CN112599622A - 一种三明治结构阵列式多孔紫外光电探测器及其制备方法 - Google Patents

一种三明治结构阵列式多孔紫外光电探测器及其制备方法 Download PDF

Info

Publication number
CN112599622A
CN112599622A CN202011470361.4A CN202011470361A CN112599622A CN 112599622 A CN112599622 A CN 112599622A CN 202011470361 A CN202011470361 A CN 202011470361A CN 112599622 A CN112599622 A CN 112599622A
Authority
CN
China
Prior art keywords
coating
aln
nio
sandwich structure
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011470361.4A
Other languages
English (en)
Other versions
CN112599622B (zh
Inventor
杨为家
符跃春
王凤鸣
姚娟
何鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Wuyi University
Original Assignee
Guangxi University
Wuyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University, Wuyi University filed Critical Guangxi University
Priority to CN202011470361.4A priority Critical patent/CN112599622B/zh
Publication of CN112599622A publication Critical patent/CN112599622A/zh
Application granted granted Critical
Publication of CN112599622B publication Critical patent/CN112599622B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种三明治结构阵列式多孔紫外光电探测器及其制备方法,所述紫三明治结构阵列式多孔紫外光电探测器包括衬底和FTO/ITO薄膜,所述FTO/ITO薄膜涂覆在衬底上,所述FTO/ITO薄膜的上方固定设有阵列式的柱状结构,该柱状结构由下往上依次为涂覆有碳纳米管网络层、AlN纳米晶薄膜层、NiO纳米晶薄膜层和碳纳米管网络层,所述FTO/ITO薄膜上方的两侧边设有位置相对的金属电极,并在最上层碳纳米管网络层的两侧镀上同样的金属电极。本发明制备的三明治结构阵列式多孔紫外光电探测器,该探测器具有尺寸可控、分布均匀性好的优点,提高了器件在恶劣环境下的工作性能;采用无掩膜数字曝光机制备模板,优化制备工艺,更加符合工业化生产的需求。

Description

一种三明治结构阵列式多孔紫外光电探测器及其制备方法
技术领域
本发明涉及紫外光探测器技术领域,特别涉及一种三明治结构阵列式多孔紫外光电探测器及其制备方法。
背景技术
紫外探测器在导弹预警、导弹制导、环境监测、保密通讯、空间探测等方面具有非常广阔的应用前景,是当前探测器领域研究的一个重要方向。
目前,用于制备紫外探测器的半导体材料主要有GaN、AlN、SiC、金刚石、BN、NiO、ZnO、Ga2O3等。GaN、AlN、SiC、金刚石、BN、Ga2O3等半导体基紫外探测器,通常是利用外延的方法制备,工艺复杂程度高,成本投入非常大,产业化技术难关多,距离商业化应用还有相当漫长的道路。因此,低成本、便于产业化的新型紫外探测器是人们不懈追求的目标。
