CN112593908A - Hole expanding and yield increasing method for coal bed gas vertical fracturing well - Google Patents

Hole expanding and yield increasing method for coal bed gas vertical fracturing well Download PDF

Info

Publication number
CN112593908A
CN112593908A CN202011433951.XA CN202011433951A CN112593908A CN 112593908 A CN112593908 A CN 112593908A CN 202011433951 A CN202011433951 A CN 202011433951A CN 112593908 A CN112593908 A CN 112593908A
Authority
CN
China
Prior art keywords
coal
coal bed
well
expanding
bed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011433951.XA
Other languages
Chinese (zh)
Other versions
CN112593908B (en
Inventor
张江华
李国富
张遂安
李兵
张永成
徐云
张为
李德慧
刘亮亮
王越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Jincheng Anthracite Mining Group Co Ltd
Original Assignee
Shanxi Jincheng Anthracite Mining Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Jincheng Anthracite Mining Group Co Ltd filed Critical Shanxi Jincheng Anthracite Mining Group Co Ltd
Priority to CN202011433951.XA priority Critical patent/CN112593908B/en
Publication of CN112593908A publication Critical patent/CN112593908A/en
Application granted granted Critical
Publication of CN112593908B publication Critical patent/CN112593908B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/006Production of coal-bed methane
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B29/00Cutting or destroying pipes, packers, plugs, or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
    • E21B29/06Cutting windows, e.g. directional window cutters for whipstock operations
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium
    • E21B43/168Injecting a gaseous medium
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/28Enlarging drilled holes, e.g. by counterboring

Abstract

A hole expanding and yield increasing method for a vertical fracturing well of coal bed gas belongs to the technical field of mine gas treatment and the technical field of coal and coal bed gas co-extraction, and aims to improve the coal bed gas extraction effect of a broken soft outburst coal bed. Aiming at the condition that the yield of a coal-bed gas well of a broken soft low-permeability coal reservoir is low, secondary reconstruction of the reservoir is carried out on the basis of hydraulic fracturing, milling and cement sweeping are carried out on a casing section of a perforation section, and then the pressure of the coal bed is relieved by utilizing a power cave-making mode, so that the hydraulic fracturing and cave-adding composite yield-increasing process is formed. The new well productivity of the coal bed gas is improved through the implementation of the scheme, or the secondary improvement of the low-yield well productivity is realized through the transformation of the old well, and the commercial exploitation of the coal bed gas is realized.

Description

Hole expanding and yield increasing method for coal bed gas vertical fracturing well
Technical Field
The invention belongs to the technical field of mine gas treatment and the technical field of coal and coal bed gas co-extraction, and particularly relates to a power cave-making and yield-increasing method for a coal mine ground coal bed gas vertical fracturing well, in particular to a hole expanding and yield-increasing method for a broken soft low-permeability coal bed low-yield well.
Background
The broken soft low-permeability coal seam in China is widely distributed, the ground coal seam gas well is only subjected to reservoir transformation through hydraulic fracturing, the gas well yield is low, and commercial exploitation is difficult to realize. The permeability of a typical broken soft low-permeability coal bed in China is mostly below 1mD, and the average gas production rate of a gas well is less than 200m after a coal bed gas vertical well is subjected to hydraulic fracturing3And d. Therefore, the extraction of the coal bed gas of the broken soft low-permeability coal bed is a main factor for restricting the safe and high-efficiency production of coal mines in China and is also a main factor for restricting the high-efficiency mining of the coal bed gas in China.
The coal bed methane cave well completion technology is an open hole well completion technology, and refers to a well completion technology which is used for performing pressure building and blowout relief through multiple times of air injection or foam on an open hole section coal bed after open hole well completion to cause severe pressure excitation in a coal bed, so that the coal bed is collapsed to form a stable coal bed large cave, criss-cross cracks are formed around the cave, and the productivity is greatly improved. The technology can also be used as a coal-bed gas well yield increasing technology, and can greatly improve the permeability of a near-wellbore area, so that the recovery ratio of the coal-bed gas well is improved. This technique has met with great success in the san hu an basin of the united states. The permeability of the coal bed in the Saint Huan basin in the United states is higher, generally 10-20mD, the thickness of the coal bed is generally more than 6m, the coal bed gas well is completed only through a cave, the gas production rate is 3-20 times that of a conventional hydraulic fracturing well, the effect is better, and the cave completion is adopted for more than one third of the coal bed gas well in the Saint Huan basin.
In order to improve the extraction effect of the coal bed gas of the broken soft outburst coal bed in China and combine the technical characteristics of open hole cave well completion for extracting the coal bed gas on the ground, a coal reservoir transformation process combining hydraulic fracturing and cave well completion is needed to be researched, so that the permeability of the coal bed is effectively improved, the pressure relief area of the coal bed is increased, the desorption efficiency of the coal bed gas is improved, and the productivity of the coal bed gas well is improved.
Disclosure of Invention
The invention provides a coal reservoir transformation process combining hydraulic fracturing and cave well completion in order to improve the coal bed gas extraction effect of a broken soft outburst coal bed and combine the technical characteristics of open hole cave well completion of ground coal bed gas extraction, thereby effectively improving the permeability of the coal bed, increasing the pressure relief area of the coal bed and improving the desorption efficiency of the coal bed gas, and further improving the productivity of a coal bed gas well.
The invention adopts the following technical scheme:
a hole expanding and yield increasing method for a coal bed gas vertical fracturing well comprises the following steps:
firstly, in a vertical well drilling and completion project, degradable drilling fluid is adopted, or clear water drilling is adopted when the drilling fluid is drilled above a coal seam roof, so that the pollution of the drilling fluid to the coal seam is reduced;
secondly, performing hydraulic fracturing, namely determining sand adding strength and sand adding scale according to the thickness of the coal bed;
and thirdly, milling the casing pipe section, avoiding a casing pipe coupling, milling the casing pipe section of the target coal seam section, putting the tool to a preset position, and cutting the casing pipe at a fixed point. After the casing section is milled, washing the well;
fourthly, cement sweeping: after the casing section is milled, cleaning residual cement in a near-wellbore area by selecting a mechanical hole expanding mode or hydraulic jetting, and after cleaning of a cement sheath is finished, performing secondary well washing;
fifthly, expanding the power, namely spraying coal blocks and coal dust out of the well along with the atomized air or the atomized nitrogen by using high-pressure atomized air or atomized nitrogen as a medium for expanding the power and completing the well by using a pressure-holding and open-flow method, and repeating the processes of high-pressure power hole-making and pressure-holding and open-flow according to the expanding requirement to expand the hole diameter of the hole;
and sixthly, discharging and mining by adopting a tubular pump.
Furthermore, the hydraulic fracturing in the second step aims at a thick coal seam of 3.5-8m and the sand adding strength is 5-7m3A super-thick coal seam with a sand adding strength of 4-6m3A thin coal layer with a thickness of less than 3.5m and a sand adding strength of not more than 10m3/m。
Further, the hydraulic jet displacement in the fourth step is 2-3m3/min。
Further, in the fifth step the medium displacement is larger than 90m3Min, and the output pressure is more than 2 MPa.
Further, the radius of the cave in the fifth step is expanded to more than 2 m.
The invention has the following beneficial effects:
aiming at the condition that the yield of a coal-bed gas well of a broken soft low-permeability coal reservoir is low, secondary reconstruction of the reservoir is carried out on the basis of hydraulic fracturing, milling and cement sweeping are carried out on a casing section of a perforation section, then the pressure of the coal bed is relieved in a power hole-making and hole-expanding mode, a composite crack for expanding and fracturing is formed, the permeability of the coal bed is increased, and a hydraulic fracturing and hole-adding composite yield-increasing process is formed.
By the invention, the following effects are achieved: the capacity of the new coal bed gas well is improved through the implementation of the scheme, the capacity of the low-yield well is secondarily promoted by aiming at the old well, the permeability of the coal bed is effectively improved, the pressure relief area of the coal bed is increased, the desorption efficiency of the coal bed gas is improved, and therefore the daily gas yield of the coal bed gas well is improved.
Drawings
FIG. 1 is a process flow diagram of the present invention;
FIG. 2 is a schematic illustration of hydraulic fracture reconstruction of the present invention;
FIG. 3 is a schematic illustration of casing section milling and cement sweeping of the present invention;
FIG. 4 is a schematic diagram of the power expansion of the present invention;
FIG. 5 is a schematic diagram of a coal reservoir variation zone around a shaft after hole expanding modification;
wherein: 1-cementing cement; 2-perforation hole; 3-fracturing sand in a near wellbore zone; 4-coal reservoir; 5-hydraulic fracturing of fractures; 6-hydraulic jet reaming of the cave; 7-a sucker rod; 8-an oil pipe; 9-pressure relief holes; 10-tube pump; 11-minimum horizontal principal stress direction; 12-hole expanding area; 13-a fissure development zone; 14-fracture extension zone; 15-forming cracks after expanding and reforming the cave; 16-hydraulic fracturing the primary fracture; 17-a wellbore; 18-mesh coal seam.
Detailed Description
The technical scheme adopted by the invention is as follows: aiming at the condition that the yield of a coal-bed gas well of a broken soft low-permeability coal reservoir is low, secondary reconstruction of the reservoir is carried out on the basis of hydraulic fracturing, milling and cement sweeping are carried out on a casing section of a perforation section, then the pressure of the coal bed is relieved in a power hole-making and hole-expanding mode, a composite crack for expanding and fracturing is formed, the permeability of the coal bed is increased, and a hydraulic fracturing and hole-adding composite yield-increasing process is formed. The method specifically comprises the following steps:
1) drilling and completing engineering: in order to reduce the pollution to the coal seam, the drilling fluid is preferably degradable or is changed into clear water for drilling when the drilling fluid drills to the position above the coal seam roof, so that the pollution of the drilling fluid to the coal seam is reduced as low as possible.
2) Hydraulic fracturing: aiming at the broken soft low-permeability coal seam, sand blocking is easy to occur in fracturing, no obvious fracturing exists in the fracturing process, and coal powder is large in the drainage and production process, so that the broken soft low-permeability coal reservoir is not suitable for large-scale volume fracturing, and the sand adding strength and the sand adding scale are reasonably determined according to the thickness of the coal seam. The sand adding strength is preferably controlled to be 5-7m for the thick coal seam of 3.5-8m3In the range of/m, the thickness of the super-thick coal seam above 8m is preferably controlled to be 4-6m3The sand adding strength of a thin coal layer below 3.5m is preferably properly increased and is not more than 10m3/m。
3) Milling the casing section: avoiding a casing coupling as much as possible, milling a casing section of the target coal seam section, putting the tool to a preset position, and cutting the casing at a fixed point. And after the casing section is milled, washing the well.
4) Cement sweeping: after the casing section is milled, well cementation cement residue possibly still exists in a near-wellbore area, mechanical hole expanding or small-scale hydraulic jet can be selected for cleaning the near-wellbore area, and the hydraulic jet discharge capacity is 2-3m3And/min. And after the cement sheath is cleaned, performing secondary well washing.
5) Power expanding: high-pressure atomized air or atomized nitrogen is used as a medium for power expanding completion. The gas discharge is more than 90m3Min, and the output pressure is more than 2 MPa. The coal blocks and the coal dust are sprayed out of the well along with the atomized air or the atomized nitrogen by using a pressure-holding and open-flow method. And repeating the processes of high-pressure power hole making and pressure building and open flow to enlarge the hole diameter of the cave, and enlarging the radius of the cave to more than 2 m.
After hole expanding transformation, a coal seam around a shaft develops cracks along a fracturing main crack, three changing areas including a hole expanding area, a crack developing area and a crack extending area are formed by the shaft along the direction of the minimum main stress of the coal seam, and the hydraulic fracturing cracks extend along the direction of the minimum main stress, so that the crack extending area is mainly distributed along the fracturing cracks. The radius of the cave can reach 2-3m, the crack development zone can reach 3-20m, and the crack extension zone can reach 20-100m, so that the broken soft low-permeability coal bed is effectively improved, the pressure relief area of the coal bed is increased on the basis of hydraulic fracturing, the permeability is greatly improved, a permeability enhancement zone is formed, the desorption efficiency of the coal bed gas is improved, and conditions are created for high yield of the broken soft low-permeability coal bed gas well.
6) Drainage and mining: and selecting a proper discharge and mining method and discharge and mining control parameters according to factors such as actual water quantity, wherein the conventional discharge and mining mode is tubular pump discharge and mining.

Claims (5)

1. A diameter-expanding production-increasing method for a coal bed gas vertical fracturing well hole is characterized by comprising the following steps: the method comprises the following steps:
firstly, in a vertical well drilling and completion project, degradable drilling fluid is adopted, or clear water drilling is adopted when the drilling fluid is drilled above a coal seam roof, so that the pollution of the drilling fluid to the coal seam is reduced;
secondly, performing hydraulic fracturing, namely determining sand adding strength and sand adding scale according to the thickness of the coal bed;
thirdly, milling a casing section, avoiding a casing coupling, milling the casing section of the target coal seam section, putting a tool to a preset position, and cutting the casing at a fixed point;
after the casing section is milled, washing the well;
fourthly, cement sweeping: after the casing section is milled, cleaning residual cement in a near-wellbore area by selecting a mechanical hole expanding mode or hydraulic jetting, and after cleaning of a cement sheath is finished, performing secondary well washing;
fifthly, expanding the power, namely spraying coal blocks and coal dust out of the well along with the atomized air or the atomized nitrogen by using high-pressure atomized air or atomized nitrogen as a medium for expanding the power and completing the well by using a pressure-holding and open-flow method, and repeating the processes of high-pressure power hole-making and pressure-holding and open-flow according to the expanding requirement to expand the hole diameter of the hole;
and sixthly, discharging and mining by adopting a tubular pump.
2. The diameter-expanding production-increasing method for the coal bed methane vertical fracturing well hole according to claim 1, characterized in that: in the second step, the hydraulic fracturing aims at a thick coal seam of 3.5-8m, and the sand adding strength is 5-7m3A super-thick coal seam with a sand adding strength of 4-6m3A thin coal layer with a thickness of less than 3.5m and a sand adding strength of not more than 10m3/m。
3. The diameter-expanding production-increasing method for the coal bed methane vertical fracturing well hole according to claim 1, characterized in that: in the fourth step, the hydraulic jet discharge capacity is 2-3m3/min。
4. The diameter-expanding production-increasing method for the coal bed methane vertical fracturing well hole according to claim 1, characterized in that: in the fifth step, the medium discharge capacity is more than 90m3Min, and the output pressure is more than 2 MPa.
5. The diameter-expanding production-increasing method for the coal bed methane vertical fracturing well hole according to claim 1, characterized in that: and in the fifth step, the radius of the cave is expanded to more than 2 m.
CN202011433951.XA 2020-12-10 2020-12-10 Hole expanding and yield increasing method for coal bed gas vertical fracturing well Active CN112593908B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011433951.XA CN112593908B (en) 2020-12-10 2020-12-10 Hole expanding and yield increasing method for coal bed gas vertical fracturing well

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011433951.XA CN112593908B (en) 2020-12-10 2020-12-10 Hole expanding and yield increasing method for coal bed gas vertical fracturing well

Publications (2)

Publication Number Publication Date
CN112593908A true CN112593908A (en) 2021-04-02
CN112593908B CN112593908B (en) 2022-05-17

Family

ID=75191426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011433951.XA Active CN112593908B (en) 2020-12-10 2020-12-10 Hole expanding and yield increasing method for coal bed gas vertical fracturing well

Country Status (1)

Country Link
CN (1) CN112593908B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114482956A (en) * 2021-12-20 2022-05-13 中煤地质集团有限公司 Coal bed gas yield increasing method
CN117287177A (en) * 2023-08-18 2023-12-26 甘肃靖远煤电股份有限公司魏家地煤矿 Coal-bed gas well aerodynamic hole making method based on continuous pressure holding and releasing

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709629A (en) * 2009-11-06 2010-05-19 河南省煤田地质局二队 Reverse circulation aerodynamic cavitation method for coalbed methane well and equipment
CN102031950A (en) * 2010-12-06 2011-04-27 煤炭科学研究总院西安研究院 Hole-forming process method for comb gas extraction borehole in coal seam roof
CN102518411A (en) * 2011-12-29 2012-06-27 郑州大学 Method for mining coal bed gas by hydraulic washout of butted well in manner of pressure relief
CN104213896A (en) * 2014-09-01 2014-12-17 中国石油大学(北京) Fracturing and cavern integrated completion method for coal-bed gas reservoir
CN104763462A (en) * 2015-04-07 2015-07-08 中国矿业大学 Method for extracting high-pressure hydraulic cave-manufacturing gas from rock roadway crossing hole
CN106285601A (en) * 2016-08-12 2017-01-04 中国石油集团渤海钻探工程有限公司 Cave and fracturing integrated yield-increasing technique method are made in the injection of coal bed gas well abrasive perforating
US20180230368A1 (en) * 2017-02-13 2018-08-16 Saudi Arabian Oil Company Viscosifying modified proppant system for carbon dioxide based fracturing fluids
WO2019227852A1 (en) * 2018-05-31 2019-12-05 中国矿业大学 Fracture relieving method for stress concentration of pillar left in overlying goaf
CN111946307A (en) * 2020-07-29 2020-11-17 山西晋城无烟煤矿业集团有限责任公司 Method for layered pressure control combined extraction of coal bed gas of goaf and underlying coal reservoir

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709629A (en) * 2009-11-06 2010-05-19 河南省煤田地质局二队 Reverse circulation aerodynamic cavitation method for coalbed methane well and equipment
CN102031950A (en) * 2010-12-06 2011-04-27 煤炭科学研究总院西安研究院 Hole-forming process method for comb gas extraction borehole in coal seam roof
CN102518411A (en) * 2011-12-29 2012-06-27 郑州大学 Method for mining coal bed gas by hydraulic washout of butted well in manner of pressure relief
CN104213896A (en) * 2014-09-01 2014-12-17 中国石油大学(北京) Fracturing and cavern integrated completion method for coal-bed gas reservoir
CN104763462A (en) * 2015-04-07 2015-07-08 中国矿业大学 Method for extracting high-pressure hydraulic cave-manufacturing gas from rock roadway crossing hole
CN106285601A (en) * 2016-08-12 2017-01-04 中国石油集团渤海钻探工程有限公司 Cave and fracturing integrated yield-increasing technique method are made in the injection of coal bed gas well abrasive perforating
US20180230368A1 (en) * 2017-02-13 2018-08-16 Saudi Arabian Oil Company Viscosifying modified proppant system for carbon dioxide based fracturing fluids
WO2019227852A1 (en) * 2018-05-31 2019-12-05 中国矿业大学 Fracture relieving method for stress concentration of pillar left in overlying goaf
CN111946307A (en) * 2020-07-29 2020-11-17 山西晋城无烟煤矿业集团有限责任公司 Method for layered pressure control combined extraction of coal bed gas of goaf and underlying coal reservoir

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张波等: "煤层气水平井造穴及解堵造缝技术探索与实践", 《煤炭技术》 *
李彬刚: "芦岭煤矿碎软低渗煤层高效抽采技术", 《煤田地质与勘探》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114482956A (en) * 2021-12-20 2022-05-13 中煤地质集团有限公司 Coal bed gas yield increasing method
CN117287177A (en) * 2023-08-18 2023-12-26 甘肃靖远煤电股份有限公司魏家地煤矿 Coal-bed gas well aerodynamic hole making method based on continuous pressure holding and releasing

Also Published As

Publication number Publication date
CN112593908B (en) 2022-05-17

Similar Documents

Publication Publication Date Title
CN107387034B (en) Extraction method of horizontal coal bed gas well completed by non-well-cementing casing
WO2020113870A1 (en) Method for cooperatively draining roof separation water and mining coal-measure gas
CN110397428B (en) Displacement coalbed methane yield increasing method for coalbed methane jointly mined by vertical well and U-shaped butt well
CN105625946A (en) Coalbed methane horizontal well supercritical CO2 jet flow cavity construction and multi-segment synchronous deflagration fracturing method
CN112593908B (en) Hole expanding and yield increasing method for coal bed gas vertical fracturing well
CN110318674B (en) Method for preventing outburst caused by cracking of roadway roof
CN104879159B (en) A kind of devices and methods therefor of weak seam stope anti-reflection mash gas extraction
CN101539007A (en) Abrasive jetting device and method for abrasive jetting flow and jetting perforation and multiple fracturing
CN102493794A (en) Coal bed methane exploring method of spraying gas-water mixed liquid to drill well and forming quincunx radial horizontal well
CN104763462A (en) Method for extracting high-pressure hydraulic cave-manufacturing gas from rock roadway crossing hole
CN112302612A (en) Functional slickwater temporary blocking and steering volume fracturing method for synchronously implanting oil displacement agent
CN105484719A (en) Method for improving multi-cluster crack initiation effectiveness by blocking seams through multi-scale soluble balls
CN103603643A (en) Coal bed gas U-shaped well staged fracturing exploitation technology
CN111441817B (en) Method for reinforcing gas extraction by synergistic effect of coal seam drilling jet fracturing and mining pressure
CN112302578B (en) Method for exploiting structural coal bed gas by horizontal well stress release
CN104963671A (en) Fracturing transformation method of highly-deviated cluster well reservoir
CN106640018A (en) Method for mining coalbed gas through V-shaped well set
CN110306965A (en) A kind of method for increasing for coal bed gas low yield wellblock
CN107246254A (en) Coal-based gas U-shaped well drilling and development method
CN114135265B (en) Low-cost and high-efficiency transformation process method for low-permeability reservoir of offshore oil field
CN102041966A (en) In-seam or across-seam double-power quick drilling and chambering integrated device and method
CN102434192A (en) Device and method for enhancing coal seam fracturing effect
CN112593911B (en) Coal mining and diameter expanding method by sectional power of horizontal well on coal mine ground
CN101377124B (en) Horizontal bare hole flow guiding slot well and method for mining coal bed gas of sugarcoated haw well
CN110410053A (en) Coal mine roof plate pressure relief method based on eyelet supporting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant