CN112583040B - 含分布式能源和用户交直流配用电系统的主动管控方法 - Google Patents

含分布式能源和用户交直流配用电系统的主动管控方法 Download PDF

Info

Publication number
CN112583040B
CN112583040B CN202011522121.4A CN202011522121A CN112583040B CN 112583040 B CN112583040 B CN 112583040B CN 202011522121 A CN202011522121 A CN 202011522121A CN 112583040 B CN112583040 B CN 112583040B
Authority
CN
China
Prior art keywords
direct current
vsc
control
model
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011522121.4A
Other languages
English (en)
Other versions
CN112583040A (zh
Inventor
邓卫
裴玮
吴琦
肖浩
李琳艳
孔力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electrical Engineering of CAS
Original Assignee
Institute of Electrical Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electrical Engineering of CAS filed Critical Institute of Electrical Engineering of CAS
Priority to CN202011522121.4A priority Critical patent/CN112583040B/zh
Publication of CN112583040A publication Critical patent/CN112583040A/zh
Application granted granted Critical
Publication of CN112583040B publication Critical patent/CN112583040B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及一种含分布式能源和用户交直流配用电系统的主动管控方法,所述交直流配用电系统包括多个电压源型换流站VSC1、VSC2、…VSCm与直流网互联,多个交流系统AC1、AC2、……ACm分别通过其馈线上的各电压源型换流站连接直流网,包括如下步骤:第一步:针对分布式能源和用户交直流配用电系统,建立系统非线性模型;第二步:针对第一步输出的系统非线性模型,通过实施各VSC的功率附加值,实现系统模型的线性化,得到系统线性模型;第三步:针对第二步输出的系统线性模型,进行模型预测控制,生成实时控制过程中各VSC优化的功率调整值,进而实现系统整体性能的提升,本发明通过系统线性化技术,提高系统的抗扰动能力,通过模型预测控制改善电压的控制精度。

Description

含分布式能源和用户交直流配用电系统的主动管控方法
技术领域
本发明涉及电力领域,尤其是一种含分布式能源和用户交直流配用电系统的主动管控方法。
背景技术
随着社会经济的快速发展,化石能源等非再生能源日益短缺,消耗化石能源的同时,CO2的排放对环境保护的不利影响日益严重,分布式能源及其直流配电技术在世界范围内受到广泛关注。根据不同的用户需求,分布式能源能够设计为多种系统结构,以增强供电可靠性、提高综合能源利用效率、降低二氧化碳排放。但受制于交流网架结构和可再生能源的地理分布,分布式能源对相邻区域的电网的支持能力有限。在结构上通过多端交直流配用电系统将分布式能源进行互联,可以跨越突破交流电网馈线的固有结构限制,显著提高系统整体的可靠性和转供能力。目前,交直流配用电系统已成为国内外研究热点,相关企业、研究机构及高校在系统控制关键技术等方面的研究已逐渐成熟,尤其在设备拓扑结构、阀控技术以及变换器控制等方面取得一定成果,开发了电力电子变压器、高压大功率DC/DC、DC/AC变换器等关键装备并进入实际应用。
图1描述了3个交流系统AC1、AC2、AC3通过多端直流进行互联的系统结构,其中单个交流系统通过电压源型换流站(voltage-source converter,VSC)与直流系统互联,其中,VSC1、VSC2、VSC3的交流侧分别接入AC1、AC2、AC3,与此同时,三者的直流侧经直流线路接入直流母线DC bus。直流系统中可集成光伏发电、电动汽车以及直流负载等,其中,当这些设备的直流电压与直流母线电压等级不匹配时可配置DC/DC变换器进行转换。
交直流系统通过点对点互联、或者环网、手拉手、并供及衍生结构等形式接入交流系统后,形成的多端柔性互联从根本上改变了配电网络的原有形态和联络支路连通能力,使系统具备了灵活可控、多样化的可行拓扑结构和良好的网络连通性,进而为增强系统弹性带来了本质性的变革。
交直流配用电系统整体运行依赖多个电力电子变换器及其相互间的协调控制,包含承担直流系统与交流系统之间潮流控制的换流站、以及直流网内承担不同直流电压等级转换的DC/DC变换器,当其以恒定功率控制方式运行时,与恒功率负载(constant powerload,CPL)均呈现负阻抗特性,当直流电压偏离稳态点时,该特性将进一步加剧直流电压的波动,严重时将导致直流系统失去稳定,进而影响整个系统的安全运行。这也意味着,受到负阻抗特性的影响,交直流配用电系统的稳定裕度将被削弱。
发明内容
为了解决上述技术问题,本发明提出的含分布式能源和用户交直流配用电系统的主动管控方法,可以有效克服交直流配用电系统的稳定性能收缩问题,减少负阻抗特性带来的不利影响,能够弥补现有缺陷,应用前景广阔。
本发明提出一种含分布式能源和用户交直流配用电系统的主动管控方法,所述交直流配用电系统包括多个电压源型换流站VSC1、VSC2、…VSCm与直流网互联,多个交流系统AC1、AC2、……ACm分别通过其馈线上的各电压源型换流站连接直流网,包括如下步骤:
第一步:针对分布式能源和用户交直流配用电系统,建立系统非线性模型;
第二步:针对第一步输出的系统非线性模型,通过实施各VSC的功率附加值,实现系统模型的线性化,得到系统线性模型;
第三步:针对第二步输出的系统线性模型,进行模型预测控制,生成实时控制过程中各VSC优化的功率调整值,进而实现系统整体性能的提升。
进一步的,所述第一步建立系统非线性模型包括如下步骤:
假定系统发生扰动情况下,X表示系统状态量,X0表示系统状态量扰动前的稳态值,ΔX表示系统状态量的扰动值,则X满足:
X=X0+ΔX
则系统的非线性模型为:
Figure BDA0002849370010000021
式中,A为系统矩阵,BL为系统控制矩阵,uL为系统控制量,Bu为系统调整系数矩阵,Δu为实时控制过程中各VSC优化的功率调整值。
进一步的,第二步具体包括:
针对系统非线性模型,通过实施各VSC的功率附加值,实现系统模型的线性化,设定权重矩阵Q与R,可行解矩阵P为正定对称矩阵,其中Q为m阶对角矩阵,每一个数据均一化取值为k1,R为m阶对角矩阵,每一个数据均一化取值为k2,m为系统矩阵A的阶数,求解:
P.A+AT.P-P.BL.R-1.(BL)T.P+Q=0 (2)
在得到P矩阵之后,存在uopt为:
uopt=-R-1(BL)T.P.ΔX (3)
此时A.Δx+BL.uopt为线性化模型,要使得系统控制量uL变化为uopt,即满足:
uopt,i+ΔP* si,L/Vdci=uL,i
其中,ΔP* si,L为线性化所需的第i个VSC的功率附加值,Vdci为第i个VSC直流侧电压,其中,uopt,i为第i个VSC的优化后的系统控制量,uL,i为第i个VSC的系统控制量。
进一步的,所述第三步具体包括:
针对系统线性模型,进行模型预测控制,生成实时控制过程中各VSC优化的功率调整值,进而实现系统整体性能的有效提升具体包括如下步骤:
当系统处于稳态情况下,直流母线出现功率扰动时,此时系统线性模型为:
Figure BDA0002849370010000031
其中,Ax=Asmall-BL.R-1(BL)T.P,Asmall是系统小信号模型系统矩阵,Bd是扰动矩阵,Δd为扰动量;与此同时,设定输出量为各VSC直流侧电压以及直流母线电压:
Δy=CxΔx
其中y为输出量,Cx为输出矩阵;
应用模型预测控制MPC理论,利用式(4)知道未来N个时刻的预测状态量及输出量,x(k+N|k)代表k时刻预测的k+N时刻的状态量,y(k+N|k)代表k时刻预测的k+N时刻的输出量;在预测过程中,设定N为预测时域,M为控制时域,M≤N,并设定控制时域之外的控制量恒定,且扰动量在k时刻之后无变化,即:
Δu(k+n|k)=0,n=M,M+1,…N-1;Δd(k+n|k)=0,n=1,2,…N-1;
推导得:
Figure BDA0002849370010000041
E是单位矩阵;
协调控制的目标是利用MPC不断滚动优化和反馈校正的特点,最大限度地减小直流母线负荷扰动对于直流电压的影响;
基于此,将输出量即各VSC直流侧电压以及直流母线电压,与参考值r之间的偏差之和作为性能评价指标,以其最小化作为优化目标之一,在能够稳定电压的前提下,使每个控制周期内控制量的增量Δu最小,即实时控制过程中各VSC优化的功率调整值最小即可达到稳定直流电压的目的:
Figure BDA0002849370010000042
将模型转化为二次规划QP问题进行求解。
有益效果:
现有的交直流配用电系统依赖分散可控的分布式能源、灵活的多端直流互联拓扑,以及精准潮流转移与互济的电力电子变换器协调控制,交直流系统能够提供紧急控制、快速频率响应、功率振荡阻尼以及动态电压支持等丰富功能,降低严重扰动给系统带来的冲击和影响,并最小化紧急状态下系统停电、负荷中断以及设备故障等带来的损失。针对该系统存在的负阻抗特性带来的稳定性能减弱的问题,本发明通过联合的主动管控方式来提升系统稳定性能,一方面,通过系统线性化技术,主动施加阻尼能量,提高系统的抗扰动能力;在此基础上,通过模型预测控制改善电压的控制精度,进而保障系统按照既定的控制性能向负荷提供供电,确保系统的可靠和稳定运行。
附图说明
图1为分布式能源和用户交直流配用电系统结构图;
图2为本发明的方法流程框图;
图3为VSC主电路示意图;
图4为换流站控制结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅为本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域的普通技术人员在不付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
根据本发明的一个实施例,如图2所示,提出一种含分布式能源和用户交直流配用电系统的主动管控方法,包括三个步骤:
第一步:针对分布式能源和用户交直流配用电系统,建立系统非线性模型;
第二步:针对第一步输出的系统非线性模型,通过实施各VSC的功率附加值,实现系统模型的线性化,得到系统线性模型;
第三步:针对第二步输出的系统线性模型,进行模型预测控制,生成实时控制过程中各VSC优化的功率调整值,进而实现系统整体性能的提升。
图3为VSC主电路示意图,其中Rsi与Lsi分别表示第i个VSC的交流侧的等效电阻、等效电感;Vsi、Isi、Vci表示第i个VSC交流侧的并网电压、并网电流、输出电压;Psi与Qsi表示第i个VSC交流侧的有功功率、无功功率;Ri、Li、Ci表示第i个VSC直流侧的线路电阻、线路电感、直流电容;Vdci、Idci、Pdci、Vdc表示第i个VSC直流侧电压、直流电流、直流功率以及直流母线电压。
分布式能源和用户交直流配用电系统中,如VSC1作为主站,则其采用定直流电压控制策略,对应的直流电容值通常配置较高,以确保直流电压恒定;其余的换流站如VSC2VSC3则作为从站,采用定功率控制策略。
图4为其控制结构,其中P* si、Q* si分别表示Psi与Qsi的参考值;Idi、Iqi表示Isi的d-q轴分量,Idi,ref、Iqi,ref分别表示Idi、Iqi的参考值;Vsdi、Vsqi表示Vsi的d-q轴分量;Vcdi、Vcqi表示Vci的d-q轴分量。
Figure BDA0002849370010000051
为有功功率控制器参数;
Figure BDA0002849370010000052
为无功功率控制器参数;
Figure BDA0002849370010000053
为有功电流控制器参数;
Figure BDA0002849370010000054
为无功电流控制器参数。
另外,设定C表示直流母线等效电容;Pload,PDG分别表示直流母线处直流负荷功率、分布式能源输出功率。为分析需要,将母线整体功率进行聚合以Pbus进行表示,Pbus=(Pload-PDG)。
第一步:建立系统非线性模型。
假定系统发生大扰动情况下,X表示系统状态量:
X=[X2,X3,Vdc,Idc1,Idc2,Idc3]T,Xi=[Vdci,Idi,Iqi,Idi,ref,Iqi,ref,Vcdi,Vcqi]T,X0表示系统状态量扰动前的稳态值,ΔX表示系统状态量的扰动值。下标的1、2、3分别代表第一个VSC、第二个VSC、第三个VSC,则X满足:
X=X0+ΔX
则系统的非线性模型为:
Figure BDA0002849370010000061
式中,A为系统矩阵,BL,2、BL,3分别为第2个VSC的控制矩阵,第3个VSC的控制矩阵。uL,2分别为第2个VSC的控制量,uL,3分别为第3个VSC的控制量。B2、B3分别为第2个VSC的调整系数矩阵,第3个VSC的调整系数矩阵。
Figure BDA0002849370010000062
分别为实时控制过程中第2个VSC优化的功率调整值、第3个VSC优化的功率调整值。
第二步:针对系统非线性模型,通过实施各VSC的功率附加值,实现系统模型的线性化。
由(1)可知,扰动时存在非线性部分uL,2和uL,3,针对该问题,将式(1)转换成矩阵:
Figure BDA0002849370010000063
其中BL为系统控制矩阵,uL为系统控制量,Bu为系统调整系数矩阵,Δu为实时控制过程中各VSC优化的功率调整值。
设定权重矩阵Q与R,以及可行解矩阵P为正定对称矩阵,其中Q为m阶对角矩阵,每一个数据均一化取值为k1,R为m阶对角矩阵,每一个数据均一化取值为k2。m为系统矩阵A的阶数。求解:
P.A+AT.P-P.BL.R-1.(BL)T.P+Q=0 (3)
在得到P矩阵之后,存在uopt为:
uopt=-R-1(BL)T.P.ΔX (4)
此时A.Δx+BL.uopt为线性化模型,要使得uL变化为uopt,即满足:
uopt,2+ΔP* s2,L/Vdc2=uL,2
uopt,3+ΔP* s3,L/Vdc3=uL,3
其中,ΔP* s2,L为线性化所需的第2个VSC的功率附加值,Vdc2为第2个VSC直流侧电压;ΔP* s3,L为线性化所需的第3个VSC的功率附加值,Vdc3为第3个VSC直流侧电压。
第三步:针对系统线性模型,进行模型预测控制,生成实时控制过程中各VSC优化的功率调整值,进而实现系统整体性能的有效提升。
当系统处于稳态情况下,直流母线出现功率扰动时,此时系统线性模型为:
Figure BDA0002849370010000071
其中,Ax=Asmall-BL.R-1(BL)T.P,
Asmall是系统小信号模型系统矩阵,Bd是扰动矩阵,Δd为扰动量ΔPbus
与此同时,设定输出量为各VSC直流侧电压以及直流母线电压:
Δy=CxΔx
其中Δy=[ΔVdc2,ΔVdc3,ΔVdc]T
Figure BDA0002849370010000072
为输出矩阵。
应用模型预测控制(Model predictive control,MPC)理论,利用式(5)可以知道未来N个时刻的预测状态量及输出量,x(k+N|k)代表k时刻预测的k+N时刻的状态量,y(k+N|k)代表k时刻预测的k+N时刻的输出量。在预测过程中,设定N为预测时域,M为控制时域(M≤N),并设定控制时域之外的控制量恒定,且扰动量在k时刻之后无变化,即:Δu(k+n|k)=0,n=M,M+1,…N-1;Δd(k+n|k)=0,n=1,2,…N-1。
推导可知:
Figure BDA0002849370010000081
E是单位矩阵。
协调控制的目标是利用MPC不断滚动优化和反馈校正的特点,最大限度地减小直流母线负荷扰动对于直流电压的影响。
基于此,可将输出量即各VSC直流侧电压以及直流母线电压,与参考值r(比如800V)之间的偏差之和作为性能评价指标,以其最小化作为优化目标之一。进一步而言,在能够稳定电压的前提下,使每个控制周期内控制量的增量Δu最小,即实时控制过程中各VSC优化的功率调整值ΔP* s2、ΔP* s3最小,即可达到稳定直流电压的目的。
Figure BDA0002849370010000082
由于存在复杂约束条件,无法直接求解优化问题,因此将模型可以转化为二次规划(Quadratic Programming,QP)问题进行求解。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,且应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

Claims (3)

1.一种含分布式能源和用户交直流配用电系统的主动管控方法,所述交直流配用电系统包括多个电压源型换流站VSC1、VSC2、…VSCm与直流网互联,多个交流系统AC1、AC2、……ACm分别通过其馈线上的各电压源型换流站连接直流网,其特征在于,包括如下步骤:
第一步:针对分布式能源和用户交直流配用电系统,建立系统非线性模型;
第二步:针对第一步输出的系统非线性模型,通过实施各VSC的功率附加值,实现系统模型的线性化,得到系统线性模型;所述第二步具体包括:
针对系统非线性模型,通过实施各VSC的功率附加值,实现系统模型的线性化,设定权重矩阵Q与R,可行解矩阵P为正定对称矩阵,其中Q为m阶对角矩阵,每一个数据均一化取值为k1,R为m阶对角矩阵,每一个数据均一化取值为k2,m为系统矩阵A的阶数,求解:
P.A+AT.P-P.BL.R-1.(BL)T.P+Q=0 (2)
在得到P矩阵之后,存在uopt为:
uopt=-R-1(BL)T.P.ΔX (3)
此时A.Δx+BL.uopt为线性化模型,要使得系统控制量uL变化为uopt,即满足:
uopt,i+ΔP* si,L/Vdci=uL,i
其中,ΔP* si,L为线性化所需的第i个VSC的功率附加值,Vdci为第i个VSC直流侧电压,其中,uopt,i为第i个VSC的优化后的系统控制量,uL,i为第i个VSC的系统控制量;
第三步:针对第二步输出的系统线性模型,进行模型预测控制,生成实时控制过程中各VSC优化的功率调整值,进而实现系统整体性能的提升。
2.根据权利要求1所述的一种含分布式能源和用户交直流配用电系统的主动管控方法,其特征在于,所述第一步建立系统非线性模型包括如下步骤:
假定系统发生扰动情况下,X表示系统状态量,X0表示系统状态量扰动前的稳态值,ΔX表示系统状态量的扰动值,则X满足:
X=X0+ΔX
则系统的非线性模型为:
Figure FDA0003728201550000021
式中,A为系统矩阵,BL为系统控制矩阵,uL为系统控制量,Bu为系统调整系数矩阵,Δu为实时控制过程中各VSC优化的功率调整值。
3.根据权利要求1所述的一种含分布式能源和用户交直流配用电系统的主动管控方法,其特征在于,所述第三步具体包括:
针对系统线性模型,进行模型预测控制,生成实时控制过程中各VSC优化的功率调整值,进而实现系统整体性能的有效提升具体包括如下步骤:
当系统处于稳态情况下,直流母线出现功率扰动时,此时系统线性模型为:
Figure FDA0003728201550000022
其中,Ax=Asmall-BL.R-1(BL)T.P,Asmall是系统小信号模型系统矩阵,Bd是扰动矩阵,Δd为扰动量;与此同时,设定输出量为各VSC直流侧电压以及直流母线电压:
Δy=CxΔx
其中y为输出量,Cx为输出矩阵;
应用模型预测控制MPC理论,利用式(4)知道未来N个时刻的预测状态量及输出量,x(k+N|k)代表k时刻预测的k+N时刻的状态量,y(k+N|k)代表k时刻预测的k+N时刻的输出量;在预测过程中,设定N为预测时域,M为控制时域,M≤N,并设定控制时域之外的控制量恒定,且扰动量在k时刻之后无变化,即:
Δu(k+n|k)=0,n=M,M+1,…N-1;Δd(k+n|k)=0,n=1,2,…N-1;
推导得:
Figure FDA0003728201550000023
E是单位矩阵;
协调控制的目标是利用MPC不断滚动优化和反馈校正的特点,最大限度地减小直流母线负荷扰动对于直流电压的影响;
基于此,将输出量即各VSC直流侧电压以及直流母线电压,与参考值r之间的偏差之和作为性能评价指标,以其最小化作为优化目标之一,在能够稳定电压的前提下,使每个控制周期内控制量的增量Δu最小,即实时控制过程中各VSC优化的功率调整值最小即可达到稳定直流电压的目的:
Figure FDA0003728201550000031
将模型转化为二次规划QP问题进行求解。
CN202011522121.4A 2020-12-21 2020-12-21 含分布式能源和用户交直流配用电系统的主动管控方法 Active CN112583040B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011522121.4A CN112583040B (zh) 2020-12-21 2020-12-21 含分布式能源和用户交直流配用电系统的主动管控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011522121.4A CN112583040B (zh) 2020-12-21 2020-12-21 含分布式能源和用户交直流配用电系统的主动管控方法

Publications (2)

Publication Number Publication Date
CN112583040A CN112583040A (zh) 2021-03-30
CN112583040B true CN112583040B (zh) 2022-09-13

Family

ID=75136466

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011522121.4A Active CN112583040B (zh) 2020-12-21 2020-12-21 含分布式能源和用户交直流配用电系统的主动管控方法

Country Status (1)

Country Link
CN (1) CN112583040B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644680B (zh) * 2021-10-14 2022-03-11 中国科学院电工研究所 一种交直流混联配电系统不确定扰动下的可达性分析方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242339B (zh) * 2014-08-29 2017-02-15 清华大学 基于模型预测控制理论的风电场电压自动控制方法
CN107425736A (zh) * 2017-07-17 2017-12-01 南京南瑞集团公司 基于模型预测的多端柔性直流输电系统换流站控制方法
CN108711846B (zh) * 2018-04-28 2020-10-16 国网山东省电力公司电力科学研究院 一种交直流系统长期电压稳定模型预测控制方法
CN110601252B (zh) * 2019-06-18 2022-12-16 武汉大学 基于mpc的含分布式光伏配电网馈线级快速电压控制方法
CN110932320A (zh) * 2019-12-09 2020-03-27 华北电力大学 自动发电控制系统分布式模型预测控制器设计方法

Also Published As

Publication number Publication date
CN112583040A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
Senapati et al. Improved power management control strategy for renewable energy‐based DC micro‐grid with energy storage integration
CN112736977B (zh) 多端海上风电柔性直流与储能协同并网系统及其控制方法
Mudaliyar et al. Coordinated voltage control of a grid connected ring DC microgrid with energy hub
Eskandari et al. Microgrid operation improvement by adaptive virtual impedance
CN109888791B (zh) 一种基于混合式配电变压器的主动配电网及其控制方法
Xie et al. Adaptive master-slave control strategy for medium voltage DC distribution systems based on a novel nonlinear droop controller
CN111725798A (zh) 一种用于直流微电网集群的分布式经济调度预测控制方法
Hajiaghasi et al. Hybrid energy storage for microgrid performance improvement under unbalanced load conditions
CN110350538B (zh) 一种基于主动需求侧响应的微电网协调控制方法
CN112583040B (zh) 含分布式能源和用户交直流配用电系统的主动管控方法
Gao et al. Distributed multi‐agent control for combined AC/DC grids with wind power plant clusters
Fagundes et al. Management and equalization of energy storage devices for DC microgrids using a SoC-sharing function
Li et al. Considering reactive power coordinated control of hybrid multi‐infeed HVDC system research into emergency DC power support
CN109617112B (zh) 适用于多端柔性直流系统的改进型直流电压控制策略
CN105262077B (zh) 一种优化直流配电网潮流的控制方法
Zhang et al. The voltage stabilizing control strategy of off-grid microgrid cluster bus based on adaptive genetic fuzzy double closed-loop control
Li et al. Study of multi‐objective optimal power flow of AC–DC hybrid system with DCpower flow controller
Hans et al. Implementation of Hybrid STATCOM System for Power System Performance Enhancement
Li et al. Distributed collaborative optimization DC voltage control strategy for VSC–MTDC system with renewable energy integration
Belgacem et al. Implementation of DC voltage controllers on enhancing the stability of multi-terminal DC grids.
He et al. Smooth regulation of DC voltage in VSC-MTDC systems based on optimal adaptive droop control
CN112242699A (zh) 孤立直流微电网改进自适应有源阻尼控制方法
Lotfifard et al. Distributed cooperative voltage control of multiterminal high-voltage DC systems
Wang et al. Model-Free DC Bus Voltage and Energy Management Control for Fuel Cell Hybrid Electric Vehicle
CN112769117B (zh) 一种防止直流电网过电压的控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant