CN112593341A - 一种水下自供电传感器及其制备方法和应用 - Google Patents

一种水下自供电传感器及其制备方法和应用 Download PDF

Info

Publication number
CN112593341A
CN112593341A CN202011282102.9A CN202011282102A CN112593341A CN 112593341 A CN112593341 A CN 112593341A CN 202011282102 A CN202011282102 A CN 202011282102A CN 112593341 A CN112593341 A CN 112593341A
Authority
CN
China
Prior art keywords
nylon
polyvinylidene fluoride
electrostatic spinning
sensor
powered sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011282102.9A
Other languages
English (en)
Inventor
唐尚也
唐子然
段加龙
欧阳翠红
唐群委
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Experimental School Affiliated To Jinan University Tianhe District Guangzhou
Original Assignee
Experimental School Affiliated To Jinan University Tianhe District Guangzhou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Experimental School Affiliated To Jinan University Tianhe District Guangzhou filed Critical Experimental School Affiliated To Jinan University Tianhe District Guangzhou
Priority to CN202011282102.9A priority Critical patent/CN112593341A/zh
Publication of CN112593341A publication Critical patent/CN112593341A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4318Fluorine series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

本发明提供了一种水下自供电传感器及其制备方法和应用。本发明具体是尼龙、聚偏氟乙烯与酸性溶液和有机溶液混合后,再通过静电纺丝技术制得薄膜,并组成具有铜网/尼龙66/聚偏氟乙烯/铜网结构的叠层器件,密封隔水处理后得到摩擦纳米发电机,再链接到微型传感器上得到水下自供电传感器。本发明充分利用鱼类尾部摆动驱使柔性摩擦纳米发电机摩擦发电的特性,为微型传感器供电,实现多维度、长周期水体环境的监测。本发明通过静电纺丝制备尼龙66和聚偏氟乙烯摩擦层,提高了有效接触面积和感应电荷密度,同时具有制备方法简单、成本低廉的特点,是一种制备柔性自供电传感器的有效途径。

Description

一种水下自供电传感器及其制备方法和应用
技术领域
本发明属于新材料技术以及环保技术领域,具体涉及一种水下自供电传感器及其制备方法和应用。
背景技术
随着经济的不断发展,水体(海洋、河流、湖泊等)环境监测越来越引起人们的关注,对水体环境的检测也必须逐渐全面化、及时化和准确化,这就需要不断改善监测技术以提高水体环境监测水平并完善水体监测制度体系。因此,提高水体环境监测的精度和维度,具有重要的实际意义和应用前景。
目前,水体监测传感技术的精确度、可靠性、及时性等仍有待进一步提高,且传感技术朝着自供电、微型化、智能化、多功能化等方向发展。而通过采集水体生物动能的自供电传感器无疑对于提高传感器的精度和实效性以及实时监测不同水体维度的环境状态具有重要的现实意义。
发明内容
本发明的目的在于提供了一种水下自供电传感器及其制备方法和应用,本发明可以获得成本低、制备方法简单、通过采集鱼类尾部动能转换为电能的水下自供电传感器,其可以有效提高水体环境监测的精确度、可靠性和及时性,具有重要的实用价值和经济价值。
为实现上述发明目的,本发明采用以下技术方案予以实现:
本发明提供了一种水下自供电传感器的制备方法,所述制备方法包括以下步骤:
(1)、将尼龙66溶解于甲酸和乙酸的混合溶液中,配置得到质量浓度为10%~20%的尼龙66前驱体溶液;
(2)、采用静电纺丝技术将步骤(1)中所述尼龙66前驱体溶液纺在250目铜网上,制备得到尼龙66薄膜;
(3)、将聚偏氟乙烯溶解于二甲基甲酰胺和丙酮的混合溶液中,配置得到质量浓度为10-20%的聚偏氟乙烯前驱体溶液;
(4)、采用静电纺丝技术将步骤(3)中所述聚偏氟乙烯前驱体溶液纺在250目铜网上,制备得到聚偏氟乙烯薄膜;
(5)、将步骤(2)中所述尼龙66薄膜和步骤(4)中所述聚偏氟乙烯薄膜分别从铜网上剥离,并分别裁剪成尺寸相同的长方形薄膜;
(6)、将步骤(5)中的长方形薄膜和铜网组成铜网/尼龙66/聚偏氟乙烯/铜网结构的叠层器件,密封后制备得到摩擦纳米发电机;
(7)、将步骤(6)中所述摩擦纳米发电机的两个电极分别链接到微型传感器上,制备得到水下自供电传感器。
进一步的,所述步骤(1)中甲酸和乙酸的质量比为1:1~2:1。
进一步的,所述步骤(2)中静电纺丝采用的正极电压为20~30kV,负极电压为-1.5~2.5kV,喷头到铜网的距离为10~20厘米,滚轴转速为80~120转/分钟,针头喷射速度为0.08~0.12毫米/分钟。
进一步的,所述步骤(3)中二甲基甲酰胺和丙酮的质量比为1:1~2:1。
进一步的,所述步骤(4)中静电纺丝采用的正极电压为6~7kV,负极电压为-1.5~2.5kV,喷头到铜网的距离为10~20厘米,滚轴转速为80~120转/分钟,针头喷射速度为0.15~0.25毫米/分钟。
进一步的,所述步骤(5)中的长方形薄膜面积为49~81平方厘米。
进一步的,所述步骤(6)中铜网/尼龙66/聚偏氟乙烯/铜网结构的叠层器件的每两层之间的边缘区域用聚酰亚胺隔开。
进一步的,所述步骤(6)中的摩擦纳米发电机采用密封隔水处理。
进一步的,所述步骤(7)中的微型传感器包括水温传感器、水深传感器、流速传感器、水质传感器、盐度传感器、重金属离子传感器或溶解氧传感器。
本发明还提供了根据所述步骤(1)-(6)所制备得到的摩擦纳米发电机。
本发明还提供了基于摩擦纳米发电机的水下自供电传感器。
进一步的,所述水下自供电传感器输出的开路电压为30~100V,短路电流为50~100mA。
本发明还提供了所述的水下自供电传感器在制备用于安装在鱼类尾部进行水体环境监测的装置中的应用。
与现有技术相比,本发明的优点和技术效果是:
1、本发明充分利用鱼类尾部摆动产生的动能趋势摩擦纳米发电机中尼龙66和聚偏氟乙烯以及聚偏氟乙烯与铜网、尼龙66与铜网之间产生摩擦输出电能,并长期为传感器供电,有效避免了采用蓄电池导致的电池更换不便和时间持续时间短的弊端;
2、本发明中为传感器供电的摩擦纳米发电机可以输出30~100V的开路电压和50~100mA的短路电流,可为微型传感器提供持续电力供应;
3、本发明通过静电纺丝制备聚酰胺和聚偏氟乙烯摩擦层,提高了有效接触面积和感应电荷密度,制得的水下自供电传感器通过将鱼类尾部动能转换为电能,相较于传统的传感器,可以更及时、更精准的获得不同维度水体检测数据,对改善水体检测的实效性和精度至关重要,并能实现长周期水体环境的监测,该自供电传感器同时还具有制备方法简单、成本低廉的特点,是一种制备柔性自供电传感器的有效途径。
附图说明
图1为本发明所制备的摩擦纳米发电机的器件结构,其中PA66为尼龙66,PVDF为聚偏氟乙烯,PI为聚酰亚胺。
图2为本发明所制备的水下自供电传感器在摆动时产生的开路电压信号。
具体实施方式
下面结合具体实施方式对本发明的技术方案作进一步详细的说明。
实施例1
本发明提供的水下自供电传感器,其制备方法具体包括以下步骤:
1、将尼龙66(PA66)溶解于质量比为3:2的甲酸和乙酸的混合溶液中,配置质量浓度为15%的尼龙66前驱体溶液;
2、采用静电纺丝技术将步骤1中所述尼龙66前驱体溶液纺在250目铜网上制备尼龙66薄膜;静电纺丝采用的正极电压为20~30kV,负极电压为-1.5~2.5kV,喷头到铜网的距离为10~20厘米,滚轴转速为80~120转/分钟,针头喷射速度为0.08~0.12毫米/分钟;
3、将聚偏氟乙烯(PVDF)溶解于质量比为3:2的二甲基甲酰胺和丙酮的混合溶液中,配置质量浓度为15%的聚偏氟乙烯前驱体溶液;
4、采用静电纺丝技术将步骤3中所述聚偏氟乙烯前驱体溶液纺在250目铜网上制备聚偏氟乙烯薄膜;静电纺丝采用的正极电压为6~7kV,负极电压为-1.5~2.5kV,喷头到铜网的距离为10~20厘米,滚轴转速为80~120转/分钟,针头喷射速度为0.15~0.25毫米/分钟;
5、将步骤2中所述尼龙66薄膜和步骤4中所述聚偏氟乙烯薄膜分别从铜网上剥离,并分别裁剪成尺寸相同且为64平方厘米的长方形薄膜;
6、将步骤5中的长方形尼龙薄膜、长方形聚偏氟乙烯薄膜与相同尺寸的铜网组成铜网/尼龙66/聚偏氟乙烯/铜网结构的叠层器件,每两层之间的边缘区域使用聚酰亚胺(PI)隔开,密封隔水处理后制备得到摩擦纳米发电机。
7、将步骤6中所述摩擦纳米发电机的两个电极分别链接到微型传感器上,制备得到水下自供电传感器。
如图1-2所示,通过上述方法制得的水下自供电传感器输出的开路电压为30~100V,短路电流为50~100mA。本发明所述水下自供电传感器可以安装在鱼类尾部实现水体环境监测等方面的应用。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (10)

1.一种水下自供电传感器的制备方法,其特征在于:所述制备方法包括以下步骤:
(1)、将尼龙66溶解于甲酸和乙酸的混合溶液中,配置得到质量浓度为10%~20%的尼龙66前驱体溶液;
(2)、采用静电纺丝技术将步骤(1)中所述尼龙66前驱体溶液纺在250目铜网上,制备得到尼龙66薄膜;
(3)、将聚偏氟乙烯溶解于二甲基甲酰胺和丙酮的混合溶液中,配置得到质量浓度为10-20%的聚偏氟乙烯前驱体溶液;
(4)、采用静电纺丝技术将步骤(3)中所述聚偏氟乙烯前驱体溶液纺在250目铜网上,制备得到聚偏氟乙烯薄膜;
(5)、将步骤(2)中所述尼龙66薄膜和步骤(4)中所述聚偏氟乙烯薄膜分别从铜网上剥离,并分别裁剪成尺寸相同的长方形薄膜;
(6)、将步骤(5)中的长方形薄膜和铜网组成铜网/尼龙66/聚偏氟乙烯/铜网结构的叠层器件,密封后制备得到摩擦纳米发电机;
(7)、将步骤(6)中所述摩擦纳米发电机链接到微型传感器上,制备得到水下自供电传感器。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤(1)中甲酸和乙酸的质量比为1:1~2:1。
3.根据权利要求1所述的制备方法,其特征在于:所述步骤(2)中静电纺丝采用的正极电压为20~30kV,负极电压为-1.5~2.5kV,喷头到铜网的距离为10~20厘米,滚轴转速为80~120转/分钟,针头喷射速度为0.08~0.12毫米/分钟。
4.根据权利要求1所述的制备方法,其特征在于:所述步骤(3)中二甲基甲酰胺和丙酮的质量比为1:1~2:1。
5.根据权利要求1所述的制备方法,其特征在于:所述步骤(4)中静电纺丝采用的正极电压为6~7kV,负极电压为-1.5~2.5kV,喷头到铜网的距离为10~20厘米,滚轴转速为80~120转/分钟,针头喷射速度为0.15~0.25毫米/分钟。
6.根据权利要求1所述的制备方法,其特征在于:所述步骤(5)中的长方形薄膜的面积为49~81平方厘米。
7.根据权利要求1所述的制备方法,其特征在于:所述步骤(6)中铜网/尼龙66/聚偏氟乙烯/铜网结构的叠层器件的每两层之间的边缘区域使用聚酰亚胺隔开。
8.根据权利要求1中步骤(1)-(6)所制备得到的摩擦纳米发电机。
9.基于权利要求8所述的摩擦纳米发电机的水下自供电传感器。
10.权利要求9所述的水下自供电传感器在制备用于安装在鱼类尾部进行水体环境监测的装置中的应用。
CN202011282102.9A 2020-11-17 2020-11-17 一种水下自供电传感器及其制备方法和应用 Pending CN112593341A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011282102.9A CN112593341A (zh) 2020-11-17 2020-11-17 一种水下自供电传感器及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011282102.9A CN112593341A (zh) 2020-11-17 2020-11-17 一种水下自供电传感器及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN112593341A true CN112593341A (zh) 2021-04-02

Family

ID=75183031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011282102.9A Pending CN112593341A (zh) 2020-11-17 2020-11-17 一种水下自供电传感器及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112593341A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113189537A (zh) * 2021-04-28 2021-07-30 上海交通大学 基于柔性纳米发电机的自发电鱼类信标系统
CN113612405A (zh) * 2021-07-29 2021-11-05 暨南大学 一种声能采集发电装置及其制作方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101069822A (zh) * 2007-03-06 2007-11-14 天津大学 制备力学性能良好的pvdf超细纤维膜的方法
CN102747439A (zh) * 2011-04-21 2012-10-24 中国科学院合肥物质科学研究院 分散性纳米复合材料及其制备方法
CN106039839A (zh) * 2016-05-31 2016-10-26 武汉理工大学 一种可循环利用、高效低阻、抗菌防雾霾的空气过滤材料
CN106422821A (zh) * 2016-09-27 2017-02-22 天津工业大学 一种亲水改性聚偏氟乙烯超滤膜的制备方法
CN106975363A (zh) * 2017-03-15 2017-07-25 绿纳科技有限责任公司 一种复合中空纳米纤维滤芯的生产方法
CN107493029A (zh) * 2017-07-10 2017-12-19 东华大学 表面氨基修饰的静电纺纤维基摩擦纳米发电机及其制备
CN107493031A (zh) * 2017-09-30 2017-12-19 东华大学 一种嵌套式封闭便携式摩擦纳米发电机装置
CN208291429U (zh) * 2018-05-08 2018-12-28 西安交通大学 一种海洋监测浮标系统
KR20190076393A (ko) * 2017-12-22 2019-07-02 울산과학기술원 그래핀 산화물을 포함하는 폴리비닐리덴 플루오라이드 나노섬유의 제조방법 및 이를 이용한 스마트 섬유의 제조방법
CN110726756A (zh) * 2019-11-13 2020-01-24 大连海事大学 基于摩擦纳米发电机的仿生触须传感器
CN111501210A (zh) * 2020-04-27 2020-08-07 南京工业大学 聚偏氟乙烯复合纳米纤维材料及其在摩擦纳米发电机上的应用
CN111804149A (zh) * 2020-08-10 2020-10-23 天津工业大学 一种用于膜蒸馏的超疏水、耐润湿和耐结垢的杂化纳米纤维复合膜的生产方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101069822A (zh) * 2007-03-06 2007-11-14 天津大学 制备力学性能良好的pvdf超细纤维膜的方法
CN102747439A (zh) * 2011-04-21 2012-10-24 中国科学院合肥物质科学研究院 分散性纳米复合材料及其制备方法
CN106039839A (zh) * 2016-05-31 2016-10-26 武汉理工大学 一种可循环利用、高效低阻、抗菌防雾霾的空气过滤材料
CN106422821A (zh) * 2016-09-27 2017-02-22 天津工业大学 一种亲水改性聚偏氟乙烯超滤膜的制备方法
CN106975363A (zh) * 2017-03-15 2017-07-25 绿纳科技有限责任公司 一种复合中空纳米纤维滤芯的生产方法
CN107493029A (zh) * 2017-07-10 2017-12-19 东华大学 表面氨基修饰的静电纺纤维基摩擦纳米发电机及其制备
CN107493031A (zh) * 2017-09-30 2017-12-19 东华大学 一种嵌套式封闭便携式摩擦纳米发电机装置
KR20190076393A (ko) * 2017-12-22 2019-07-02 울산과학기술원 그래핀 산화물을 포함하는 폴리비닐리덴 플루오라이드 나노섬유의 제조방법 및 이를 이용한 스마트 섬유의 제조방법
CN208291429U (zh) * 2018-05-08 2018-12-28 西安交通大学 一种海洋监测浮标系统
CN110726756A (zh) * 2019-11-13 2020-01-24 大连海事大学 基于摩擦纳米发电机的仿生触须传感器
CN111501210A (zh) * 2020-04-27 2020-08-07 南京工业大学 聚偏氟乙烯复合纳米纤维材料及其在摩擦纳米发电机上的应用
CN111804149A (zh) * 2020-08-10 2020-10-23 天津工业大学 一种用于膜蒸馏的超疏水、耐润湿和耐结垢的杂化纳米纤维复合膜的生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
北京科技报社: "《适逢大势:中关村人才故事》", 30 March 2015, 中国科学技术出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113189537A (zh) * 2021-04-28 2021-07-30 上海交通大学 基于柔性纳米发电机的自发电鱼类信标系统
CN113612405A (zh) * 2021-07-29 2021-11-05 暨南大学 一种声能采集发电装置及其制作方法

Similar Documents

Publication Publication Date Title
CN102568865B (zh) 一种基于纸张的柔性超级电容器的制备方法及其应用
Hong et al. Self-powered seesaw structured spherical buoys based on a hybrid triboelectric–electromagnetic nanogenerator for sea surface wireless positioning
Fang et al. A high-performance triboelectric-electromagnetic hybrid wind energy harvester based on rotational tapered rollers aiming at outdoor IoT applications
CN112593341A (zh) 一种水下自供电传感器及其制备方法和应用
Cao et al. Broadband and Output‐Controllable Triboelectric Nanogenerator Enabled by Coupling Swing‐Rotation Switching Mechanism with Potential Energy Storage/Release Strategy for Low‐Frequency Mechanical Energy Harvesting
Zhang et al. Recent advances in triboelectric nanogenerators for marine exploitation
Panda et al. Hybrid nanogenerators for ocean energy harvesting: mechanisms, designs, and applications
CN104595096A (zh) 一种波浪能、风能和潮流能组合式发电装置
CN204591571U (zh) 一种波浪能、风能和潮流能组合式发电装置
CN108400392A (zh) 一种可充电的柔性锌离子电池及其制备方法
CN113489122B (zh) 一种直流液滴发电机及其制备方法
CN109369928A (zh) 一种单电极摩擦纳米发电机用聚乙烯醇/海藻酸钠水凝胶及其制备方法
CN101694814A (zh) 染料敏化太阳能电池纳米导电聚合物对电极的电化学制法
Gao et al. Triple-mode hybridized generator for efficient water flow energy harvesting and water quality monitoring applications
CN108953044A (zh) 一种基于多源供能式耦合自发电的多功能浮标
CN115051591A (zh) 一种基于固液摩擦发电的柔性自驱动传感纤维及其制备和应用
He et al. A rotating piezoelectric-electromagnetic hybrid harvester for water flow energy
Hu et al. Round-trip oscillation triboelectric nanogenerator with high output response and low wear to harvest random wind energy
CN103745585B (zh) 智能应答式无线传输的自驱动纳米紫外探测系统
Ji et al. Efficient self-powered cathodic corrosion protection system based on multi-layer grid synergistic triboelectric nanogenerator and power management circuits
CN209727100U (zh) 一种利用波浪能供电的海洋电磁浮标
CN102275357B (zh) 聚吲哚涂层纤维素膜电活性材料及其制备方法
CN111396236A (zh) 一种基于双螺旋单元的不倒翁式波浪能发电装置
CN104909415A (zh) 一种用于锂离子电池的氢氧化镍负极材料的制备方法
CN202487667U (zh) 一种石墨烯电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination