CN112574190A - Method for synthesizing chlorantraniliprole - Google Patents

Method for synthesizing chlorantraniliprole Download PDF

Info

Publication number
CN112574190A
CN112574190A CN202011517104.1A CN202011517104A CN112574190A CN 112574190 A CN112574190 A CN 112574190A CN 202011517104 A CN202011517104 A CN 202011517104A CN 112574190 A CN112574190 A CN 112574190A
Authority
CN
China
Prior art keywords
chlorantraniliprole
chloro
synthesizing
steps
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011517104.1A
Other languages
Chinese (zh)
Other versions
CN112574190B (en
Inventor
吴锋
黄志红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Kuaida Agrochemical Co ltd
Original Assignee
Jiangsu Kuaida Agrochemical Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Kuaida Agrochemical Co ltd filed Critical Jiangsu Kuaida Agrochemical Co ltd
Priority to CN202011517104.1A priority Critical patent/CN112574190B/en
Publication of CN112574190A publication Critical patent/CN112574190A/en
Application granted granted Critical
Publication of CN112574190B publication Critical patent/CN112574190B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The invention discloses a synthesis method of chlorantraniliprole, which comprises the steps of dissolving phosgene in a solvent to form a material A, 3-bromo-1- (3-chloro-2-pyridyl) -1H-pyrazole-5-carboxylic acid and 2-amino-5-chloro-3-methylbenzoic acid are taken as raw materials, mixed in the presence of alkali and a solvent, and then the material A is added to react to obtain 2- (3-bromo-1- (3-chloro-2-pyridyl) -1H-5-pyrazolyl) -6-chloro-8-methyl-4H-benzo [ d ] [1,3] oxazine-4-ketone (oxazinone for short), and the oxazinone is not purified and directly reacts with monomethylamine to synthesize the chlorantraniliprole. The synthesis method has the advantages of low raw material cost, high reaction activity, simple post-treatment process and no residue; the reaction synthesis condition is mild, the generation of three wastes is less, special equipment is not needed, and the industrial production is easy to realize.

Description

Method for synthesizing chlorantraniliprole
Technical Field
The invention relates to the technical field of synthetic processes of pesticides, and particularly relates to a legal method of chlorantraniliprole.
Background
Chlorantraniliprole (Chlorantraniliprole) is a novel low-toxicity and high-efficiency bisamide insecticide developed by dupont in the united states, and has the trade name: kangwan. The compound has a brand new action mechanism, enables a receptor channel to be opened abnormally for a long time by activating a ryanodine receptor, causes unlimited calcium ion release, calcium reservoir failure, muscle paralysis and final death, and has the advantages of good activity, long lasting period and the like. Chlorantraniliprole has a wide insecticidal spectrum, can be used for various crops, has low toxicity and environmental biosafety, is used as the first insecticide in the world with the sale rate of $ 13.65 hundred million in 2016, and is tamped in the lead army position of the global insecticide by the third insecticide for rice.
At present, key intermediates for synthesizing chlorantraniliprole are mainly as follows: 2-amino-5-chloro-3-methylbenzoic acid having an aromatic ring structure and 3-bromo-1- (3-chloro-2-pyridyl) -1H-pyrazole-5-carboxylic acid having a pyrazole ring structure.
The synthesis method of chlorantraniliprole which can be found mainly comprises 2 methods; the method comprises the following steps: patent WO2006062978 discloses a method for synthesizing chlorantraniliprole by performing a cyclization reaction on 2-amino-5-chloro-3-methylbenzoic acid and phosgene to obtain 6-chloro-8-methyl-1H-benzo [ d ] [1,3] oxazine-2, 4-diketone, performing ammonolysis in a methylamine aqueous solution to obtain 2-amino-5-chloro-N, 3-dimethylbenzamide, and then reacting with 3-bromo-1- (3-chloro-2-pyridyl) -1H-pyrazole-5-carboxylic acid under the action of amidation reagents of methanesulfonyl chloride and acid-binding agent 3-methylpyridine.
Figure BDA0002847749040000011
The method 2 comprises the following steps: in patent WO2003015519, 2-amino-5-chloro-3-methylbenzoic acid reacts with 3-bromo-1- (3-chloro-2-pyridyl) -1H-pyrazole-5-carboxylic acid under the action of a catalytic reagent of methanesulfonyl chloride and an acid-binding agent of 3-methylpyridine to generate 2- (3-bromo-1- (3-chloro-2-pyridyl) -1H-5-pyrazolyl) -6-chloro-8-methyl-4H-benzo [ d ] [1,3] oxazine-4-ketone, and finally aminolysis is carried out in a methylamine aqueous solution to synthesize chlorantraniliprole.
Figure BDA0002847749040000021
Of the two synthetic methods, the synthetic steps of the method 1 are more than those of the method 2 by one step of reaction, and the reaction yield is slightly lower. In both methods, methanesulfonyl chloride and 3-methylpyridine are used for reaction, the using amount is more than 1 time equivalent, methanesulfonyl chloride is expensive, methanesulfonic acid is generated in the reaction process, atom economy is poor, the treatment process after the reaction is complex, and a large amount of three wastes are generated. Therefore, the method has positive significance for seeking a synthetic route of chlorantraniliprole with strong process feasibility and good economy.
Disclosure of Invention
The invention provides a synthesis method of chlorantraniliprole, which has the advantages of low raw material cost, simple and convenient post-treatment process, mild reaction synthesis conditions and less generation of three wastes.
The technical solution of the invention is as follows:
a synthesis method of chlorantraniliprole comprises the steps of dissolving phosgene in a solvent to form a material A, mixing 3-bromo-1- (3-chloro-2-pyridyl) -1H-pyrazole-5-carboxylic acid and 2-amino-5-chloro-3-methylbenzoic acid serving as raw materials in the presence of alkali and the solvent, adding the material A into the mixture to react to obtain 2- (3-bromo-1- (3-chloro-2-pyridyl) -1H-5-pyrazolyl) -6-chloro-8-methyl-4H-benzo [ d ] [1,3] oxazine-4-one (oxazinone for short), and reacting the oxazinone with monomethylamine to synthesize the chlorantraniliprole.
The method specifically comprises the following steps:
Figure BDA0002847749040000031
dissolving a compound III in a solvent to form a material A; mixing alkali, a solvent, a compound I and a compound II to form a material B, adding the material A into the material B, and reacting to obtain a chlorantraniliprole precursor (a compound shown in a formula IV); reacting the formula IV with a monomethylamine aqueous solution to synthesize chlorantraniliprole.
The inventor screens the dropping mode, and finds that the reaction effect obtained by dropping the material A into the material B for mixing reaction is optimal.
The base is an organic base.
The base is selected from one or more of pyridine or picoline, preferably 2-picoline, 3-picoline or 4-picoline.
The solvent is one or more selected from dichloroethane, toluene, xylene, tetrahydrofuran and acetonitrile, preferably acetonitrile.
The reaction temperature of the reaction is-10 to 30 ℃, preferably 0 to 10 ℃, and more preferably 0 to 5 ℃.
The molar ratio of the compound of the formula I to the compound of the formula III is 0.9-2.5: 1, preferably 1-2: 1, more preferably 1.5: 1.
in the process of synthesizing the chlorantraniliprole precursor compound shown as the formula IV, phosgene is used as a ring closing reagent, and is decomposed into carbon dioxide in the reaction process, so that the carbon dioxide is very easily discharged out of a reaction system in a gas form; excess phosgene was removed by nitrogen sparging. In the seen patent method for synthesizing chlorantraniliprole, the methanesulfonyl chloride is reacted to generate methanesulfonic acid residue in a post-treated water phase, so that a large amount of acidic wastewater is generated, and the treatment cost of the wastewater is increased; moreover, the molecular weight of the methanesulfonyl chloride is larger than that of phosgene, the market price is several times of that of phosgene, and the methanesulfonyl chloride has no advantage in cost.
The present invention will be further described with reference to the following examples.
Detailed Description
Example 1:
step A Synthesis of 2- (3-bromo-1- (3-chloro-2-pyridinyl) -1H-5-pyrazolyl) -6-chloro-8-methyl-4H-benzo [ d ] [1,3] oxazin-4-one
And (3) arranging a condenser tube in a 100ml three-necked bottle, adding 45ml of acetonitrile, cooling to 0 ℃, introducing 10g of phosgene, and keeping the temperature at 0-5 ℃ for later use. Adding 50ml of acetonitrile, 9g of 3-methylpyridine, 15g of 3-bromo-1- (3-chloro-2-pyridyl) -1H-pyrazole-5-carboxylic acid and 9.2g of 2-amino-5-chloro-3-methylbenzoic acid into a 250ml four-neck flask, cooling to 0 ℃ under stirring, beginning to dropwise add a phosgene acetonitrile solution, controlling the temperature of reaction to be 0-5 ℃, keeping the temperature for reaction for 1H at room temperature after 3H dropwise addition is finished, obtaining yellow suspension, bubbling for 1H with nitrogen, then carrying out suction filtration to obtain a yellow wet product, and directly using the obtained product for next synthesis after impurity removal.
Step B, synthesizing chlorantraniliprole
Adding 70ml of acetonitrile, the yellow wet product synthesized in the previous step and 5g of 40% monomethylamine aqueous solution into a 250ml four-neck bottle, heating to 25-30 ℃ under stirring, reacting for 2 hours, stopping the reaction, carrying out suction filtration, washing with 50ml of water, and drying to obtain 19.5g of a target product, wherein the yield is 81.4% and the purity of liquid chromatography is 96.4%.
Examples 2 to 4:
according to the method of step A, B in example 1, the solvent used in step A was changed, 45ml of dissolved phosgene was added, 50ml of mixed organic base, 3-bromo-1- (3-chloro-2-pyridyl) -1H-pyrazole-5-carboxylic acid and 2-amino-5-chloro-3-methylbenzoic acid were added as the solvent (same solvent as the dissolved phosgene), and the reaction conditions and results are shown in Table 1.
TABLE 1 comparison of reaction conditions and results for examples 2-4
Figure BDA0002847749040000041
Examples 5 to 7:
the reaction temperature, reaction conditions and results in step A were adjusted according to the method of step A, B in example 1, as shown in Table 2, and it was found that the reaction temperature was most effective at 0 to 5 ℃ and that the chlorantraniliprole was high in both yield and purity.
TABLE 2 comparison of reaction conditions and results for examples 5-7
Figure BDA0002847749040000051
Examples 8 to 10:
the molar ratio of phosgene to 2-amino-5-chloro-3-methylbenzoic acid in step A was adjusted according to the method of step A, B in example 1, and the reaction conditions and results are shown in Table 3, and it can be seen that the best results were obtained when the molar ratio of phosgene to 2-amino-5-chloro-3-methylbenzoic acid was 2:1, and that chlorantraniliprole was the highest in purity and yield.
TABLE 3 comparison of reaction conditions and results for examples 8-10
Figure BDA0002847749040000052
Examples 11 to 13:
the type of base, reaction conditions and results were adjusted as shown in Table 4 according to the procedure of step A, B in example 1, and it was found that the inorganic base was the least effective, preferably 3-methylpyridine, and then pyridine.
TABLE 4 comparison of reaction conditions and results for examples 11-13
Figure BDA0002847749040000053
Although the embodiments of the present invention have been described, the present invention is not limited to the foregoing specific embodiments. The invention extends to any novel feature or any novel combination of features disclosed in this specification and any novel method or process steps or any novel combination of features disclosed.

Claims (7)

1. A method for synthesizing a chlorantraniliprole precursor is characterized by comprising the following steps: the method comprises the following steps:
Figure FDA0002847749030000011
dissolving a compound III in a solvent to form a material A; mixing alkali, a solvent, a compound I and a compound II to form a material B; adding the material A into the material B, and reacting to obtain the compound shown in the formula IV.
2. The method for synthesizing the chlorantraniliprole precursor as claimed in claim 1, wherein the method comprises the following steps: the base is an organic base.
3. The method for synthesizing the chlorantraniliprole precursor as claimed in claim 2, wherein the method comprises the following steps: the base is selected from one or more of pyridine or picoline, preferably 2-picoline, 3-picoline or 4-picoline.
4. The method for synthesizing the chlorantraniliprole precursor according to claims 1 to 3, wherein the method comprises the following steps: the solvent is selected from one or more of dichloroethane, toluene, xylene, tetrahydrofuran and acetonitrile.
5. The method for synthesizing the chlorantraniliprole precursor according to claims 1 to 3, wherein the method comprises the following steps: the reaction temperature of the reaction is-10-30 ℃.
6. The method for synthesizing the chlorantraniliprole precursor according to claims 1 to 3, wherein the method comprises the following steps: the molar ratio of the compound shown in the formula III to the compound shown in the formula I is 0.9-2.5: 1.
7. a method for synthesizing chlorantraniliprole, which is characterized in that; the method comprises the following steps:
Figure FDA0002847749030000012
reacting a chlorantraniliprole precursor, namely a compound shown in a formula IV with a monomethylamine aqueous solution to synthesize chlorantraniliprole.
CN202011517104.1A 2020-12-21 2020-12-21 Method for synthesizing chlorantraniliprole Active CN112574190B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011517104.1A CN112574190B (en) 2020-12-21 2020-12-21 Method for synthesizing chlorantraniliprole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011517104.1A CN112574190B (en) 2020-12-21 2020-12-21 Method for synthesizing chlorantraniliprole

Publications (2)

Publication Number Publication Date
CN112574190A true CN112574190A (en) 2021-03-30
CN112574190B CN112574190B (en) 2022-11-11

Family

ID=75136418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011517104.1A Active CN112574190B (en) 2020-12-21 2020-12-21 Method for synthesizing chlorantraniliprole

Country Status (1)

Country Link
CN (1) CN112574190B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874185A (en) * 2022-03-18 2022-08-09 青岛恒宁生物科技有限公司 Method for preparing o-formamido benzamide compound
CN115057843A (en) * 2022-06-15 2022-09-16 湖南化工研究院有限公司 Preparation method of chlorantraniliprole insecticide
CN115745959A (en) * 2022-11-30 2023-03-07 山东友道化学有限公司 Industrial production method of chlorantraniliprole

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1678192A (en) * 2001-08-13 2005-10-05 纳幕尔杜邦公司 Arthropodicidal anthranilamides
CN101072767A (en) * 2004-12-07 2007-11-14 杜邦公司 Method for preparing n-phenylpyrazole-1-carboxamides
CN107089970A (en) * 2017-05-26 2017-08-25 迈克斯(如东)化工有限公司 A kind of method for preparing N acyl group anthranilamides
CN111423431A (en) * 2020-04-01 2020-07-17 利尔化学股份有限公司 Preparation method of chlorantraniliprole and intermediate thereof
CN111662269A (en) * 2019-03-07 2020-09-15 湖南化工研究院有限公司 1-pyridyl pyrazole amide compound and preparation method and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1678192A (en) * 2001-08-13 2005-10-05 纳幕尔杜邦公司 Arthropodicidal anthranilamides
CN101072767A (en) * 2004-12-07 2007-11-14 杜邦公司 Method for preparing n-phenylpyrazole-1-carboxamides
CN107089970A (en) * 2017-05-26 2017-08-25 迈克斯(如东)化工有限公司 A kind of method for preparing N acyl group anthranilamides
CN111662269A (en) * 2019-03-07 2020-09-15 湖南化工研究院有限公司 1-pyridyl pyrazole amide compound and preparation method and application thereof
CN111423431A (en) * 2020-04-01 2020-07-17 利尔化学股份有限公司 Preparation method of chlorantraniliprole and intermediate thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
卞克建等: "《工业化学反应及应用》", 28 February 1999, 中国科学技术大学出版社出版发行 *
李俊锁等著: "《兽药残留分析》", 28 February 2002 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874185A (en) * 2022-03-18 2022-08-09 青岛恒宁生物科技有限公司 Method for preparing o-formamido benzamide compound
CN115057843A (en) * 2022-06-15 2022-09-16 湖南化工研究院有限公司 Preparation method of chlorantraniliprole insecticide
CN115057843B (en) * 2022-06-15 2024-04-30 湖南化工研究院有限公司 Preparation method of chlorantraniliprole insecticide
CN115745959A (en) * 2022-11-30 2023-03-07 山东友道化学有限公司 Industrial production method of chlorantraniliprole

Also Published As

Publication number Publication date
CN112574190B (en) 2022-11-11

Similar Documents

Publication Publication Date Title
CN112574190B (en) Method for synthesizing chlorantraniliprole
WO1997024330A1 (en) Novel n-(unsubstituted or substituted)-4-substituted-6-(unsubstituted or substituted)phenoxy-2-pyridinecarboxamides or thiocarboxamides, processes for producing the same, and herbicides
CN109293565A (en) A kind of preparation method of fluopyram
CN109369610A (en) A kind of synthetic method of cyclobutanol and nitro substituted naphthol class compound
EP1472236A1 (en) Method for preparing benzisoxazole methane sulfonyl chloride and its amidation to form zonisamide
US11420925B2 (en) Reduction method and reduction product of alkenyl active methylene compound
AU2006240772B2 (en) Method for producing nicotinic acid derivative or salt thereof
CN112047879A (en) Method for selectively synthesizing halogenated arylamine by copper catalysis
CN109096105B (en) Reduction method of alkenyl active methylene compound and reduction product
AU735102B2 (en) Improved process for the preparation of unsymmetrical 4,6-bis(aryloxy) pyrimidine compounds
KR101348440B1 (en) One-pot Synthesis Method of Quinazoline-2,4-dione Derivatives
JP2012508709A (en) 2-[(1-Cyanopropyl) carbamoyl] -5-chloromethylnicotinic acid and its use in the production of imidazolinone herbicides
CN104059075A (en) 8, 9-mono and/or di-substituted imidazo[1, 2-c]quinazolin-3(2H)-one fused heterocyclic compound and preparation method thereof
JP3499595B2 (en) Method for producing 2-cyanoimidazole compound
JP7001699B2 (en) 4-[(4,5-Dihydro-3-methoxy-4-methyl-5-oxo-1H-1,2,4-triazole-1-yl) carbonyl) sulfamoyl] -5-methylthiophene-3-carboxylic acid How to prepare methyl
CN108503578B (en) Synthetic method of indeno- [1,2-b ] indole-10 (5H) -ketone compound
Coşkun et al. Beckmann fragmentation of diphenylcarbamoylated N-aryldiphenacylamine dioximes. New method for the synthesis of imidazooxadiazolones
Nematpour et al. An Efficient Synthesis of Spiro-Pyrimidines Derivatives Containing a Sulfonyl Scaffold
CN117003731A (en) Preparation method of chlorantraniliprole or cyantraniliprole
CN115784961A (en) Synthesis method of oxacillin and intermediate thereof
CN104693183A (en) Synthetic method for 2-[(4-chlorphenyl) (4-piperidyl oxygroup) methyl] pyridine and derivate thereof
EP1675828A1 (en) PROCESS FOR THE PREPARATION OF (1alpha, 5alpha, 6alpha)-6-AMINOME THYL-3-BENZYL-3-AZBICYCLO [3.1.0] HEXANE
WO2004035529A1 (en) Process for producing n-(2-amino-1,2-dicyanovinyl)formamidine
CN117510403A (en) Synthetic method of 3-ethyl-pyridine-2-formamidine hydrochloride
CN112778197A (en) Preparation method of novel abscisic acid agonist AM1

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant