本,以适应深度学习方法的应用;将多张互相关特征图进行叠加后取平均,使得噪声干扰被削弱的同时峰值更加稳定,更利于神经网络对图片特征的提取;将两张N×N维互相关特征图进行拼接,使得新得到的N×2N维互相关特征图在不同时延下均有一组峰值处于图片中心,从而有效地解决了非时钟同步下的识别问题;通过对残差网络增加多级跨越连接,使浅层网络提取的细节信息和深层网络映射的高维特征能够进行深度融合,增强了网络结构的紧密性,大大提升了算法在低信噪比下的识别性能。
为了实现上述实施例,本申请还提出一种计算机设备。
图9是根据本申请实施例提出的一种计算机设备的结构框图。如图9所示,该计算机设备900包括:存储器901、处理器902及存储在存储器901上并可在处理器902上运行的计算机程序903,处理器902执行程序903时,实现本申请任一实施例所述的空频分组码识别方法。
为了实现上述实施例,本申请还提出一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本申请任一实施例所述的空频分组码识别方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种空频分组码识别方法,其特征在于,包括:
获取多个接收信号样本各自的N×N维互相关时频特征图;
将预设数量的N×N维互相关时频特征图作为一组,将每组内的N×N维互相关时频特征图进行叠加后取平均;
将经过叠加后取平均得到的N×N维互相关时频特征图进行两两拼接,得到N×2N维互相关时频特征图;
基于新得到的所述N×2N维互相关时频特征图,训练多级残差网络,直至所述多级残差网络的模型收敛;
识别已获取的接收信号的N×2N维互相关时频特征图,并将所述接收信号的N×2N维互相关时频特征图输入至已经完成训练的所述多级残差网络,获得所述接收信号对应的空频分组码类别。
2.根据权利要求1所述的方法,其特征在于,获取每个接收信号样本各自的N×N维互相关时频特征图,包括:
获取样本接收端上多根天线之间的一维互相关幅值序列;
将所述一维互相关幅值序列按OFDM块长度N进行划分,每行放置一块大小为1×N维的OFDM块,每N块OFDM块作为一组拼接成N×N维的时频特征图。
3.根据权利要求1所述的方法,其特征在于,在不同时延下,所述新得到的所述N×2N维互相关时频特征图中至少有一组峰值接近图片的中心位置。
4.根据权利要求1所述的方法,其特征在于,所述基于新得到的所述N×2N维互相关时频特征图,训练多级残差网络,包括:
将新得到的所述N×2N维互相关时频特征图输入至多级残差网络,获得接收信号样本的空频分组码预测类别;
根据所述空频分组码预测类别和所述接收信号样本的真实类别,生成损失值;
根据所述损失值和预设的目标函数训练所述多级残差网络。
5.根据权利要求1至4中任一项所述的方法,其特征在于,所述多级残差网络的输入层维度为N×2N;所述多级残差网络之中每两个二级残差块之间增加一个池化层;所述多级残差网络的输出层为多层全连接。
6.一种空频分组码识别装置,其特征在于,包括:
获取模块,用于获取多个接收信号样本各自的N×N维互相关时频特征图;
处理模块,用于将预设数量的N×N维互相关时频特征图作为一组,将每组内的N×N维互相关时频特征图进行叠加后取平均;
拼接模块,用于将经过叠加后取平均得到的N×N维互相关时频特征图进行两两拼接,得到N×2N维互相关时频特征图;
训练模块,用于基于新得到的所述N×2N维互相关时频特征图,训练多级残差网络,直至所述多级残差网络的模型收敛;
预测识别模块,用于识别已获取的接收信号的N×2N维互相关时频特征图,并将所述接收信号的N×2N维互相关时频特征图输入至已经完成训练的所述多级残差网络,获得所述接收信号对应的空频分组码类别。
7.根据权利要求6所述的装置,其特征在于,所述获取模块具体用于:
获取样本接收端上两根天线之间的一维互相关幅值序列;
将所述一维互相关幅值序列按OFDM块长度N进行划分,每行放置一块大小为1×N维的OFDM块,每N块OFDM块作为一组拼接成N×N维的时频特征图。
8.根据权利要求6所述的装置,其特征在于,所述训练模块具体用于:
将新得到的所述N×2N维互相关时频特征图输入至多级残差网络,获得接收信号样本的空频分组码预测类别;
根据所述空频分组码预测类别和所述接收信号样本的真实类别,生成损失值;
根据所述损失值和预设的目标函数训练所述多级残差网络。
9.一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时,实现如权利要求1至5中任一所述的空频分组码识别方法。
10.一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1至5中任一所述的空频分组码识别方法。
CN202011446847.4A 2020-12-08 2020-12-08 空频分组码识别方法、装置、计算机设备和存储介质 Active CN112600594B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011446847.4A CN112600594B (zh) 2020-12-08 2020-12-08 空频分组码识别方法、装置、计算机设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011446847.4A CN112600594B (zh) 2020-12-08 2020-12-08 空频分组码识别方法、装置、计算机设备和存储介质

Publications (2)

Publication Number Publication Date
CN112600594A true CN112600594A (zh) 2021-04-02
CN112600594B CN112600594B (zh) 2022-02-08

Family

ID=75193033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011446847.4A Active CN112600594B (zh) 2020-12-08 2020-12-08 空频分组码识别方法、装置、计算机设备和存储介质

Country Status (1)

Country Link
CN (1) CN112600594B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114244660A (zh) * 2021-11-17 2022-03-25 西安电子科技大学 一种脉冲噪声干扰下mimo-ofdm系统sfbc类型识别方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490863A (zh) * 2013-10-07 2014-01-01 西安电子科技大学 基于部分序列参数检测的空时码模式盲识别方法
CN104038317A (zh) * 2014-06-21 2014-09-10 西安电子科技大学 基于特征提取和分集技术的空频码模式盲识别方法
CN106341360A (zh) * 2016-10-19 2017-01-18 中国人民解放军海军航空工程学院 一种多输入单输出空时分组码系统的分层调制识别方法
CN107682119A (zh) * 2017-09-26 2018-02-09 金陵科技学院 一种基于分组极值模型的mimo空时码识别方法
US20180198660A1 (en) * 2017-01-08 2018-07-12 Qualcomm Incorporated Multiplexing uplink transmissions with transmit diversity with single carrier waveform
CN110659684A (zh) * 2019-09-23 2020-01-07 中国人民解放军海军航空大学 一种基于卷积神经网络stbc信号识别方法
CN111812623A (zh) * 2020-07-29 2020-10-23 中国科学院声学研究所 一种基于时频特征图的目标信号检测方法及检测系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490863A (zh) * 2013-10-07 2014-01-01 西安电子科技大学 基于部分序列参数检测的空时码模式盲识别方法
CN104038317A (zh) * 2014-06-21 2014-09-10 西安电子科技大学 基于特征提取和分集技术的空频码模式盲识别方法
CN106341360A (zh) * 2016-10-19 2017-01-18 中国人民解放军海军航空工程学院 一种多输入单输出空时分组码系统的分层调制识别方法
US20180198660A1 (en) * 2017-01-08 2018-07-12 Qualcomm Incorporated Multiplexing uplink transmissions with transmit diversity with single carrier waveform
CN107682119A (zh) * 2017-09-26 2018-02-09 金陵科技学院 一种基于分组极值模型的mimo空时码识别方法
CN110659684A (zh) * 2019-09-23 2020-01-07 中国人民解放军海军航空大学 一种基于卷积神经网络stbc信号识别方法
CN111812623A (zh) * 2020-07-29 2020-10-23 中国科学院声学研究所 一种基于时频特征图的目标信号检测方法及检测系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
O. P. VYAS; PIYUSH VYAS: "A multiple bits simulation obtained by space time and frequency coding techniques for any complex Rayleigh channel MIMO-OFDM communications", 《 2017 2ND INTERNATIONAL CONFERENCE ON TELECOMMUNICATION AND NETWORKS》 *
张聿远; 闫文君;: "利用卷积-循环神经网络的串行序列空时分组码识别方法", 《信号处理》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114244660A (zh) * 2021-11-17 2022-03-25 西安电子科技大学 一种脉冲噪声干扰下mimo-ofdm系统sfbc类型识别方法及系统

Also Published As

Publication number Publication date
CN112600594B (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2019245931A1 (en) Distributed radio system
US11222264B1 (en) Method and device for recognizing space-frequency block code
KR20200074194A (ko) 통신 시스템들에서의 단-대-단 학습
CN109932699A (zh) 一种雷达辐射源识别方法、装置、计算机设备和存储介质
CN112600594B (zh) 空频分组码识别方法、装置、计算机设备和存储介质
KR20190139539A (ko) 저사양 임베디드 환경에서의 합성곱 신경망 연산을 위한 역 잔여 블록의 채널 확장 매개변수 설정 시스템 및 방법
CN113158984B (zh) 基于复Morlet小波和轻量级卷积网络的轴承故障诊断方法
CN111628833B (zh) 基于卷积神经网络的mimo天线数目估计方法
CN114387627A (zh) 基于深度度量学习的小样本无线设备射频指纹识别方法及装置
EP3304836B1 (en) Parallel processing of sphere decoders and other vector finding approaches using tree search
CN114821251B (zh) 一种点云上采样网络的确定方法及确定装置
CN110166383B (zh) 一种基于树状随机搜索导频设计方法
CN106372726B (zh) 一种基于gasa的mimo雷达正交编码信号优化方法
Johanyák Sparse fuzzy model identification matlab toolox-rulemaker toolbox
CN115204394A (zh) 用于目标检测的知识蒸馏方法
CN109995463A (zh) 一种qr分解检测方法和装置
WO2007021058A1 (en) Low-complexity joint transmit/receive antenna selection method for mimo systems
CN104038317B (zh) 基于特征提取和分集技术的空频码模式盲识别方法
CN106911375A (zh) 低复杂度差分检测方法
CN108900450A (zh) Esl系统、无线通信系统及其接收端和信号接收方法
CN111666962B (zh) 序列数据的目标定位方法和装置
CN116699531B (zh) 一种基于复数网络的雷达信号降噪方法、系统及存储介质
CN109150320A (zh) 一种声波信号编码、解码方法及装置
Friedlander Pattern Analysis with Layered Self-Organizing Maps
CN113098664B (zh) 基于mdmsffn的空时分组码自动识别方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant