CN112574237B - 一种g-C3N4/PTCDI-Br复合材料及其制备方法和应用 - Google Patents

一种g-C3N4/PTCDI-Br复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN112574237B
CN112574237B CN202011524990.0A CN202011524990A CN112574237B CN 112574237 B CN112574237 B CN 112574237B CN 202011524990 A CN202011524990 A CN 202011524990A CN 112574237 B CN112574237 B CN 112574237B
Authority
CN
China
Prior art keywords
ptcdi
composite material
preparation
drying
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011524990.0A
Other languages
English (en)
Other versions
CN112574237A (zh
Inventor
刘静
陈鹏飞
王勇士
朱桂才
曾忠诚
朱会彬
王小召
高永超
李善卿
赖建昌
李哲旭
高静
刘保丽
张红旗
延静垒
崔少芳
宋永乐
韩晓飞
孔令健
刘星影
马宝万
陈东升
陈圣亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Shengding Construction Group Co ltd
Original Assignee
Henan Shengding Construction Group Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Shengding Construction Group Co ltd filed Critical Henan Shengding Construction Group Co ltd
Publication of CN112574237A publication Critical patent/CN112574237A/zh
Application granted granted Critical
Publication of CN112574237B publication Critical patent/CN112574237B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及光催化材料技术领域,公开了一种g‑C3N4/PTCDI‑Br复合材料及其制备方法和应用。该催化剂制备方法是首先将3,4,9,10‑苝四酸二酐,浓硫酸,碘和溴进行反应,得到湾位溴代的PTCDI(PTCDI‑Br),其次将三聚氰胺高温煅烧得到g‑C3N4纳米片,最后将PTCDI‑Br与g‑C3N4进行自主装得到复合材料g‑C3N4/PTCDI‑Br。本发明提供的复合材料制备工艺简单,且性能稳定,对有机物污染物具有非常优秀的降解能力,是一类极具开发潜力而且市场前景广阔的环保净化材料。

Description

一种g-C3N4/PTCDI-Br复合材料及其制备方法和应用
技术领域
本发明属于复合催化剂领域,涉及光催化降解有机污染物的催化剂,特别是指一种g-C3N4/PTCDI-Br复合材料及其制备方法和应用。
背景技术
氯酚类化合物是一类典型的难降解有机污染物,是许多工业合成的中间产物或作为农药,杀菌剂,制药业的原料,其大量使用使得大量氯酚类化合物进入到环境,目前在废弃物,污泥,沉积物,土壤,地下水和雨水中均已检测到氯酚的存在,给自然环境造成了严重的危害。科学研究还发现,很多氯酚类化合物具有致癌,致畸,致突变效应,世界上许多国家都已将其列为优先控制污染物。因此,如何减轻环境中氯酚类污染物的影响日益受到重视。
光催化技术是一种新型高效节能环保技术,利用光辐射在反应体系中产生活泼的自由基,通过与有机污染物进行加合、取代及电子转移等过程将有机污染物分解为无毒的无机物,反应条件温和、无二次污染、是治理有机污染物的研究热点。传统的无机半导体光催化剂存在成本高、环境毒性大、结构可控性差、效率低等缺点,极大地限制了它们的实际应用。因此,开发新型高校的光催化剂材料具有十分重要的意义。
有机半导体材料因其光电性能可调、结构灵活多样、低成本和元素资源丰富等优点受到广泛关注。PTCDI是一种典型的p型有机半导体,其优越的光电性能引起了人们的广泛关注。研究表明湾位卤代PTCDI可以改变其光学性质和电子形态,促进对可见光的吸收和电子电子转移能力。另一方面, g-C3N4是一种典型的n型半导体,其带隙适中(2.7 eV)、光电化学/热性能好、环境友好,在光催化领域极具吸引力。通过与n型半导体g-C3N4构建p-n异质结形成内建电场进一步促进光生电子空穴对的分离,从而改善PTCDI光催化性能。
发明内容
本发明提出一种g-C3N4/PTCDI-Br复合材料及其制备方法和应用,解决了利用PTCDI制备光催化剂中的技术问题。
本发明的技术方案是这样实现的:
一种g-C3N4/PTCDI-Br复合材料,其结构式为:
Figure DEST_PATH_IMAGE001
上述的g-C3N4/PTCDI-Br复合材料的制备方法,步骤如下:
(1)将3, 4, 9, 10-苝四酸二酐加入到硫酸中,于40-80 ℃搅拌反应,得体系Ⅰ,然后向体系Ⅰ中加入碘,于30-80 ℃搅拌反应,得体系Ⅱ,再向体系Ⅱ中加入溴水,于70-120℃搅拌反应,得体系Ⅲ;
(2)步骤(1)中的体系Ⅲ冷却至40-70 ℃后,添加至去离子水中,静置一段时间得暗红色沉淀物;
(3)将步骤(2)的暗红色沉淀物离心分离,并用去离子水洗涤至上清液为中性,所得固体,经干燥处理,即得湾位溴代的苝四酸二酐;
(4)将三聚氰胺置于有盖的坩埚中,升温至400-700 ℃反应一段时间,反应体系经去离子水清洗、干燥得g-C3N4
(5)将步骤(3)的湾位溴代的苝四酸二酐、步骤(4)的g-C3N4和咪唑混合,在100-150℃惰性气体保护下反应,得粗产物;
(6)步骤(5)的粗产物经洗涤后收集固体,分散于10 wt%碳酸钾溶液中100-150℃回流1 h,再依次使用甲醇、盐酸和去离子水洗涤至中性后,干燥即得g-C3N4/PTCDI-Br复合材料。
优选的,所述步骤(1)中,3, 4, 9, 10-苝四酸二酐和硫酸的质量比为 1: (10-25),体系Ⅰ和碘的质量比为1:(0.02-0.1),体系Ⅱ和溴水的质量比为1:(0.2-1);其中,40-80 ℃搅拌反应的时间为4-6 h,30-80 ℃搅拌反应3-8 h,70-120 ℃搅拌反应20-26 h。
优选的,所述步骤(2)中,静置的时间为10-15 h。
优选的,所述步骤(3)中,干燥处理的温度为50-80 ℃、时间为8-16 h。
优选的,所述步骤(4)中,湾位溴代的苝四酸二酐、g-C3N4和咪唑的质量比为10:(0.5-1.5):4,在100-150℃惰性气体保护下反应的时间为3-7h。
优选的,所述步骤(5)中,洗涤溶液为2 mol/L的盐酸和乙醇以5:3的体积比混合。
优选的,所述步骤(6)中,回流的条件为80-120 ℃回流1-4 h;干燥的条件为50-100 ℃干燥8-16 h。
上述g-C3N4/PTCDI-Br复合材料的应用为光催化降解4-氯酚,g-C3N4/PTCDI-Br复合材料用量为10-100 mg,目标污染液浓度为5-100 mg/L,体积为100-300 mL,所用光源为氙灯,光照波长为200-800 nm。
本发明具有以下有益效果:
有机半导体PTCDI光催化降解氯酚需要解决两大问题,即光生电子空穴容易复合和光催化剂对阳光利用率低。我们通过对PTCDI进行湾位溴取代,组装在g-C3N4纳米片上来解决这两个问题。如图1所示,通过Br的取代,g-C3N4/PTCDI-Br在整个可见波长范围内的吸收都有明显的增强。同时如图2所示,Br取代使PTCDI的导带(CB)更接近g-C3N4的价带(VB),从而降低了PTCDI向g-C3N4的界面电子传递电阻。更重要的是如图3所示,PTCDI的Br取代增加了g-C3N4与PTCDI-Br之间的内部电场,促进了界面电荷转移,为具有高光催化性能的PTCDI基催化剂的设计提供新的可能性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明g-C3N4/PTCDI-Br和g-C3N4/PTCDI,g-C3N4的紫外-可见吸收光谱。
图2为本发明g-C3N4/PTCDI-Br和g-C3N4/PTCDI导带和价带示意图。
图3为本发明g-C3N4/PTCDI-Br和g-C3N4/PTCDI的电荷分布图。
图4为本发明g-C3N4/PTCDI-Br的透射电镜图。
图5为本发明g-C3N4/PTCDI-Br在氙灯照射下的降解效率图,其中催化剂用量为50mg,4-氯酚浓度50 mg/L。
图6为本发明g-C3N4/PTCDI-Br降解4-氯酚的循环实验图。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例的g-C3N4/PTCDI-Br复合材料的制备方法,步骤如下:
(1)将3, 4, 9, 10-苝四酸二酐加入到装有硫酸的圆底烧瓶中,55 ℃搅拌5h,3,4, 9, 10-苝四酸二酐和硫酸质量比为 1: 15;
(2)反应结束后,将质量比为0.03的碘加入到上述步骤(1)的体系中,60 ℃搅拌6h;
(3)反应完成后,将质量比为0.3的溴水加入到上述步骤(2)的体系中,80 ℃搅拌24h;
(4)上述步骤(3)的反应体系自然冷却至50 ℃,添加到500 mL的去离子水中,保持12h,得到暗红色沉淀物;
(5)对上述步骤(4)中的暗红色沉淀进行离心分离,用去离子水洗涤至上清液为中性,所得固体在60 ℃干燥14h,得到湾位溴代的苝四酸二酐;
(6)将三聚氰胺置于有盖的坩埚中,在马弗炉以20 ℃/min的加热速度加热到550℃,反应4h;
(7)用去离子水对步骤(6)的固体用去离子水进行清洗,然后干燥,干燥温度为80℃,干燥时间为12h,得到黄色g-C3N4;
(8)将质量比为10: 1.2 :4的湾位溴代的苝四酸二酐、g-C3N4和咪唑相混合,在140℃惰性气体保护下反应5h;
(9)将摩尔浓度为2 mol/L的盐酸和乙醇以5:3的体积比进行混合,用混合溶液洗涤上述步骤(8)的产品,收集固体;
(10)上述步骤(9)中收集的固体分散于50 mL,质量分数为10%的碳酸钾溶液中,100 ℃回流2h;
(11)用10%的碳酸钾溶液和甲醇对上述步骤(10)中的固体进行洗涤;
(12)用2 mol/L的盐酸和去离子水对上述步骤(11)中的固体洗涤至中性,80 ℃干燥10h,即得终产物g-C3N4/PTCDI-Br,其透射电镜图如图1所示,图像清晰地展示了g-C3N4的纳米片特征,以及明显的PTCDI-Br纳米带的形成。
本实施例制备的g-C3N4/PTCDI-Br与g-C3N4/PTCDI、 g-C3N4的紫外-可见吸收光谱图如图2所示,由图可知g-C3N4只能吸收500 nm以下的光。对于g-C3N4/PTCDI,在500 -600nm之间有两个PTCDI的特征吸收带。Br取代后,g-C3N4/PTCDI-Br在整个可见波长范围内的吸收都有明显的增强,可归因于Br的取代显著提高了样品的光学性能。
本实施例制备的g-C3N4/PTCDI-Br与g-C3N4/PTCDI的电荷分布图如图3所示,由图3可知在g-C3N4/PTCDI中,PTCDI和g-C3N4的电荷量分别为-0.050和0.292,说明从g-C3N4到PTCDI之间形成了一个内建电场。同时,O=C-N-C=O N原子与三嗪碳形成了g-C3N4与PTCDI界面。这两个原子的电荷数分别为-0.347和0.296,说明g-C3N4与PTCDI之间形成了界面电场。Br取代后,从g-C3N4到PTCDI-Br的电场方向保持不变。而g-C3N4与PTCDI之间的电荷差从0.242 eV增加到0.374 eV,界面原子间的电荷差从0.643 eV增加到0.689 eV,证实了g-C3N4/PTCDI-Br与g-C3N4/PTCDI相比具有更强的电场。较强电场的存在更有利于界面电荷转移,从而促进光催化性能的提高。
实施例2
本实施例的g-C3N4/PTCDI-Br复合材料的制备方法,步骤如下:
(1)将3, 4, 9, 10-苝四酸二酐加入到装有硫酸的圆底烧瓶中,50 ℃搅拌4h,3,4, 9, 10-苝四酸二酐和硫酸质量比为 1: 10;
(2)反应结束后,将质量比为0.02的碘加入到上述步骤(1)的体系中,60 ℃搅拌3h;
(3)反应完成后,将质量比为0.2的溴水加入到上述步骤(2)的体系中,70 ℃搅拌20h;
(4)上述步骤(3)的反应体系自然冷却至40 ℃,添加到200 mL的去离子水中,保持10h,得到暗红色沉淀物;
(5)对上述步骤(4)中的暗红色沉淀进行离心分离,用去离子水洗涤至上清液为中性,所得固体在50 ℃干燥8h,得到湾位溴代的苝四酸二酐;
(6)将三聚氰胺置于有盖的坩埚中,在马弗炉以20 ℃/min的加热速度加热到400℃,反应2h;
(7)用去离子水对步骤(6)的固体用去离子水进行清洗,然后干燥,干燥温度为50℃,干燥时间为8h,得到黄色g-C3N4
(8)将质量比为10: 0.5 :4的湾位溴代的苝四酸二酐、g-C3N4和咪唑相混合,在100℃惰性气体保护下反应3h;
(9)将摩尔浓度为2 mol/L的盐酸和乙醇以5:3的体积比进行混合,用混合溶液洗涤上述步骤(8)的产品,收集固体;
(10)上述步骤(9)中收集的固体分散于30 mL,质量分数为5%的碳酸钾溶液中,80℃回流1h;
(11)用10%的碳酸钾溶液和甲醇对上述步骤(10)中的固体进行洗涤;
(12)用2 mol/L的盐酸和去离子水对上述步骤(11)中的固体洗涤至中性,50 ℃干燥8h,即得终产物g-C3N4/PTCDI-Br。
实施例3
本实施例的g-C3N4/PTCDI-Br复合材料的制备方法,步骤如下:
(1)将3, 4, 9, 10-苝四酸二酐加入到装有硫酸的圆底烧瓶中,80 ℃搅拌6h,3,4, 9, 10-苝四酸二酐和硫酸质量比为 1: 25;
(2)反应结束后,将质量比为0.1的碘加入到上述步骤(1)的体系中,60 ℃搅拌6h;
(3)反应完成后,将质量比为0.3的溴水加入到上述步骤(2)的体系中,80 ℃搅拌26h;
(4)上述步骤(3)的反应体系自然冷却至70 ℃,添加到1000 mL的去离子水中,保持15h,得到暗红色沉淀物;
(5)对上述步骤(4)中的暗红色沉淀进行离心分离,用去离子水洗涤至上清液为中性,所得固体在80 ℃干燥16h,得到湾位溴代的苝四酸二酐;
(6)将三聚氰胺置于有盖的坩埚中,在马弗炉以20 ℃/min的加热速度加热到550℃,反应7h;
(7)用去离子水对步骤(6)的固体用去离子水进行清洗,然后干燥,干燥温度为100℃,干燥时间为16h,得到黄色g-C3N4
(8)将质量比为10: 1.5 :4的湾位溴代的苝四酸二酐、g-C3N4和咪唑相混合,在140℃惰性气体保护下反应5h;
(9)将摩尔浓度为2 mol/L的盐酸和乙醇以5:3的体积比进行混合,用混合溶液洗涤上述步骤(8)的产品,收集固体;
(10)上述步骤(9)中收集的固体分散于70 mL,质量分数为20%的碳酸钾溶液中,120 ℃回流4h;
(11)用20%的碳酸钾溶液和甲醇对上述步骤(10)中的固体进行洗涤;
(12)用2 mol/L的盐酸和去离子水对上述步骤(11)中的固体洗涤至中性,100 ℃干燥16 h,即得终产物g-C3N4/PTCDI-Br。
实施例4
本实施例的g-C3N4/PTCDI-Br复合材料的制备方法,步骤如下:
(1)将3, 4, 9, 10-苝四酸二酐加入到装有硫酸的圆底烧瓶中,60 ℃搅拌5.5h,3, 4, 9, 10-苝四酸二酐和硫酸质量比为 1: 20;
(2)反应结束后,将质量比为0.5的碘加入到上述步骤(1)的体系中,60 ℃搅拌5h;
(3)反应完成后,将质量比为0.6的溴水加入到上述步骤(2)的体系中,100 ℃搅拌22h;
(4)上述步骤(3)的反应体系自然冷却至60 ℃,添加到800 mL的去离子水中,保持14h,得到暗红色沉淀物;
(5)对上述步骤(4)中的暗红色沉淀进行离心分离,用去离子水洗涤至上清液为中性,所得固体在70 ℃干燥14 h,得到湾位溴代的苝四酸二酐;
(6)将三聚氰胺置于有盖的坩埚中,在马弗炉以20 ℃/min的加热速度加热到600℃,反应4h;
(7)用去离子水对步骤(6)的固体用去离子水进行清洗,然后干燥,干燥温度为80℃,干燥时间为12h,得到黄色g-C3N4;
(8)将质量比为10: 1.4 :4的湾位溴代的苝四酸二酐、g-C3N4和咪唑相混合,在140℃惰性气体保护下反应5h;
(9)将摩尔浓度为2 mol/L的盐酸和乙醇以5:3的体积比进行混合,用混合溶液洗涤上述步骤(8)的产品,收集固体;
(10)上述步骤(9)中收集的固体分散于40 mL,质量分数为15%的碳酸钾溶液中,90℃回流3h;
(11)用18%的碳酸钾溶液和甲醇对上述步骤(10)中的固体进行洗涤;
(12)用2 mol/L的盐酸和去离子水对上述步骤(11)中的固体洗涤至中性,90 ℃干燥14h,即得终产物g-C3N4/PTCDI-Br。
实施效果例
以4-氯酚为目标污染物,利用实施例1得到的g-C3N4/PTCDI-Br进行光催化降解污染物的活性测试:
(1) 将4-氯酚配制成浓度为1g/L的甲醇溶液,在溶液中加水稀释至浓度为20 mg/L,然后置于超声波中处理使其成为均一稳定的溶液;
(2) 在避光条件下,将50 mg复合材料g-C3N4/PTCDI-Br加入100 mL步骤(1)得到的溶液中,搅拌20 min,移取5 mL置于离心管内,避光保存;
(3) 将步骤(2)中的剩余溶液体系在发光的氙灯下照射,剩余溶液体系距氙灯出口13 cm,每隔10 min取样5 mL;
(4) 将取出的样品离心后,取上清液测试紫外可见吸收光谱和离子色谱,分析污染物的降解效率及降解产物。
结果如图5所示,由图4可知可以看出,在没有光催化剂的情况下,4-CP没有明显的降解。在60 min内,g-C3N4、g-C3N4/PTCDI和g-C3N4/PTCDI-Br的降解率分别为15%、40%和100%。催化性能的提高主要得益于异质结的构建和湾位溴的取代,Br取代使PTCDI的导带更接近g-C3N4的价带,从而降低了PTCDI向g-C3N4的界面电子传递电阻。更重要的是,Br的取代增加了g-C3N4与PTCDI-Br之间的内部电场,促进了界面电荷转移。
以4-氯酚为目标污染物,利用实施例1得到的g-C3N4/PTCDI-Br进行光催化降解污染物的稳定性测试:
(1) 将4-氯酚配制成浓度为1g/L的甲醇溶液,在溶液中加水稀释至浓度为20 mg/L,然后置于超声波中处理使其成为均一稳定的溶液;
(2) 在避光条件下,将50 mg复合材料g-C3N4/PTCDI-Br加入100 mL步骤(1)得到的溶液中,搅拌20 min,移取5 mL置于离心管内,避光保存;
(3) 将步骤(2)中的剩余溶液体系在发光的氙灯下照射,剩余溶液体系距氙灯出口13 cm,每隔10 min取样5 mL;
(4) 将取出的样品离心后,取上清液测试紫外可见吸收光谱和离子色谱,分析污染物的降解效率;
(5) 离心收集步骤(3)和步骤(4)固体催化剂,将催化剂加入100 mL步骤(1)得到的溶液中,搅拌20 min,移取5 mL置于离心管内,避光保存,重复步骤(3)和步骤(4);
(6) 离心收集步骤(5)的固体催化剂,将催化剂加入100 mL步骤(1)得到的溶液中,搅拌20 min,移取5 mL置于离心管内,避光保存,重复步骤(3)和步骤(4);
(7) 离心收集步骤(6)的固体催化剂,将催化剂加入100 mL步骤(1)得到的溶液中,搅拌20 min,移取5 mL置于离心管内,避光保存,重复步骤(3)和步骤(4);
图6为g-C3N4/PTCDI-Br降解4-氯酚的循环实验图,由图可知通过4次循环光催化降解,降解率基本保持不变说明g-C3N4/PTCDI-Br样品稳定性良好。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种g-C3N4/PTCDI-Br复合材料的制备方法,其特征在于,步骤如下:
(1)将3, 4, 9, 10-苝四酸二酐加入到硫酸中,于40-80 ℃搅拌反应,得体系Ⅰ,然后向体系Ⅰ中加入碘,于30-80℃搅拌反应,得体系Ⅱ,再向体系Ⅱ中加入溴水,于70-120 ℃搅拌反应,得体系Ⅲ;
(2)步骤(1)中的体系Ⅲ冷却至40-70℃后,添加至去离子水中,静置一段时间得暗红色沉淀物;
(3)将步骤(2)的暗红色沉淀物离心分离,并用去离子水洗涤至上清液为中性,所得固体,经干燥处理,即得湾位溴代的苝四酸二酐;
(4)将三聚氰胺置于有盖的坩埚中,升温至400-700 ℃反应一段时间,反应体系经去离子水清洗、干燥得g-C3N4
(5)将步骤(3)的湾位溴代的苝四酸二酐、步骤(4)的g-C3N4和咪唑混合,在100-150 ℃惰性气体保护下反应,得粗产物;
(6)步骤(5)的粗产物经洗涤后收集固体,分散于10 wt%碳酸钾溶液中100-150 ℃回流1 h,再依次使用甲醇、盐酸和去离子水洗涤至中性后,干燥即得g-C3N4/PTCDI-Br复合材料。
2.根据权利要求1所述的g-C3N4/PTCDI-Br复合材料的制备方法,其特征在于:所述步骤(1)中,3, 4, 9, 10-苝四酸二酐和硫酸的质量比为 1: (10-25),体系Ⅰ和碘的质量比为1:(0.02-0.1),体系Ⅱ和溴水的质量比为1:(0.2-1);其中,40-80 ℃搅拌反应的时间为4-6h,30-80 ℃搅拌反应3-8 h,70-120 ℃搅拌反应20-26 h。
3.根据权利要求1所述的g-C3N4/PTCDI-Br复合材料的制备方法,其特征在于:所述步骤(2)中,静置的时间为10-15h。
4.根据权利要求1所述的g-C3N4/PTCDI-Br复合材料的制备方法,其特征在于:所述步骤(3)中,干燥处理的温度为50-80 ℃、时间为8-16 h。
5.根据权利要求1所述的g-C3N4/PTCDI-Br复合材料的制备方法,其特征在于:所述步骤(5)中,湾位溴代的苝四酸二酐、g-C3N4和咪唑的质量比为10:(0.5-1.5):4,在100-150 ℃惰性气体保护下反应的时间为3-7 h。
6.根据权利要求1所述的g-C3N4/PTCDI-Br复合材料的制备方法,其特征在于:所述步骤(6)中,洗涤溶液为2mol/L的盐酸和乙醇以5:3的体积比混合。
7.根据权利要求1所述的g-C3N4/PTCDI-Br复合材料的制备方法,其特征在于:所述步骤(6)中,干燥的条件为50-100 ℃干燥8-16 h。
8.权利要求1-7任意一项方法所制备的g-C3N4/PTCDI-Br复合材料在光催化降解4-氯酚中的应用。
9.根据权利要求8所述的应用,其特征在于:所述g-C3N4/PTCDI-Br复合材料用量为10-100 mg,目标污染液浓度为5-100 mg/L,体积为100-300 mL,所用光源为氙灯,光照波长为200-800nm。
CN202011524990.0A 2020-12-16 2020-12-22 一种g-C3N4/PTCDI-Br复合材料及其制备方法和应用 Active CN112574237B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2020114895050 2020-12-16
CN202011489505 2020-12-16

Publications (2)

Publication Number Publication Date
CN112574237A CN112574237A (zh) 2021-03-30
CN112574237B true CN112574237B (zh) 2022-06-17

Family

ID=75136604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011524990.0A Active CN112574237B (zh) 2020-12-16 2020-12-22 一种g-C3N4/PTCDI-Br复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112574237B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621255B (zh) * 2022-01-27 2023-06-06 武汉理工大学 一种PTCDI2-2Se化合物、其制备方法及其在钾离子电池中的应用
CN114669315B (zh) * 2022-03-25 2023-12-19 陕西科技大学 用于光催化产过氧化氢的全有机复合光催化材料的制备方法
CN115178294A (zh) * 2022-08-08 2022-10-14 江苏大学 一种PDI功能化3D g-C3N4光催化剂的制备方法及其用途
CN116496300A (zh) * 2023-04-07 2023-07-28 五邑大学 一种光催化复合材料及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4026072A (en) * 1971-04-02 1973-09-27 Badische Antun-& Soda-Fabrik Aktiengesellschaft A dye ofthe perylenetetracarboxylic acid diimide series
CN104557931A (zh) * 2013-10-25 2015-04-29 济南大学 N-吡啶基苝四甲酰二亚胺的制备及其光催化制氢性能

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11813596B2 (en) * 2017-10-27 2023-11-14 Max Planck Gesellschaft zur Förderung der Wissenschaften e.V. Photocatalytic system and applications thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4026072A (en) * 1971-04-02 1973-09-27 Badische Antun-& Soda-Fabrik Aktiengesellschaft A dye ofthe perylenetetracarboxylic acid diimide series
CN104557931A (zh) * 2013-10-25 2015-04-29 济南大学 N-吡啶基苝四甲酰二亚胺的制备及其光催化制氢性能

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Interchromophore Rotation-Related Ultrafast Charge Separation at Excited States in Head-to-Tail Linked Perylene Diimide Dyads;Shaomao Fang et al.;《J.Phys.Chem.C》;20190903;第123卷;第92-102页 *
含苝聚合物功能材料的研究进展》;徐业伟 等;《材料导报A:综述篇》;20120930;第26卷(第9期);第23306-23311页 *

Also Published As

Publication number Publication date
CN112574237A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
CN112574237B (zh) 一种g-C3N4/PTCDI-Br复合材料及其制备方法和应用
Zhu et al. High visible light response Z-scheme Ag3PO4/g-C3N4/ZnO composite photocatalyst for efficient degradation of tetracycline hydrochloride: preparation, properties and mechanism
Shi et al. Construction of CuBi2O4/Bi2MoO6 pn heterojunction with nanosheets-on-microrods structure for improved photocatalytic activity towards broad-spectrum antibiotics degradation
Shen et al. Accelerating photocatalytic hydrogen evolution and pollutant degradation by coupling organic co-catalysts with TiO2
Zada et al. Suitable energy platform significantly improves charge separation of g-C3N4 for CO2 reduction and pollutant oxidation under visible-light
Zheng et al. A novel synthetic carbon and oxygen doped stalactite-like g-C3N4 for broad-spectrum-driven indometacin degradation
Su et al. Decoration of TiO 2/gC 3 N 4 Z-scheme by carbon dots as a novel photocatalyst with improved visible-light photocatalytic performance for the degradation of enrofloxacin
Liang et al. The enhanced photocatalytic performance toward carbamazepine by nitrogen-doped carbon dots decorated on BiOBr/CeO2: mechanism insight and degradation pathways
Zhang et al. Nitrogen doped carbon quantum dots mediated silver phosphate/bismuth vanadate Z-scheme photocatalyst for enhanced antibiotic degradation
Bao et al. Novel Z-scheme BiOBr/reduced graphene oxide/protonated g-C3N4 photocatalyst: synthesis, characterization, visible light photocatalytic activity and mechanism
Wang et al. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation
Yan et al. Enhanced photocatalytic activity of Cu2O/g-C3N4 heterojunction coupled with reduced graphene oxide three-dimensional aerogel photocatalysis
CN111001439B (zh) 一种苝酰亚胺及其复合光催化材料、制备方法与在去除水体有机污染物中的应用
Ren et al. Optimizing the crystallization process of conjugated polymer photocatalysts to promote electron transfer and molecular oxygen activation
CN104525226B (zh) 一种光催化剂Bi4O5Br2的合成及应用方法
CN108855140B (zh) 一种CuS/Bi2WO6异质结光催化剂及其制备方法和应用
CN106914264A (zh) 复合可见光催化剂的制备方法
CN105536819B (zh) 一种石墨烯/硫化锑复合光催化剂的制备方法
CN109201115B (zh) 一种光催化产氢催化剂及其制备方法和用途
CN106944074A (zh) 一种可见光响应型复合光催化剂及其制备方法和应用
Ma et al. Oxygen defects-induced charge transfer in Bi7O9I3 for enhancing oxygen activation and visible-light degradation of BPA
Wang et al. ZnO nanorod/nickel phthalocyanine hierarchical hetero-nanostructures with superior visible light photocatalytic properties assisted by H 2 O 2
Shen et al. Photoinduced defect engineering: enhanced photocatalytic performance of 3D BiOCl nanoclusters with abundant oxygen vacancies
Zhou et al. Enhanced photocatalytic degradation of ciprofloxacin over Bi2MoO6/g-C3N4/BiFeO3 heterojunction photocatalyst under visible light irradiation
Han et al. A π-π stacking perylene imide/Bi2WO6 hybrid with dual transfer approach for enhanced photocatalytic degradation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant