CN112574444A - 一种温度响应的导电结构色薄膜的制备方法及应用 - Google Patents

一种温度响应的导电结构色薄膜的制备方法及应用 Download PDF

Info

Publication number
CN112574444A
CN112574444A CN202011370290.0A CN202011370290A CN112574444A CN 112574444 A CN112574444 A CN 112574444A CN 202011370290 A CN202011370290 A CN 202011370290A CN 112574444 A CN112574444 A CN 112574444A
Authority
CN
China
Prior art keywords
temperature
responsive
conductive
hydrogel
color film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011370290.0A
Other languages
English (en)
Inventor
赵远锦
汪雨
王月桐
张大淦
池俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Drum Tower Hospital
Original Assignee
Nanjing Drum Tower Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Drum Tower Hospital filed Critical Nanjing Drum Tower Hospital
Priority to CN202011370290.0A priority Critical patent/CN112574444A/zh
Publication of CN112574444A publication Critical patent/CN112574444A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0831Gold
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nonlinear Science (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种温度响应的导电结构色薄膜的制备方法及应用,该方法基于结构色材料,得到有序排列的胶体晶体正结构模板,通过向胶体晶体正结构模板中灌注水凝胶溶液,固化后移去模板得到具有鲜艳结构色的反蛋白石结构水凝胶薄膜,向多孔结构的水凝胶薄膜中填充具有温度响应的导电水凝胶溶液,固化后得到温度响应的导电结构色薄膜。其特征在于所述温度响应的导电结构色薄膜,可以通过调控温度控制纳米孔洞的收缩和扩张,实现颜色信号的监测和电信号的反馈。相对于现有技术,本发明提供的制备方法操作简单、成本低廉,并且不需要大型监测仪器,所制备的温度响应的导电结构色薄膜可以有效响应外界温度的变化。

Description

一种温度响应的导电结构色薄膜的制备方法及应用
技术领域
本发明属于水凝胶薄膜技术领域,具体涉及一种温度响应的导电结构色薄膜及其制备方法和应用。
背景技术
智能材料由于其能够在外力、光、磁和热的刺激下响应环境的变化,引起了广泛的关注。其中,具有可变结构、机械可恢复性和导电设计性的水凝胶在智能材料领域占据着重要的地位。它们可以在受到外界刺激时发生溶胶-凝胶相或体积的转变。N-异丙基丙烯酰胺(NIAAm)由于其较低的临界溶解温度(LCST,32℃),快速的相变和响应温度可调性而被广泛用作温度敏感型水凝胶的单体。除此之外,其优异的生物相容性以及良好的保水性等特性使其在柔性电子、传感器、驱动器等领域具有十分广阔的应用前景。
目前,已有大量的研究将温度响应性水凝胶材料与导电材料相结合来构建具有优异导电性能和超灵敏响应性能的电子皮肤,具体是通过向温度响应性水凝胶材料中掺杂导电材料,包括碳纳米管、石墨烯、金纳米线或者导电聚合物等。得益于这些导电材料优异的导电性能及稳定性,在温度响应性水凝胶材料受到外界刺激时,可以通过反馈的电信号获取机械信号转变的情况。这一特性使得温度响应性导电水凝胶材料在医疗设备中引起了极大的关注。但是,尽管基于温度响应性导电水凝胶材料已经取得了很大进展,但这些温度响应性导电水凝胶材料仍面临一些问题,比如面对复杂的生物环境,如何保持数据稳定性及缺乏数据可视化等。因此,具有稳定数据输入与输出及可视化功能的温度响应的导电水凝胶薄膜仍有待开发。
为了克服检测信号单一性获得稳定数据及可视化功能的问题,结构色材料引起了科学家们广泛关注。结构色源于具有不同折射率的周期性纳米结构并导致光与这些光子结构之间相互作用而产生的。自然界中存在大量的结构色材料,受自然界启发,大量的结构色水凝胶被开发出来,并被广泛的应用于光学器件的开发、分子检测、力感测、可穿戴设备等。然而,结构色材料与温度响应的导电水凝胶电子设备的结合目前仍然面临的严峻的挑战。
发明内容
为了解决温度响应性导电水凝胶材料检测信号单一性及缺乏数据可视化的问题,本发明提供了一种温度响应的导电结构色薄膜的制备方法及应用。
为解决上述的技术问题,本发明采用的技术方案是:
一种温度响应的导电结构色薄膜的制备方法,该方法包括以下步骤:
1)胶体晶体正结构模板的制备:配制均匀的胶体纳米粒子乙醇溶液,在一定温度下,通过垂直沉积法制备得到胶体晶体正结构模板;
2)鲜艳结构色的反蛋白石结构水凝胶薄膜的制备:采用模板牺牲法,利用向胶体晶体正结构模板中灌注聚合物溶液,使其完全填充粒子间隙,紫外照射或烘箱加热固化聚合物溶液,蚀刻后得到鲜艳结构色的反蛋白石结构水凝胶薄膜;
3)温度响应的导电结构色薄膜的制备方法:基于鲜艳结构色的反蛋白石结构水凝胶薄膜,向其中灌注温度响应的导电水凝胶前聚体,紫外固化或烘箱加热得到温度响应的导电结构色薄膜。
其中,步骤1)所述的胶体纳米粒子乙醇溶液以质量百分数计,浓度为1%-2%。
步骤1)所述的一定温度为45℃。
其中,步骤2)所述的聚合物溶液选自聚乙二醇二丙烯酸酯PEGDA、丙烯酰胺AAm、甲基丙烯酸酯明胶GelMA、二烯丙基二甲基氯化铵中的一种或多种。
步骤2)所述的蚀刻是将固化后的薄膜浸泡于4%的氢氟酸中。
其中,步骤3)所述的温度响应的导电水凝胶前聚体,由温度响应的水凝胶前聚体、导电材料、交联剂、引发剂混合而成。
进一步的,所述温度响应的水凝胶前聚体选用N-异丙基丙烯酰胺;所述导电由碳纳米管、石墨烯、导电聚合物、金纳米线等其中的一种或多种提供;所述交联剂来自于N,N-亚甲基双丙烯酰胺Bis;所述光引发剂由1173光引发剂提供HMPP。
进一步的,所述的温度响应的水凝胶前聚体的重量百分比为40wt%;所述的导电材料为4mg/mL;所述的交联剂与温度响应的水凝胶前聚体的质量比为29:1;所述的引发剂的用量为相比于温度响应的水凝胶前聚体的1%v/v。
本发明还保护了所制备的温度响应的导电结构色薄膜作为监测外界温度的双信号传感器的应用,温度响应具体表现为调控温度控制纳米孔洞的收缩和扩张,实现结构色的变化和反馈导电数据。
与现有技术相比,本发明的有益效果是:
1)本发明基于胶体晶体正结构模板制备的温度响应的导电结构色薄膜,方法简单、操作方便、成本低廉。
2)本发明设计的一种温度响应的导电结构色薄膜,其中反蛋白石结构水凝胶薄膜不仅赋予了材料鲜艳结构色的性能,还为响应的导电聚合物溶液提供了载体;具有温度响应的NIAAm的加入使得薄膜可以响应外界温度的变化;导电性材料赋予了最终的薄膜优异的导电性。
3)本发明制备的温度响应的导电结构色薄膜可用于监测外界温度的双信号传感器:一方面在外界温度变化时,反蛋白石结构纳米孔洞的收缩和扩张以及结构色响应的特性,实时实现颜色的传感;另一方面导电性可实时反馈电信号。
附图说明
图1为随着温度的升高,温度响应的导电结构色薄膜的结构色变化的照片。其中i为20℃下的温度响应的导电结构色薄膜的照片,ii为25℃下的温度响应的导电结构色薄膜的照片,iii为30℃下的温度响应的导电结构色薄膜的照片,iv为35℃下的温度响应的导电结构色薄膜的照片;
图2为随着温度的升高,温度响应的导电结构色薄膜反射光谱的变化曲线;
图3为随着温度的升高,温度响应的导电结构色薄膜的相对电阻变化曲线;
具体实施方式
以下结合具体实施例对上述方案做进一步说明。应理解,这些实施例是用于说明本发明而不限于限制本发明的范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。实施例中未注明的实施条件通常为常规实验中的条件。
实施例1
一种基于丙烯酰胺(AAm)的温度响应导电结构色薄膜制备方法:
1、AAm反蛋白石结构水凝胶薄膜的制备:
1)将粒径为250nm的二氧化硅粒子多次离心洗涤,随后所得固体分散在乙醇溶液中,配置浓度为20wt%的二氧化硅乙醇分散液;
2)将二氧化硅乙醇分散液在玻璃片上沉积形成二氧化硅光子晶体模板,最后对所得光子晶体模板进行高温煅烧(500℃),获得到机械强度较好的光子晶体模板;
3)将机械强度较好的光子晶体模板浸泡在AAm水凝胶前聚液(0.20g/ml)中2h,经过紫外固化得到光子晶体-水凝胶杂交体系;
4)最后利用HF(4wt%)腐蚀光子晶体水凝胶杂交体系中的二氧化硅胶体粒子,得到AAm反蛋白石结构水凝胶薄膜。
2、温度响应的导电结构色水凝胶薄膜的制备:
1)将碳纳米管溶液(4mg/mL)分散在浓度为40wt%的NIAAm单体溶液中,加入Bis(与NIAAm的质量比为29:1)、HMPP(相比于NIAAm的1%v/v);
2)将步骤1中的AAm反蛋白石结构水凝胶薄膜自然晾干;
3)将掺杂碳纳米管的NIAAm单体溶液填充到晾干的AAm反蛋白石结构水凝胶薄膜中;
4)紫外光聚3)中的掺杂碳纳米管的NIAAm单体溶液层,得到基于AAm的温度响应的导电结构色水凝胶薄膜。
实施例2
一种基于甲基丙烯酸甲酯修饰的明胶(GelMa)的温度响应的导电结构色薄膜制备方法:
1、GelMa反蛋白石结构水凝胶薄膜的制备:
1)将粒径为240nm的聚苯乙烯粒子多次离心洗涤,随后所得固体分散在乙醇溶液中,配置浓度为20wt%的聚苯乙烯乙醇分散液;
2)将聚苯乙烯乙醇分散液在玻璃片上沉积形成二氧化硅光子晶体模板,最后对所得光子晶体模板进行高温煅烧(500℃),获得到机械强度较好的光子晶体模板;
3)将机械强度较好的光子晶体模板浸泡在GelMa水凝胶前聚液(0.20g/ml)中2h,经过紫外固化得到光子晶体-水凝胶杂交体系;
4)最后利用高温腐蚀光子晶体水凝胶杂交体系中的聚苯乙烯胶体粒子,得到GelMa反蛋白石结构水凝胶薄膜。
2、温度响应的导电结构色水凝胶薄膜的制备:
1)将石墨烯溶液(4mg/mL)分散在浓度为40wt%的NIAAm单体溶液中,加入Bis(与NIAAm的质量比为29:1)、HMPP(相比于NIAAm的1%v/v);
2)将步骤1中的Gelma反蛋白石结构水凝胶薄膜自然晾干;
3)将掺杂石墨烯的NIAAm单体溶液填充到晾干的Gelma反蛋白石结构水凝胶薄膜中;
4)紫外光聚3)中的掺杂石墨烯的NIAAm单体溶液层,得到基于GelMa的温度响应的导电结构色水凝胶薄膜。
实施例3
一种基于聚乙二醇二丙烯酸酯(PEGDA)的温度响应的导电结构色薄膜制备方法:
1、PEGDA反蛋白石结构水凝胶薄膜的制备:
1)将粒径为250nm的二氧化硅粒子多次离心洗涤,随后所得固体分散在乙醇溶液中,配置浓度为20wt%的二氧化硅乙醇分散液;
2)将二氧化硅乙醇分散液在玻璃片上沉积形成二氧化硅光子晶体模板,最后对所得光子晶体模板进行高温煅烧(500℃),获得到机械强度较好的光子晶体模板;
3)将机械强度较好的光子晶体模板浸泡在PEGDA水凝胶前聚液(0.20g/ml)中2h,经过紫外固化得到光子晶体-水凝胶杂交体系;
4)最后利用HF(4wt%)腐蚀光子晶体水凝胶杂交体系中的二氧化硅胶体粒子,得到PEGDA反蛋白石结构水凝胶薄膜。
2、温度响应的导电结构色水凝胶薄膜的制备:
1)将金纳米线溶液(4mg/mL)分散在浓度为40wt%的NIAAm单体溶液中,加入Bis(与NIAAm的质量比为29:1)、HMPP(相比于NIAAm的1%v/v);
2)将步骤1中的PEGDA反蛋白石结构水凝胶薄膜自然晾干;
3)将掺杂金纳米线的NIAAm单体溶液填充到晾干的PEGDA反蛋白石结构水凝胶薄膜中;
4)紫外光聚3)中的掺杂金纳米线的NIAAm单体溶液层,得到基于PEGDA的温度响应的导电结构色水凝胶薄膜。
实施例4
采用上述制备方法制备的温度响应的导电结构色水凝胶薄膜,用于监测温度变化的双信号传感器
通过向实施例1制得的基于AAm的温度响应的导电结构色水凝胶薄膜施加温度,如图1所示,观察其结构色变化及实时监测光谱变化和导电变化。可以发现,随着温度从20℃升高到35℃,PNIPAM层的存在使温度响应的导电结构色水凝胶薄膜呈现出收缩过程(如图1i-iv所示)。在此过程中,温度响应的导电结构色水凝胶薄膜不仅可以呈现来自AAm反蛋白石层的颜色变化,而且还可以获得来自导电PNIPAM层的电信号的反馈。具体而言,温度响应的导电结构色水凝胶薄膜的结构色从红色变为绿色,如图1i-iv所示,这是因为温度升高,导电PNIPAM层的收缩导致AAm反蛋白石结构收缩,引起衍射面之间距离的减小。同时记录了相应反射峰的变化,如图2所示,随着温度的增加,反射峰发生了蓝移,从646nm变到540nm。除了视觉响应,还研究了温度响应的导电结构色水凝胶薄膜的电阻变化,如图3所示。随着温度的升高,温度响应的导电结构色水凝胶薄膜具有很好的导电性的响应,另外,相对电阻随着温度的升高呈负相关,这是由于温度响应的导电结构色水凝胶薄膜的收缩引起的碳纳米管的聚集。这些结果表明,制备的温度响应的导电结构色水凝胶薄膜在温度刺激方面显示出双信号响应性的优势,使其在传感器领域具有很好的应用潜力。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何形式上的限制,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,依据本发明的技术实质,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。

Claims (9)

1.一种温度响应的导电结构色薄膜的制备方法,其特征在于:该方法包括以下步骤:
1)胶体晶体正结构模板的制备:配制均匀的胶体纳米粒子乙醇溶液,在一定温度下,通过垂直沉积法制备得到胶体晶体正结构模板;
2)鲜艳结构色的反蛋白石结构水凝胶薄膜的制备:采用模板牺牲法,利用向胶体晶体正结构模板中灌注聚合物溶液,使其完全填充粒子间隙,紫外照射或烘箱加热固化聚合物溶液,蚀刻后得到鲜艳结构色的反蛋白石结构水凝胶薄膜;
3)温度响应的导电结构色薄膜的制备方法:基于鲜艳结构色的反蛋白石结构水凝胶薄膜,向其中灌注温度响应的导电水凝胶前聚体,紫外固化或烘箱加热得到温度响应的导电结构色薄膜。
2.根据权利要求1所述的温度响应的导电结构色薄膜的制备方法,其特征在于:步骤1)所述的胶体纳米粒子乙醇溶液的以质量百分数计,浓度为1%-2%。
3.根据权利要求1所述的温度响应的导电结构色薄膜的制备方法,其特征在于:步骤1)所述的一定温度为45℃。
4.根据权利要求1所述的温度响应的导电结构色薄膜的制备方法,其特征在于:步骤2)所述的聚合物溶液选自聚乙二醇二丙烯酸酯PEGDA、丙烯酰胺AAm、甲基丙烯酸酯明胶GelMA、二烯丙基二甲基氯化铵中的一种或多种。
5.根据权利要求1所述的温度响应的导电结构色薄膜的制备方法,其特征在于:步骤2)所述的蚀刻是将固化后的薄膜浸泡于4%的氢氟酸中。
6.根据权利要求1所述的温度响应的导电结构色薄膜的制备方法,其特征在于:步骤3)所述的温度响应的导电水凝胶前聚体,由温度响应的水凝胶前聚体、导电材料、交联剂、引发剂混合而成。
7.根据权利要求6所述的温度响应的导电结构色薄膜的制备方法,其特征在于:所述温度响应的水凝胶前聚体选用N-异丙基丙烯酰胺;所述导电由碳纳米管、石墨烯、导电聚合物、金纳米线等其中的一种或多种提供;所述交联剂来自于N,N-亚甲基双丙烯酰胺Bis;所述光引发剂由1173光引发剂提供HMPP。
8.根据权利要求6所述的温度响应的导电结构色薄膜的制备方法,其特征在于:所述的温度响应的水凝胶前聚体的重量百分比为40wt%;所述的导电材料为4mg/mL;所述的交联剂与温度响应的水凝胶前聚体的质量比为29:1;所述的引发剂的用量为相比于温度响应的水凝胶前聚体的1%v/v。
9.根据权利要求1所制备的温度响应的导电结构色薄膜作为监测外界温度的双信号传感器的应用,其特征在于:温度响应具体表现为调控温度控制纳米孔洞的收缩和扩张,实现结构色的变化和反馈导电数据。
CN202011370290.0A 2020-11-30 2020-11-30 一种温度响应的导电结构色薄膜的制备方法及应用 Pending CN112574444A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011370290.0A CN112574444A (zh) 2020-11-30 2020-11-30 一种温度响应的导电结构色薄膜的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011370290.0A CN112574444A (zh) 2020-11-30 2020-11-30 一种温度响应的导电结构色薄膜的制备方法及应用

Publications (1)

Publication Number Publication Date
CN112574444A true CN112574444A (zh) 2021-03-30

Family

ID=75126521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011370290.0A Pending CN112574444A (zh) 2020-11-30 2020-11-30 一种温度响应的导电结构色薄膜的制备方法及应用

Country Status (1)

Country Link
CN (1) CN112574444A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114213835A (zh) * 2021-12-31 2022-03-22 国科温州研究院(温州生物材料与工程研究所) 一种聚氨酯-聚吡咯复合导电结构色薄膜及其制备方法
CN114470316A (zh) * 2022-02-25 2022-05-13 南京鼓楼医院 一种用于诱导神经细胞的导电反蛋白石薄膜及其制备方法和应用
CN115433310A (zh) * 2022-09-05 2022-12-06 南京鼓楼医院 一种结构色柱状微马达的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107033598A (zh) * 2017-05-22 2017-08-11 河北师范大学 一种色彩保持稳定的结构色纳米复合薄膜
CN110330672A (zh) * 2019-06-03 2019-10-15 武汉理工大学 聚(n-异丙基丙烯酰胺)反蛋白石水凝胶的制备方法
CN110655624A (zh) * 2019-10-18 2020-01-07 东南大学 一种基于还原氧化石墨烯掺入的各向异性结构色水凝胶薄膜及其制备方法和应用
CN111393708A (zh) * 2020-04-17 2020-07-10 南京鼓楼医院 一种可拉伸的粘附性导电结构色水凝胶薄膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107033598A (zh) * 2017-05-22 2017-08-11 河北师范大学 一种色彩保持稳定的结构色纳米复合薄膜
CN110330672A (zh) * 2019-06-03 2019-10-15 武汉理工大学 聚(n-异丙基丙烯酰胺)反蛋白石水凝胶的制备方法
CN110655624A (zh) * 2019-10-18 2020-01-07 东南大学 一种基于还原氧化石墨烯掺入的各向异性结构色水凝胶薄膜及其制备方法和应用
CN111393708A (zh) * 2020-04-17 2020-07-10 南京鼓楼医院 一种可拉伸的粘附性导电结构色水凝胶薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZE ZHAO ET AL.: "Bioinspired Heterogeneous Structural Color Stripes from Capillaries", 《ADV. MATER.》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114213835A (zh) * 2021-12-31 2022-03-22 国科温州研究院(温州生物材料与工程研究所) 一种聚氨酯-聚吡咯复合导电结构色薄膜及其制备方法
CN114213835B (zh) * 2021-12-31 2023-12-01 国科温州研究院(温州生物材料与工程研究所) 一种聚氨酯-聚吡咯复合导电结构色薄膜及其制备方法
CN114470316A (zh) * 2022-02-25 2022-05-13 南京鼓楼医院 一种用于诱导神经细胞的导电反蛋白石薄膜及其制备方法和应用
CN115433310A (zh) * 2022-09-05 2022-12-06 南京鼓楼医院 一种结构色柱状微马达的制备方法及应用
CN115433310B (zh) * 2022-09-05 2024-01-26 南京鼓楼医院 一种结构色柱状微马达的制备方法及应用

Similar Documents

Publication Publication Date Title
CN112574444A (zh) 一种温度响应的导电结构色薄膜的制备方法及应用
Zhang et al. Bioinspired conductive cellulose liquid-crystal hydrogels as multifunctional electrical skins
CN111393708B (zh) 一种可拉伸的粘附性导电结构色水凝胶薄膜及其制备方法
CN112480445B (zh) 一种石墨烯结构色薄膜及其制备方法和应用
Velikov et al. Synthesis and characterization of monodisperse core− shell colloidal spheres of zinc sulfide and silica
CN110734527B (zh) 一种体温区内温致变色光子晶体膜及其制备方法
Shang et al. Thermally responsive photonic fibers consisting of chained nanoparticles
Zhu et al. Recent advances in photonic crystal with unique structural colors: A review
Xia et al. Responsive hydrogels with poly (N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocks
CN112592072B (zh) 一种具有宽温度诱导区间的响应性光子晶体薄膜及其制备方法
US10588217B2 (en) Preparation method of flexible transparent circuit
CN110423305B (zh) 一种制备Fe3O4@PVP@PNIPAM磁性光子晶体纳米链粒子的方法
CN110183703B (zh) 一种光子晶体复合型压力传感器及其制备方法和光学检测方法
Suzuki et al. Self-oscillating core/shell microgels: effect of a crosslinked nanoshell on autonomous oscillation of the core
CN112778465B (zh) 一种可逆变色的光子晶体水凝胶膜的制备方法
KR101650238B1 (ko) 온도에 따라 가역적으로 색 및 광신호 변화를 조절할 수 있는 플라즈몬 나노입자-고분자 하이드로젤 나노입자로 구성된 나노복합체
Guo et al. Jellyfish tentacle-inspired hydrogel microfibers implanted with discrete structural color microsphere tactile sensing units
KR100643211B1 (ko) 씨드 중합을 이용한 무기 나노 입자/고분자 코어-셀나노복합체의 제조 방법
Tang et al. Highly sensitive multiresponsive photonic hydrogels based on a crosslinked Acrylamide-N-isopropylacrylamide (AM-NIPAM) co-polymer containing Fe3O4@ C crystalline colloidal arrays
KR100958539B1 (ko) 계면 씨드 중합을 이용한 무기 나노입자/고분자 코어-셀나노복합체의 제조 방법
Wei et al. Ultra‐stretchable, fast self‐healing, conductive hydrogels for writing circuits and magnetic sensors
Yan et al. Thermal and stress tension dual-responsive photonic crystal nanocomposite hydrogels
CN111561971A (zh) 一种基于导电纤维素液晶水凝胶的多功能电子皮肤
Zhang et al. Preparation of thermosensitive PNIPAM microcontainers and a versatile method to fabricate PNIPAM shell on particles with silica surface
Sepúlveda et al. A Simple and Fast Compression‐Based Method to Fabricate Responsive Gold‐pNIPAM Hybrid Materials: From Thin Films to Anisotropic Microgels

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210330