ZnO具有光电性能良好、无毒、成本低等优点,而且制备方法多样,非常适合产业化生产的要求。但是,ZnO的稳定性相对较差,容易被酸碱腐蚀,而且发生容易表面潮解,无法满足恶劣工作条件的需求。相比之下,NiO响应度高、探测范围广且化学稳定性好,是一种制备紫外探测的理想材料。研究人员开展了大量的研究,并取得了相当的进展。有研究人员以NiO纳米线为光敏层,制备了紫外探测器(ZL201410567389.8)。部分研究人员则提出了非极性p-NiO/n-ZnO异质结构紫外探测器(ZL201310038167.2)。进一步的,发展出了p-NiO/n-ZnO:Al结构紫外探测器(ZL201611208996.0)。优化地,在薄膜器件的基础上,有人提出利用聚苯乙烯微球为模板制备有序多孔ZnO/NiO异质结构薄膜(ZL201410653509.6)。然而,NiO基紫外探测依然有两个问题需要解决。一是异质结构中的ZnO需要寻找一种性能更好的替代材料;二是以聚苯乙烯微球为模板,成本昂贵,且不适合大规模工业化生产。所以需要寻找一种能够解决上述问题的紫外探测器。
发明内容
本发明的目的在于:针对上述存在的问题,提供一种基于NiO、AlN纳米晶的三明治结构阵列式多孔紫外光电探测器和该探测器的制备方法,具有尺寸可控、分布均匀性好的优点。
为了实现上述发明目的,本发明采用的技术方案如下:
一种三明治结构阵列式多孔紫外光电探测器,包括衬底和FTO/ITO薄膜,所述FTO/ITO薄膜涂覆在衬底上,所述FTO/ITO薄膜的上方固定设有阵列式的柱状结构,该柱状结构由下往上依次为涂覆有碳纳米管网络层、AlN纳米晶薄膜层、NiO纳米晶薄膜层和碳纳米管网络层,所述FTO/ITO薄膜上方的两侧边设有位置相对的金属电极,并在最上层碳纳米管网络层的两侧镀上同样的金属电极。
进一步地,所述碳纳米管网络采用的是多壁碳纳米管,该碳纳米管的直径为5-15nm,长度为0.5-2μm。
进一步地,所述AlN纳米晶薄膜层中的AlN纳米晶的直径为2-20nm。
进一步地,所述NiO纳米晶薄膜层中的NiO纳米晶的尺寸为2-20nm。
一种三明治结构阵列式多孔紫外光电探测器的制备方法,该制备方法包括以下步骤:
(1)光刻胶纳米柱的制备:将FTO/ITO薄膜涂覆在衬底上后,在FTO/ITO薄膜上方旋涂一层光刻胶,再采用无掩膜曝光机进行光刻获得阵列作为样品;
(2)碳纳米管的涂覆:将步骤(1)制备好的光刻胶纳米柱样品转移至旋涂仪中,在中心位置滴加碳纳米管溶液,进行旋涂使碳纳米管均匀分布后烘干从而获得连续、均匀分布的碳纳米管网络层;
(3)NiO纳米晶的涂覆:向步骤(2)中涂覆好碳纳米管网络层的样品中心处滴加NiO纳米晶溶液进行旋涂,涂覆若干次后烘干得到NiO纳米晶薄膜层;
(4)AlN纳米晶的涂覆:向步骤(2)中涂覆好NiO纳米晶薄膜层的样品中心处滴加AlN纳米晶溶液进行旋涂,涂覆若干次后烘干得到AlN纳米晶薄膜层;
(5)碳纳米管的二次涂覆:采用与步骤(2)相同的工艺在AlN纳米晶薄膜层的上方旋涂碳纳米管网络层;
(6)退火处理:使用快速退火炉在真空或者保护气氛下退火处理,将光刻胶完全分解为二氧化碳和水蒸气,同时使衬底、碳纳米管、NiO纳米晶、AlN纳米晶、碳纳米管之间成良好的键合;
(7)电极的制备:采用无掩膜光刻技术,在AlN纳米晶溶液/碳纳米管网络层获得制备电极的环形区域,然后采用热蒸镀技术在样品上制备金属电极。
进一步地,在步骤(1)中,所述光刻胶的厚度为800nm-5μm,所述光刻胶纳米柱的为圆形或者正多边形,且直径为200nm-900nm,相邻的两个光刻胶纳米柱之间的中心距离为700nm-5μm。
进一步地,在步骤(2)中,所述碳纳米管溶液的滴加量为10-15滴,所述旋涂是采用1000-1500转/分的速率进行旋涂60-120s,使碳纳米管在样品上均匀铺开;进而采用3500-4000转/分的速率旋涂60-120s,使碳纳米管均匀分布在样品上,在高速旋涂的过程中,适当补充8-10滴碳纳米管溶液,在90-150℃下烘干,之后,采用相同的工艺旋涂1-3次,得到碳纳米管网络层。
进一步地,在步骤(3)中,所述NiO纳米晶溶液的添加量为10-20滴,所述旋涂是先采用800-1200转/分的速率进行旋涂60-120s,使NiO纳米晶溶液在样品上均匀铺开;进而采用3000-3500转/分的速率旋涂60-120s,使NiO纳米晶均匀分布在样品上,在高速旋涂的过程中,适当补充8-12滴NiO纳米晶溶液,之后,采用红外线低温烘干,接着进行第二次NiO纳米晶的涂覆,并烘干,旋涂次数为6-20次后得到NiO纳米晶薄膜层。
进一步地,在步骤(4)中,所述AlN纳米晶溶液的滴加量为10-20滴,所述采用800-1200转/分的速率进行旋涂60-120s,使AlN纳米晶溶液在样品上均匀铺开;进而采用3000-3500转/分的速率旋涂60-120s,使AlN纳米晶均匀分布在样品上,在高速旋涂的过程中,适当补充8-12滴AlN纳米晶溶液,之后采用红外线低温烘干,接着进行第二次AlN纳米晶的涂覆,并烘干,旋涂次数为6-20次。
进一步地,在步骤(6)中,所述退火温度为400-600℃,退火时间为125-180分钟。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
(1)本发明以化学稳定性极好的n型AlN替代ZnO,克服ZnO稳定性的问题,提高了器件在恶劣环境下的工作性能。
(2)本发明以n型AlN和p型NiO构成P-N结,同时采用碳纳米管网络同时提升AlN纳米晶薄膜和NiO纳米晶薄膜的载流子传输性能;同时,碳纳米管网络对紫外光也具有一定的吸收效果,有利于提高器件的光吸收效果(提升5-10%)。
(3)本发明在嵌入了阵列式纳米孔,一方面利用光路增长和多次折射吸收,提高吸收效率;另一方面,阵列式纳米孔具有局域表面增强效应,可以提高吸收效果。
(4)采用无掩膜数字曝光机制备模板,取代了聚苯乙烯微球制备模板,改善的制备工艺,更加符合工业化生产的需求。
(5)使用碳纳米管网络可以为电子或者空穴聚集体,提高光生载流子的提取效率,同时可以作为电子和空穴的快速传输通道,从而改善AlN和NiO纳米晶薄膜的电子或者空穴的传输性能,最终提高探测器的响应灵敏度。与此同时,也可以改善二者与金属电极之间的界面接触特性,从而有利于提高器件的灵敏度。
附图说明
图1是本发明的探测器的截面示意图;
图2是本发明的工艺流程图。
图3是本发明所采用的碳纳米管的TEM图。
附图中,10衬底、11FTO/ITO薄膜、12碳纳米管网络层、13AIN纳米晶薄膜层、14NiO纳米晶薄膜、12碳纳米管网络、15金属电极。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下举出优选实施例,对本发明进一步详细说明。然而,需要说明的是,说明书中列出的许多细节仅仅是为了使读者对本发明的一个或多个方面有一个透彻的理解,即便没有这些特定的细节也可以实现本发明的这些方面。
实施例1
一种三明治结构阵列式多孔紫外光电探测器,包括衬底和FTO/ITO薄膜,所述FTO/ITO薄膜涂覆在衬底上,所述FTO/ITO薄膜的上方固定设有阵列式的柱状结构,该柱状结构由下往上依次为涂覆有碳纳米管网络层、AlN纳米晶薄膜层、NiO纳米晶薄膜层和碳纳米管网络层,所述FTO/ITO薄膜上方的两侧边设有位置相对的金属电极,并在最上层碳纳米管网络层的两侧镀上同样的金属电极。其中碳纳米管网络采用的是多壁碳纳米管,该碳纳米管的直径为5nm,长度为0.5μm;AlN纳米晶薄膜层中的AlN纳米晶的直径为2nm;NiO纳米晶薄膜层中的NiO纳米晶的尺寸为2nm。使用碳纳米管网络可以增加AlN和NiO纳米晶薄膜的电子或者空穴的传输性能,提高光生载流子的提取效率,最终提高探测器的响应灵敏度。
实施例2
一种三明治结构阵列式多孔紫外光电探测器,包括衬底和FTO/ITO薄膜,所述FTO/ITO薄膜涂覆在衬底上,所述FTO/ITO薄膜的上方固定设有阵列式的柱状结构,该柱状结构由下往上依次为涂覆有碳纳米管网络层、AlN纳米晶薄膜层、NiO纳米晶薄膜层和碳纳米管网络层,所述FTO/ITO薄膜上方的两侧边设有位置相对的金属电极,并在最上层碳纳米管网络层的两侧镀上同样的金属电极。其中碳纳米管网络采用的是多壁碳纳米管,该碳纳米管的直径为15nm,长度为2μm;AlN纳米晶薄膜层中的AlN纳米晶的直径为20nm;NiO纳米晶薄膜层中的NiO纳米晶的尺寸为20nm。使用碳纳米管网络可以增加AlN和NiO纳米晶薄膜的电子或者空穴的传输性能,提高光生载流子的提取效率,最终提高探测器的响应灵敏度。
实施例3
一种三明治结构阵列式多孔紫外光电探测器,包括衬底和FTO/ITO薄膜,所述FTO/ITO薄膜涂覆在衬底上,所述FTO/ITO薄膜的上方固定设有阵列式的柱状结构,该柱状结构由下往上依次为涂覆有碳纳米管网络层、AlN纳米晶薄膜层、NiO纳米晶薄膜层和碳纳米管网络层,所述FTO/ITO薄膜上方的两侧边设有位置相对的金属电极,并在最上层碳纳米管网络层的两侧镀上同样的金属电极。其中碳纳米管网络采用的是多壁碳纳米管,该碳纳米管的直径为10nm,长度为1μm;AlN纳米晶薄膜层中的AlN纳米晶的直径为10nm;NiO纳米晶薄膜层中的NiO纳米晶的尺寸为10nm。使用碳纳米管网络可以增加AlN和NiO纳米晶薄膜的电子或者空穴的传输性能,提高光生载流子的提取效率,最终提高探测器的响应灵敏度。
实施例4
本实施例所制备的基于NiO、AlN纳米晶的三明治结构阵列式多孔紫外光电探测器,包括以下步骤:
(1)光刻胶纳米柱的制备:在FTO或者ITO玻璃衬底上旋涂一层厚度为800nm的光刻胶。进而采用无掩膜曝光机进行光刻,从而获得光刻胶纳米柱阵列。光刻胶纳米柱的直径为200nm,光刻胶纳米柱相邻之间的中心距离为700nm;纳米柱为圆形。
(2)碳纳米管的涂覆:将步骤(1)制备好的光刻胶纳米柱样品转移至旋涂仪,在样品中心位置滴加10滴碳纳米管溶液。采用1000转/分的速率进行旋涂120s,使碳纳米管在样品上均匀铺开;进而采用3500转/分的速率旋涂120s,使碳纳米管均匀分布在样品上。在高速旋涂的过程中,适当补充8滴碳纳米管溶液。在90℃下烘干,之后,采用相同的工艺旋涂1次。从而获得连续、均匀分布的碳纳米管网络层。
(3)NiO纳米晶的涂覆:在步骤(2)的基础上,旋涂NiO纳米晶溶液。具体工艺如下:首先,在样品中心位置滴加10滴NiO纳米晶溶液。采用800转/分的速率进行旋涂120s,使NiO纳米晶溶液在样品上均匀铺开;进而采用3000转/分的速率旋涂120s,使NiO纳米晶均匀分布在样品上。在高速旋涂的过程中,适当补充8滴NiO纳米晶溶液。之后,采用红外线低温烘干,接着进行第二次NiO纳米晶的涂覆,并烘干。涂覆次数为6次。
(4)AlN纳米晶的涂覆:在步骤(3)的基础上,旋涂AlN纳米晶溶液。具体工艺如下:首先,在样品中心位置滴加10滴AlN纳米晶溶液。采用800转/分的速率进行旋涂120s,使AlN纳米晶溶液在样品上均匀铺开;进而采用3000转/分的速率旋涂120s,使AlN纳米晶均匀分布在样品上。在高速旋涂的过程中,适当补充8滴AlN纳米晶溶液。之后,采用红外线低温烘干,接着进行第二次AlN纳米晶的涂覆,并烘干。涂覆次数为6次。
(5)碳纳米管的二次涂覆:采用与步骤(2)相同的工艺在AlN纳米晶薄膜上旋涂碳纳米管2次。
(6)退火处理:使用快速退火炉在真空或者保护气氛下在400℃下退火处理180分钟,一方面使光刻胶完全分解为二氧化碳和水蒸气,另一方面使衬底、碳纳米管、NiO纳米晶、AlN纳米晶、碳纳米管之间成良好的键合。
(7)电极的制备:采用无掩膜光刻技术,获得制备电极的区域,然后采用热蒸镀技术在样品上制备金属电极。从而获得结构完整的基于NiO、AlN纳米晶的三明治结构阵列式多孔紫外光电探测器。
实施例5
本实施例所制备的基于NiO、AlN纳米晶的三明治结构阵列式多孔紫外光电探测器,包括以下步骤:
(1)光刻胶纳米柱的制备:在FTO或者ITO玻璃衬底上旋涂一层厚度为5μm的光刻胶。进而采用无掩膜曝光机进行光刻,从而获得光刻胶纳米柱阵列。光刻胶纳米柱的直径为900nm,光刻胶纳米柱相邻之间的中心距离为5μm;纳米柱为四边形。
(2)碳纳米管的涂覆:将步骤(1)制备好的光刻胶纳米柱样品转移至旋涂仪,在样品中心位置滴加15滴碳纳米管溶液。采用1500转/分的速率进行旋涂60s,使碳纳米管在样品上均匀铺开;进而采用4000转/分的速率旋涂60s,使碳纳米管均匀分布在样品上。在高速旋涂的过程中,适当补充8滴碳纳米管溶液。在90℃下烘干,之后,采用相同的工艺旋涂1次。从而获得连续、均匀分布的碳纳米管网络层。
(3)NiO纳米晶的涂覆:在步骤(2)的基础上,旋涂NiO纳米晶溶液。具体工艺如下:首先,在样品中心位置滴加10滴NiO纳米晶溶液。采用1200转/分的速率进行旋涂60s,使NiO纳米晶溶液在样品上均匀铺开;进而采用3500转/分的速率旋涂60s,使NiO纳米晶均匀分布在样品上。在高速旋涂的过程中,适当补充12滴NiO纳米晶溶液。之后,采用红外线低温烘干,接着进行第二次NiO纳米晶的涂覆,并烘干。涂覆次数为20次。
(4)AlN纳米晶的涂覆:在步骤(3)的基础上,旋涂AlN纳米晶溶液。具体工艺如下:首先,在样品中心位置滴加20滴AlN纳米晶溶液。采用1200转/分的速率进行旋涂60s,使AlN纳米晶溶液在样品上均匀铺开;进而采用3500转/分的速率旋涂60s,使AlN纳米晶均匀分布在样品上。在高速旋涂的过程中,适当补充12滴AlN纳米晶溶液。之后,采用红外线低温烘干,接着进行第二次AlN纳米晶的涂覆,并烘干。涂覆次数为20次。
(5)碳纳米管的二次涂覆:采用与步骤(2)相同的工艺在AlN纳米晶薄膜上旋涂碳纳米管4次。
(6)退火处理:使用快速退火炉在真空或者保护气氛下在600℃下退火处理125分钟,一方面使光刻胶完全分解为二氧化碳和水蒸气,另一方面使衬底、碳纳米管、NiO纳米晶、AlN纳米晶、碳纳米管之间成良好的键合。
(7)电极的制备:采用无掩膜光刻技术,获得制备电极的区域,然后采用热蒸镀技术在样品上制备金属电极。从而获得结构完整的基于NiO、AlN纳米晶的三明治结构阵列式多孔紫外光电探测器。
实施例6
本实施例所制备的基于NiO、AlN纳米晶的三明治结构阵列式多孔紫外光电探测器,包括以下步骤:
(1)光刻胶纳米柱的制备:在FTO或者ITO玻璃衬底上旋涂一层厚度为1μm的光刻胶。进而采用无掩膜曝光机进行光刻,从而获得光刻胶纳米柱阵列。光刻胶纳米柱的直径为500nm,光刻胶纳米柱相邻之间的中心距离为1μm;纳米柱为八边形。
(2)碳纳米管的涂覆:将步骤(1)制备好的光刻胶纳米柱样品转移至旋涂仪,在样品中心位置滴加12滴碳纳米管溶液。采用1200转/分的速率进行旋涂100s,使碳纳米管在样品上均匀铺开;进而采用3600转/分的速率旋涂100s,使碳纳米管均匀分布在样品上。在高速旋涂的过程中,适当补充9滴碳纳米管溶液。在120℃下烘干,之后,采用相同的工艺旋涂2次。从而获得连续、均匀分布的碳纳米管网络层。
(3)NiO纳米晶的涂覆:在步骤(2)的基础上,旋涂NiO纳米晶溶液。具体工艺如下:首先,在样品中心位置滴加15滴NiO纳米晶溶液。采用1000转/分的速率进行旋涂100s,使NiO纳米晶溶液在样品上均匀铺开;进而采用3000-3500转/分的速率旋涂1000s,使NiO纳米晶均匀分布在样品上。在高速旋涂的过程中,适当补充1000滴NiO纳米晶溶液。之后,采用红外线低温烘干,接着进行第二次NiO纳米晶的涂覆,并烘干。涂覆次数为12次。
(4)AlN纳米晶的涂覆:在步骤(3)的基础上,旋涂AlN纳米晶溶液。具体工艺如下:首先,在样品中心位置滴加15滴AlN纳米晶溶液。采用1000转/分的速率进行旋涂100s,使AlN纳米晶溶液在样品上均匀铺开;进而采用3200转/分的速率旋涂100s,使AlN纳米晶均匀分布在样品上。在高速旋涂的过程中,适当补充10滴AlN纳米晶溶液。之后,采用红外线低温烘干,接着进行第二次AlN纳米晶的涂覆,并烘干。涂覆次数为12次。
(5)碳纳米管的二次涂覆:采用与步骤(2)相同的工艺在AlN纳米晶薄膜上旋涂碳纳米管3次。
(6)退火处理:使用快速退火炉在真空或者保护气氛下在500℃下退火处理150分钟,一方面使光刻胶完全分解为二氧化碳和水蒸气,另一方面使衬底、碳纳米管、NiO纳米晶、AlN纳米晶、碳纳米管之间成良好的键合。
(7)电极的制备:采用无掩膜光刻技术,获得制备电极的区域,然后采用热蒸镀技术在样品上制备金属电极。从而获得结构完整的基于NiO、AlN纳米晶的三明治结构阵列式多孔紫外光电探测器。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种三明治结构阵列式多孔紫外光电探测器,其特征在于,包括衬底和FTO/ITO薄膜,所述FTO/ITO薄膜涂覆在衬底上,所述FTO/ITO薄膜的上方固定设有阵列式的柱状结构,该柱状结构由下往上依次为涂覆有碳纳米管网络层、AlN纳米晶薄膜层、NiO纳米晶薄膜层和碳纳米管网络层,所述FTO/ITO薄膜上方的两侧边设有位置相对的金属电极,并在最上层碳纳米管网络层的两侧镀上同样的金属电极。
2.根据权利要求1所述的一种三明治结构阵列式多孔紫外光电探测器,其特征在于,所述碳纳米管网络采用的是多壁碳纳米管,该碳纳米管的直径为5-15nm,长度为0.5-2μm。
3.根据权利要求1所述的一种三明治结构阵列式多孔紫外光电探测器,其特征在于,AlN纳米晶薄膜层中的AlN纳米晶的直径为2-20nm。
4.根据权利要求1所述的一种三明治结构阵列式多孔紫外光电探测器,其特征在于,所述NiO纳米晶薄膜层中的NiO纳米晶的尺寸为2-20nm。
5.一种如权利要求1-4R任一所述的三明治结构阵列式多孔紫外光电探测器的制备方法,其特征在于,该制备方法包括以下步骤:
(1)光刻胶纳米柱的制备:将FTO/ITO薄膜涂覆在衬底上后,在FTO/ITO薄膜上方旋涂一层光刻胶,再采用无掩膜曝光机进行光刻获得阵列作为样品;
(2)碳纳米管的涂覆:将步骤(1)制备好的光刻胶纳米柱样品转移至旋涂仪中,在中心位置滴加碳纳米管溶液,进行旋涂使碳纳米管均匀分布后烘干从而获得连续、均匀分布的碳纳米管网络层;
(3)NiO纳米晶的涂覆:向步骤(2)中涂覆好碳纳米管网络层的样品中心处滴加NiO纳米晶溶液进行旋涂,涂覆若干次后烘干得到NiO纳米晶薄膜层;
(4)AlN纳米晶的涂覆:向步骤(2)中涂覆好NiO纳米晶薄膜层的样品中心处滴加AlN纳米晶溶液进行旋涂,涂覆若干次后烘干得到AlN纳米晶薄膜层;
(5)碳纳米管的二次涂覆:采用与步骤(2)相同的工艺在AlN纳米晶薄膜层的上方旋涂碳纳米管网络层;
(6)退火处理:使用快速退火炉在真空或者保护气氛下退火处理,将光刻胶完全分解为二氧化碳和水蒸气,同时使衬底、碳纳米管、NiO纳米晶、AlN纳米晶、碳纳米管之间成良好的键合;
(7)电极的制备:采用无掩膜光刻技术,获得制备电极的区域,然后采用热蒸镀技术在样品上制备金属电极。
6.根据权利要求5所述的一种三明治结构阵列式多孔紫外光电探测器的制备方法,其特征在于:在步骤(1)中,所述光刻胶的厚度为800nm-5μm,所述光刻胶纳米柱的为圆形或者正多边形,且直径为200nm-900nm,相邻的两个光刻胶纳米柱之间的中心距离为700nm-5μm。
7.根据权利要求5所述的一种三明治结构阵列式多孔紫外光电探测器的制备方法,其特征在于:在步骤(2)中,所述碳纳米管溶液的滴加量为10-15滴,所述旋涂是采用1000-1500转/分的速率进行旋涂60-120s,使碳纳米管在样品上均匀铺开;进而采用3500-4000转/分的速率旋涂60-120s,使碳纳米管均匀分布在样品上,在高速旋涂的过程中,适当补充8-10滴碳纳米管溶液,在90-150℃下烘干,之后,采用相同的工艺旋涂1-3次,得到碳纳米管网络层。
8.根据权利要求5所述的一种三明治结构阵列式多孔紫外光电探测器的制备方法,其特征在于:在步骤(3)中,所述NiO纳米晶溶液的添加量为10-20滴,所述旋涂是先采用800-1200转/分的速率进行旋涂60-120s,使NiO纳米晶溶液在样品上均匀铺开;进而采用3000-3500转/分的速率旋涂60-120s,使NiO纳米晶均匀分布在样品上,在高速旋涂的过程中,适当补充8-12滴NiO纳米晶溶液,之后,采用红外线低温烘干,接着进行第二次NiO纳米晶的涂覆,并烘干,旋涂次数为6-20次后得到NiO纳米晶薄膜层。
9.根据权利要求5所述的一种三明治结构阵列式多孔紫外光电探测器的制备方法,其特征在于:在步骤(4)中,所述AlN纳米晶溶液的滴加量为10-20滴,所述采用800-1200转/分的速率进行旋涂60-120s,使AlN纳米晶溶液在样品上均匀铺开;进而采用3000-3500转/分的速率旋涂60-120s,使AlN纳米晶均匀分布在样品上,在高速旋涂的过程中,适当补充8-12滴AlN纳米晶溶液,之后采用红外线低温烘干,接着进行第二次AlN纳米晶的涂覆,并烘干,旋涂次数为6-20次。
10.根据权利要求5所述的一种三明治结构阵列式多孔紫外光电探测器的制备方法,其特征在于:在步骤(6)中,所述退火温度为400-600℃,退火时间为125-180分钟。
CN202011470361.4A 2020-12-15 2020-12-15 一种三明治结构阵列式多孔紫外光电探测器及其制备方法 Active CN112599622B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011470361.4A CN112599622B (zh) 2020-12-15 2020-12-15 一种三明治结构阵列式多孔紫外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011470361.4A CN112599622B (zh) 2020-12-15 2020-12-15 一种三明治结构阵列式多孔紫外光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN112599622A true CN112599622A (zh) 2021-04-02
CN112599622B CN112599622B (zh) 2023-09-26

Family

ID=75195346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011470361.4A Active CN112599622B (zh) 2020-12-15 2020-12-15 一种三明治结构阵列式多孔紫外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN112599622B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958362A (zh) * 2009-07-17 2011-01-26 北京邮电大学 纳米波导结构半导体光探测器制备方法
CN102221406A (zh) * 2011-05-24 2011-10-19 中国科学院上海技术物理研究所 单片集成亚波长微偏振光栅的铟镓砷近红外探测器
CN103441154A (zh) * 2013-06-26 2013-12-11 北京科技大学 一种ZnO纳米阵列紫外探测器及其制作方法
CN103579415A (zh) * 2013-10-22 2014-02-12 华中科技大学 一种氧化锌纳米线阵列紫外光电探测器的制备方法
CN105428435A (zh) * 2015-12-10 2016-03-23 上海集成电路研发中心有限公司 一种高灵敏度紫外光探测器及其制作方法
CN105428534A (zh) * 2015-11-06 2016-03-23 昆明物理研究所 一种具有ZnO纳米棒与菲纳米异质复合结构的紫外光伏探测器
CN109713058A (zh) * 2017-10-25 2019-05-03 中国科学院物理研究所 表面等离激元增强的氧化镓紫外探测器及其制备方法和应用
CN110265504A (zh) * 2019-07-01 2019-09-20 哈尔滨工业大学 一种紫外光电探测器及其制备方法
CN111200029A (zh) * 2020-01-13 2020-05-26 五邑大学 一种光电探测器及其制备方法与应用
CN111312846A (zh) * 2019-10-31 2020-06-19 山东大学 一种具有纳米孔阵列的超导微米线单光子探测器及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958362A (zh) * 2009-07-17 2011-01-26 北京邮电大学 纳米波导结构半导体光探测器制备方法
CN102221406A (zh) * 2011-05-24 2011-10-19 中国科学院上海技术物理研究所 单片集成亚波长微偏振光栅的铟镓砷近红外探测器
CN103441154A (zh) * 2013-06-26 2013-12-11 北京科技大学 一种ZnO纳米阵列紫外探测器及其制作方法
CN103579415A (zh) * 2013-10-22 2014-02-12 华中科技大学 一种氧化锌纳米线阵列紫外光电探测器的制备方法
CN105428534A (zh) * 2015-11-06 2016-03-23 昆明物理研究所 一种具有ZnO纳米棒与菲纳米异质复合结构的紫外光伏探测器
CN105428435A (zh) * 2015-12-10 2016-03-23 上海集成电路研发中心有限公司 一种高灵敏度紫外光探测器及其制作方法
CN109713058A (zh) * 2017-10-25 2019-05-03 中国科学院物理研究所 表面等离激元增强的氧化镓紫外探测器及其制备方法和应用
CN110265504A (zh) * 2019-07-01 2019-09-20 哈尔滨工业大学 一种紫外光电探测器及其制备方法
CN111312846A (zh) * 2019-10-31 2020-06-19 山东大学 一种具有纳米孔阵列的超导微米线单光子探测器及其制备方法
CN111200029A (zh) * 2020-01-13 2020-05-26 五邑大学 一种光电探测器及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高耀南等: "《宇航概论》", 北京理工大学出版社 *

Also Published As

Publication number Publication date
CN112599622B (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
CN111952463B (zh) 一种大面积钙钛矿纳米线阵列的制备方法
CN108832002B (zh) 一种基于pva修饰空穴传输层的钙钛矿太阳能电池
CN110993703A (zh) 一种GaN/MoS2二维范德华异质结光电探测器及其制备方法
CN109004089B (zh) 3d气凝胶喷射打印制备可卷曲式纳米纸基柔性太阳能电池的方法
CN110649162B (zh) 一种宽光谱自驱动无机钙钛矿光电探测器及其制备方法
CN103568441A (zh) 一种低成本大面积薄膜超吸收体及其制备方法
KR101030039B1 (ko) 유기 태양전지 및 그 제조방법
CN111599890A (zh) 一种基于氧化镓/二硫化钼二维异质结的高速光电探测器
CN108232016A (zh) 基于纤维素修饰空穴传输层的钙钛矿太阳能电池
CN112117380A (zh) 一种基于钙钛矿单晶薄膜的超快光电探测器
US20170346014A1 (en) Apparatus and method for forming organic thin film solar battery
CN109786480B (zh) 一种纳米阵列结构太阳能电池及其制备方法
CN110767811A (zh) 一种甲胺铅碘钙钛矿单晶纳米线的光电探测器及制备方法
CN109244244B (zh) 一种有序异质结光伏器件及其制备方法
CN106328729A (zh) 基于石墨烯电极的量子点垂直沟道场效应管及其制备方法
CN112599622B (zh) 一种三明治结构阵列式多孔紫外光电探测器及其制备方法
CN211295123U (zh) 一种基于核壳结构GaN-MoO3纳米柱的自供电紫外探测器
CN204497277U (zh) 有机无机杂化钙钛矿基太阳能电池
CN116895705A (zh) 一种叉指石墨烯型InGaN可见光探测器及其制备方法
CN112582486B (zh) 一种NiO紫外光电探测器及其制备方法
CN103367588A (zh) 在GaAs纳米线侧壁利用纳米环作为掩膜生长量子点的方法
CN113629193A (zh) 一种三明治构型活性层的有机太阳能电池及其制备方法
CN108807572B (zh) 一种银铟镓硒薄膜及其制备方法和应用
CN206379356U (zh) 基于石墨烯电极的量子点垂直沟道场效应管
CN110690316A (zh) 一种基于核壳结构GaN-MoO3纳米柱的自供电紫外探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant