CN112590202A - 一种基于下置式光固化成形技术的多工位切换系统及光固化成型加工方法 - Google Patents

一种基于下置式光固化成形技术的多工位切换系统及光固化成型加工方法 Download PDF

Info

Publication number
CN112590202A
CN112590202A CN202011137771.7A CN202011137771A CN112590202A CN 112590202 A CN112590202 A CN 112590202A CN 202011137771 A CN202011137771 A CN 202011137771A CN 112590202 A CN112590202 A CN 112590202A
Authority
CN
China
Prior art keywords
station
forming
switching system
photocuring
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011137771.7A
Other languages
English (en)
Inventor
沈理达
刘富玺
吕非
谢德巧
焦晨
晁龙
邱明波
赵剑峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202011137771.7A priority Critical patent/CN112590202A/zh
Publication of CN112590202A publication Critical patent/CN112590202A/zh
Priority to PCT/CN2021/089205 priority patent/WO2022083086A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0092Drying moulded articles or half products, e.g. preforms, during or after moulding or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/35Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/379Handling of additively manufactured objects, e.g. using robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials

Abstract

本发明公开了一种基于下置式面曝光光固化成形技术的多工位切换系统及光固化成型加工方法,包括上层的成形层、中层的多液槽层和下层的多工位层,其中,成形层用于上下升降并通过旋转切换至不同工位,多液槽层用于放置不同种类的液态高分子材料,多工位层用于根据需求对成形件进行不同功能的加工。本发明可实现多材料三维打印,并根据实际需求对成形件进行优化改性,旋转工位结构的采用,结构简单,有效节约了空间,降低成本,整个系统更加紧凑,在医疗与精密电子电器领域有着良好的应用前景。

Description

一种基于下置式光固化成形技术的多工位切换系统及光固化 成型加工方法
技术领域
本发明涉及三维打印技术,具体地说是一种基于下置式光固化成形技术的多工位切换系统及光固化成型加工方法。
背景技术
各类可穿戴医疗器材在健康监测、疾病诊断、病患监护与疾病康复等领域,有着大量的潜在应用和广阔的市场需求。随着人类对材料科学认识的提高,未来新一代关键材料及其制备加工技术需要具有复合化(复合材料)、功能化(多功能材料)、智能化(与感知、反应相结合)和生态环境友好化(可再生资源利用、绿色)等性能,进而满足对可穿戴医疗器械的要求。
近年来,一些研究工作基于仿生理念,由人体皮肤的特性所启发,提出了以高分子材料为核心,发展具有弹性的电子材料和器件研究方向,从而改善器件与人体的贴合能力和测量精度,用于发展新一代的可穿戴传感器件与设备。由于大量采用液态高分子材料,与传统微加工技术无法兼容,大大增加了制备这类器件的技术难度,三维打印技术则可实现医疗器件与材料的宏观一体化制造,并利用微观结构调控材料机械性能,从而满足贴身穿戴的需求。同时,三维打印技术还提供了一种建模、加工、测试至优化的闭环研究模式,通过反复迭代而改进结构设计,将提高所加工医疗器材的穿戴舒适性和可靠性,大大提高研发效率。但是传统的三维打印技术多适用于单材料,且针对柔性材料的三维打印技术应用较少,因此需要一种新型的多材料柔性高分子材料三维打印技术。
发明内容
发明目的:本发明的一个目的是提供一种基于下置式光固化成形技术的多工位切换系统,解决了常规光固化成形只能成形一种材料且成形部件功能单一的问题,本发明系统高效地利用了成形空间,节约面积,降低成本,整个系统结构紧凑。
本发明的另一个目的是提供一种采用上述多工位切换系统的光固化成型加工方法。
技术方案:本发明的一种基于下置式面曝光光固化成形技术的多工位切换系统,包括上层的成形层、中层的多液槽层和下层的多工位层,成形层、多液槽层和多工位层通过机械部件连接呈上中下阶梯配置,其中,成形层用于上下升降并通过旋转切换至不同工位,多液槽层用于放置不同种类的液态高分子材料,多工位层用于根据需求对成形件进行不同功能的加工。
优选的,多工位切换系统光源位于液槽下方,成形层为下置式工作台,实现已成形部分的上下移动和旋转。
优选的,多液槽层包括多个液槽,每个液槽内盛放不同种类的液态光固化材料,通过工位的旋转切换液槽从而完成不同材料的光固化成形。
优选的,多液槽层光固化材料为添加陶瓷、金属颗粒或纤维作为强化相的液态高分子材料,强化相添加比例不超过15%。
优选的,多工位层包括光固化成形工位、清洗工位、烘干工位和材料复合工位,各个工位位于同一水平面,且呈环形放置,通过工位旋转完成工位切换,光固化成形工位用于实现部件成形,清洗工位用于对已成形部分进行清洗,烘干工位用于对已成形部分进行干燥,材料复合工位用于实现功能器件嵌入和金属材料拼接。
优选的,光固化成形工位采用微聚焦透镜偏移曝光技术,成形精度0.036mm,成形效率1×106mm3/h,光源为紫外光。
优选的,清洗工位采用超声清洗,清洗时间10-15s;烘干工位采用热风烘干,温度20-30。℃
本发明的一种采用所述多工位切换系统的光固化成型加工方法,包括以下步骤:
(1)在建模软件中建立所需加工的多功能高分子材料部件三维模型,对部件区域针对所需要的功能进行分区;
(2)将完成分区的模型导入切片软件中进行添加支撑,分层切片,路径规划,参数选择,将生成的STL格式文件导入到多工位切换系统中,多工位切换系统根据分区信息选择工位对部件进行加工;
(3)开始加工时,下置式工作台置于液槽A中进行A材料的成形,面曝光系统按照预先设定的模型从液槽下方照射,完成A材料的成形,需要成形B材料时,成形部件随下置式工作台上升,工位切换旋转至清洗、烘干工位后依次对成形件进行清洗、烘干,然后成型件下降至工作高度置于液槽B进行B材料的光固化成形,面曝光系统按照预先设定的模型从液槽下方照射,完成B材料的成形;如此循环完成整个部件的成形;
(4)成形过程结束后,将成形部件取出进行清洗、干燥去除支撑等,即得最终部件。
有益效果:与现有技术相比,本发明具有以下优点:
(1)通过工位切换进行多材料的增材制造一体化成形,解决了传统加工方式难以在结构内部加工三维图形的问题;
(2)本发明利用光固化成形技术,实现了部件基体与内部结构的一体化分层打印,可打印出任意复杂的三维多材料模型;
(3)本发明加工出来的样件可完全摒弃材料拼接、器件融合等复杂工序,优化加工步骤,工艺简单,免装配,生产周期短,尤其适合产品设计研发和小批量生产。
附图说明
图1是本发明的多工位切换系统三层结构示意图;
图2是本发明的多工位切换系统平面示意图;
图3是本发明的多工位切换系统工位切换流程示意图;
图中,1、成形部件下置式工作台,2、A材料液槽,3、面曝光系统,4、热风扇,5、B材料液槽,6清洗槽,7、复合加工平台。
具体实施方式
下面结合实施例与附图对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。以下所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。
本发明的基于下置式光固化成形技术的多工位切换系统,包括上层的成形层、中层的多液槽层和下层的多工位层,成形层、多液槽层和多工位层呈上中下结构,通过机械结构如桁架等连接并可以转动,其中,成形层可以上下升降并通过旋转切换至不同工位,多液槽层用于放置不同种类的液态高分子材料,多工位层用于根据需求对成形件进行不同功能的加工。多工位系统光源位于液槽下方,成形层为下置式工作台,可以实现已成形部分的上下移动和旋转;多液槽层包括多个液槽,每个液槽内盛放不同种类的液态光固化材料,通过工位的旋转切换液槽从而完成不同材料的光固化成形;多工位层包括光固化成形工位、清洗工位、烘干工位和材料复合工位,各个工位位于同一水平面,且呈环形放置,通过工位旋转完成工位切换;光固化成形工位用于实现部件成形,清洗工位用于对已成形部分进行清洗,烘干工位用于对已成形部分进行干燥,材料复合工位用于实现功能器件嵌入和金属材料拼接。
如图1所示,本发明实施例中下置式工作台用于带动成形部件上升、下降或者旋转,多液槽层包括A材料液槽和B材料液槽,多工位层的光固化成形工位为面曝光系统,清洗工位为清洗槽,烘干工位为热风扇,材料复合工位为复合加工平台。A材料液槽和B材料液槽中的光固化材料为添加陶瓷、金属颗粒或纤维作为强化相的液态高分子材料,强化相添加比例不超过15%,可用于多材料成形的材料种类三种以上。光固化成形工位采用微聚焦透镜偏移曝光技术,成形精度0.036mm,成形效率1×106mm3/h,光源为紫外光。清洗工位采用超声清洗,清洗时间10-15s;烘干工位采用热风烘干,温度20-30。℃材料复合工位包含金属材料拼接、功能器件嵌入等功能。
多工位切换系统的工作原理为:通过对模型中不同材料的分区,系统切换到相应的工位上,完成对应材料的加工成形,切换不同工位时,配置清洗、干燥步骤,并在对应的工作台完成清洗、干燥工序,如此循环往复,从而完成多材料复合。
采用上述多工位切换系统进行光固化成形的加工方法,具体包括以下步骤:
S1、在建模软件中建立所需加工的多功能高分子材料部件三维模型,对部件区域针对所需要的功能进行分区;
S2、将完成分区的模型导入到切片软件中进行添加支撑,分层切片,路径规划,参数选择,将生成的STL格式文件导入到多工位切换系统中,多工位切换系统根据分区信息选择工位对部件进行加工,完成A材料加工后通过编辑切换程序完成工位切换、清洗、烘干等步骤进行下一材料的加工成形;
S3、开始加工时,下置式工作台置入加入A材料的液槽中,面曝光系统按照预先设定的模型从液槽下方照射,完成A材料的成形;需要成形B材料时,根据模型材料分区,按照预先设定切换工位切换程序,成形部件随下置式工作台上升到指定位置,成形部分一次切换至清洗工位、烘干工位,然后下置式工作台移至装有B材料的液槽中,面曝光系统按照预先设定的模型从液槽下方照射,完成B材料的成形;如此循环往复完成整个部件的加工成形。
S4、成形过程结束后,将成形部件取出进行清洗、干燥去除支撑等,即得最终部件。
下面以可穿戴医疗器材加工为例进一步说明该加工方法:
(1)运用计算机中的三维建模软件建立所需加工的可穿戴医疗器材三维模型,建模完成后保存为STL文件。对模型STL文件按照不同材料区域需要满足的要求进行分区,不同区域选择不同的加工方式。
(2)将完成分区的模型STL文件导入多工位切换系统中,多工位切换系统根据预先设定好的分区信息选择对应的加工方式,即多工位切换系统根据分区信息选择工位对部件进行加工;整个过程为多工位切换系统可自动切换工位调整加工位置。
(3)加工过程中,液槽中光固化成形基体时所采用的材料如陶瓷、金属颗粒或纤维作为强化相的液态高分子材料,强化相添加比例不超过15%,可选择的液态高分子材料种类三种以上。面曝光系统采用高效高精度阵列式亚像素扫描大尺寸面成形技术,在微透射阵列聚焦技术基础上实现高效高精度成形。
(4)如图3为多工位切换系统工位切换流程示意图在成形一种类型的液态高分子基材料后,可根据实际需求继续进行该种液态高分子基材料成形或者切换至另一工位进行另外一种液态高分子基材料的材料,切换液槽前,还需要对已成形部分进行清洗、干燥,以防止材料间的相互污染,如此循环往复,实现多材料三维打印。除此之外,可根据实际需要,添加其他工位如功能器件嵌入、金属材料拼接工位,如图2所示,使制备的可穿戴传感器产品能满足不同的需求。
(5)将加工完成地部件实体取出后,对表面进行处理后测试其内部各部分是否能实现相对应的功能,最终完成可穿戴医疗器材的加工制备。
综上所述,本发明基于下置式光固化成形技术的多工位切换系统,采用三层旋转结构设计,搭配多功能工作平台。本方案高效地利用了成型空间,旋转结构的设计,节约了成形空间,降低了成本,整个系统结构紧凑。

Claims (8)

1.一种基于下置式面曝光光固化成形技术的多工位切换系统,其特征在于,包括上层的成形层、中层的多液槽层和下层的多工位层,成形层、多液槽层和多工位层通过机械部件连接呈上中下阶梯配置,其中,成形层用于上下升降并通过旋转切换至不同工位,多液槽层用于放置不同种类的液态高分子材料,多工位层用于根据需求对成形件进行不同功能的加工。
2.根据权利要求1所述的基于下置式面曝光光固化成形技术的多工位切换系统,其特征在于,多工位切换系统光源位于液槽下方,成形层为下置式工作台,实现已成形部分的上下移动和旋转。
3.根据权利要求1所述的基于下置式面曝光光固化成形技术的多工位切换系统,其特征在于,多液槽层包括多个液槽,每个液槽内盛放不同种类的液态光固化材料,通过工位的旋转切换液槽从而完成不同材料的光固化成形。
4.根据权利要求3所述的基于下置式面曝光光固化成形技术的多工位切换系统,其特征在于,多液槽层光固化材料为添加陶瓷、金属颗粒或纤维作为强化相的液态高分子材料,强化相添加比例不超过15%。
5.根据权利要求1所述的基于下置式面曝光光固化成形技术的多工位切换系统,其特征在于,多工位层包括光固化成形工位、清洗工位、烘干工位和材料复合工位,各个工位位于同一水平面,且呈环形放置,通过工位旋转完成工位切换,光固化成形工位用于实现部件成形,清洗工位用于对已成形部分进行清洗,烘干工位用于对已成形部分进行干燥,材料复合工位用于实现功能器件嵌入和金属材料拼接。
6.根据权利要求5所述的基于下置式面曝光光固化成形技术的多工位切换系统,其特征在于,光固化成形工位采用微聚焦透镜偏移曝光技术,成形精度0.036mm,成形效率1×106mm3/h,光源为紫外光。
7.根据权利要求5所述的基于下置式面曝光光固化成形技术的多工位切换系统,其特征在于,清洗工位采用超声清洗,清洗时间10-15s;烘干工位采用热风烘干,温度20-30℃。
8.一种采用权利要求1-7任一项所述多工位切换系统的光固化成型加工方法,其特征在于,包括以下步骤:
(1)在建模软件中建立所需加工的多功能高分子材料部件三维模型,对部件区域针对所需要的功能进行分区;
(2)将完成分区的模型导入切片软件中进行添加支撑,分层切片,路径规划,参数选择,将生成的STL格式文件导入到多工位切换系统中,多工位切换系统根据分区信息选择工位对部件进行加工;
(3)开始加工时,下置式工作台置于液槽A中进行A材料的成形,面曝光系统按照预先设定的模型从液槽下方照射,完成A材料的成形,需要成形B材料时,成形部件随下置式工作台上升,工位切换旋转至清洗、烘干工位后依次对成形件进行清洗、烘干,然后成型件下降至工作高度置于液槽B进行B材料的光固化成形,面曝光系统按照预先设定的模型从液槽下方照射,完成B材料的成形;如此循环完成整个部件的成形;
(4)成形过程结束后,将成形部件取出进行清洗、干燥去除支撑,即得最终部件。
CN202011137771.7A 2020-10-22 2020-10-22 一种基于下置式光固化成形技术的多工位切换系统及光固化成型加工方法 Pending CN112590202A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011137771.7A CN112590202A (zh) 2020-10-22 2020-10-22 一种基于下置式光固化成形技术的多工位切换系统及光固化成型加工方法
PCT/CN2021/089205 WO2022083086A1 (zh) 2020-10-22 2021-04-23 一种基于下置式光固化成形技术的多工位切换系统及光固化成型加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011137771.7A CN112590202A (zh) 2020-10-22 2020-10-22 一种基于下置式光固化成形技术的多工位切换系统及光固化成型加工方法

Publications (1)

Publication Number Publication Date
CN112590202A true CN112590202A (zh) 2021-04-02

Family

ID=75180324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011137771.7A Pending CN112590202A (zh) 2020-10-22 2020-10-22 一种基于下置式光固化成形技术的多工位切换系统及光固化成型加工方法

Country Status (2)

Country Link
CN (1) CN112590202A (zh)
WO (1) WO2022083086A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022083086A1 (zh) * 2020-10-22 2022-04-28 南京航空航天大学 一种基于下置式光固化成形技术的多工位切换系统及光固化成型加工方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115366412A (zh) * 2022-08-23 2022-11-22 湖南大学 一种多材质构件复合打印成形方法及系统
CN115430559A (zh) * 2022-10-13 2022-12-06 安锋自动化设备江苏有限公司 一种多工位镜片旋涂设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107856301A (zh) * 2017-10-16 2018-03-30 吴政宽 中空物件的内悬空壁面的3d光固化打印方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016310470A1 (en) * 2015-08-21 2018-02-22 Aprecia Pharmaceuticals LLC Three-dimensional printing system and equipment assembly
WO2018169821A1 (en) * 2017-03-15 2018-09-20 Carbon, Inc. Integrated additive manufacturing systems
CN206589340U (zh) * 2017-03-17 2017-10-27 东莞理工学院 基于面曝光快速成型的圆盘式多材料成型机
CN211518504U (zh) * 2019-12-13 2020-09-18 重庆市美客无双智能科技有限公司 一种双液晶屏和双料槽的光固化3d打印机
CN112590202A (zh) * 2020-10-22 2021-04-02 南京航空航天大学 一种基于下置式光固化成形技术的多工位切换系统及光固化成型加工方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107856301A (zh) * 2017-10-16 2018-03-30 吴政宽 中空物件的内悬空壁面的3d光固化打印方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022083086A1 (zh) * 2020-10-22 2022-04-28 南京航空航天大学 一种基于下置式光固化成形技术的多工位切换系统及光固化成型加工方法

Also Published As

Publication number Publication date
WO2022083086A1 (zh) 2022-04-28

Similar Documents

Publication Publication Date Title
CN112590202A (zh) 一种基于下置式光固化成形技术的多工位切换系统及光固化成型加工方法
Wicker et al. Multi-material, multi-technology stereolithography: This feature article covers a decade of research into tackling one of the major challenges of the stereolithography technique, which is including multiple materials in one construct
Joe Lopes et al. Integrating stereolithography and direct print technologies for 3D structural electronics fabrication
WO2021017129A1 (zh) 一种增材制造装置及成形方法
CN108582767B (zh) 一种无支撑的3d打印方法
CN106111985A (zh) 群扫描激光选择性烧结或固化方法及其3d成型机
CN103774859B (zh) 一种基于bim建筑模型的水泥砂浆砌体自动建造装置及其工作方法
CN101450010A (zh) 数字化口腔修复体制作装备
US20110123794A1 (en) Apparatus and methods for digital manufacturing
CN202154758U (zh) 一种数字化口腔修复体制作设备
CN110062690A (zh) 具有力监测和反馈的连续液体界面生产
CN108327253B (zh) 光固化型三维打印方法和设备
CN105799172A (zh) 一种3d打印建筑装饰的设备与方法
JP2010228332A (ja) 造形物の製造方法
EP3504044A1 (en) Enegegy management method for pixel-based additive manufacturing
CN114918371B (zh) 一种多材质砂型打印用高柔性多区域铺砂方法及装置
JP3454636B2 (ja) 粉末積層法による三次元形状創成方法
JP2017165084A (ja) 三次元印刷装置
CN102029715A (zh) 一种光固化立体同心球的sla成型工艺
CN112296357A (zh) 面向激光选区熔融工艺的增材制造相同并行机调度方法
CN113843498B (zh) 一种柔性传感器三维曲面的激光保形制造方法
CN208245814U (zh) 一种选区激光熔覆与磨削原位复合制造装置
CN112590201B (zh) 一种基于面曝光复合多材料能场约束件增材制造装置及方法
JPH0825487A (ja) 光造形法におけるサポート形成方法
CN207290925U (zh) 一种基于Micro LED技术的光固化3D打印设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210402