CN112567056B - 增材制造用粉末组成 - Google Patents

增材制造用粉末组成 Download PDF

Info

Publication number
CN112567056B
CN112567056B CN201980026171.2A CN201980026171A CN112567056B CN 112567056 B CN112567056 B CN 112567056B CN 201980026171 A CN201980026171 A CN 201980026171A CN 112567056 B CN112567056 B CN 112567056B
Authority
CN
China
Prior art keywords
alloy
nickel
alloy powder
additive manufacturing
standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980026171.2A
Other languages
English (en)
Other versions
CN112567056A (zh
Inventor
萨塔吉特·莎玛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sa TajiteShama
Original Assignee
Sa TajiteShama
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sa TajiteShama filed Critical Sa TajiteShama
Publication of CN112567056A publication Critical patent/CN112567056A/zh
Application granted granted Critical
Publication of CN112567056B publication Critical patent/CN112567056B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

738LC组成属于镍基超级合金系。该合金已成功应用于涡轮发动机的热段。叶片、叶轮和隔热罩均由该合金制成,其可承受700至850摄氏度的工作温度。增材制造工艺如选择性激光熔化或PBF‑L因开裂问题而无法成功使用该合金粉末。因γ’相含量高,738LC也已知属于不可焊接合金类型。新组成的本发明在标准738LC之外,具有γ’相的不同浓度、形态和尺寸分布。本发明已显示出消除了在增材制造基于激光的工艺中的开裂问题。所观察的室温拉伸性能远好于铸造的738LC性能。

Description

增材制造用粉末组成
本发明针对的是738LC合金粉末的可打印性。该合金粉末因其不可打印和在基于激光的粉末床工艺中生成裂纹而闻名。当前,增材制造(AM)用户正在使用热等静压(HIP)工艺来减轻一定程度的开裂。但是,由于该工艺过程的性质,HIP不能消退在工艺过程中引起的所有裂纹和缺陷。
本发明的目的是公开一种更适于特定AM工艺的组成。本发明能够为AM团体提供更可靠的解决方案。这种新型合金粉末的一个重要应用将是陆基涡轮机行业,因为该粉末可被用于开发高温部件用新型设计。
上述目的通过非标准镍基合金组成达成,其可以开裂最小乃至没有开裂地被打印。在本说明书中,标准738LC合金应具有如图1所示的组成。按照标准738LC,γ’相已被定量和定性地改性。与具有双峰和角形态的现有技术标准组成相比,在其中一种新型合金中的γ’相更精细且具有单峰。在另一种新型合金中,γ’相保留其双峰分布但形态具有相对光滑的边沿。由此获得的室温拉伸性能高于标准738LC组成。如上所述,标准738LC组成在基于激光的粉末床熔融工艺中易开裂。几种机制可能在这种合金中造成微裂纹,这可能是由于γ’相析出,其产生了内部残余应力,或凝固开裂,因为低熔点相的形成,起因是某种晶界的偏析或形成,其已知会产生高的内应力,,其与元素偏析结合会导致热开裂。为了减轻这种应力并使合金可打印,采取了降低γ’含量和改善晶界特性的做法。但是,由于已知γ’相也是产生高温强度和稳定性的原因,故必须通过其它强化技术来补偿该相的减少。通过增加具有耐高温性能和原子尺寸的固溶体增强剂可满足该要求。
现在将借助例子来详述本发明。
图1是示出标准738LC粉末组成的表,
图2是示出本发明第一实施例的组成的表,
图3是示出本发明第二实施例的组成的表,
图4示出与标准铸造和热处理738LC合金相比的室温性能,
图5示出相比于c)铸造和热处理的在a)738-Mod1和b)738-Mod2中的改性的γ’相,
图6示出标准和非标准738LC合金粉末组成的材料性能,
图7示出部件在水平和垂直方向上的微观结构。
如可从根据第一实施例的图2中看到地,尽量经济可行地保持低的硼含量,但在任何情况下都低于0.007重量%,优选低于0.005重量%,更优选0.001重量%(与在标准粉末中的0.007重量%至0.012重量%相比)。除此之外,引入铁至在3.5重量%至10重量%之间的量,优选在3.5重量%至4重量%之间(与标准粉末中的无铁或至多0.05重量%相比)。氮含量可高达0.08重量%,优选为0.06重量%。
如可从根据本发明第二实施例的图3中看到地,铝和钛的含量被减少到小于3重量%,优选2重量%。钼含量被增加到大于8.5重量%,优选在8重量%至9重量%之间。
图4示出在室温下增材制造的标准和非标准738LC合金粉末组成的在X、Y和Z方向上的材料性能。
ID代表合金粉末。取向是指在空间方向上的取向。
UTS表示极限抗拉强度。极限抗拉强度(UTS)通常被缩写为抗拉强度(TS)、极限强度或等式中的Ftu,是材料或结构能承受趋于拉长的载荷的能力,与抗压强度相反,抗压强度承受趋于减小尺寸的载荷。换句话说,抗拉强度抵抗拉伸(被拉开),而抗压强度抵抗压缩(被压合)。通过材料在拉伸或拉拔时在断裂前所能承受的最大应力来测量极限抗拉强度。在材料强度研究中,可以独立分析抗拉强度、抗压强度和剪切强度。一些材料,在被称为脆性破坏的过程中,会非常急剧地断裂而没有塑性变形。更具延展性的包括大多数金属的材料在断裂前会经历一定的塑性变形和可能颈缩。通常,通过执行拉伸测试并记录对抗应变的工程应力来得到UTS。应力-应变曲线的最高点是UTS。这是一个强度性质,因此其值不取决于试样大小。但它取决于其它因素例如样品制备、表面缺陷的存在与否以及测试环境和材料的温度。
测量UTS的测量方法是众所周知的。通常,测试包括取一具有固定横截面面积的小样品,然后用拉力计以恒定应变(标距长度变化除以初始标距长度)速率来拉伸样品,直到样品断裂。在测试某些金属时,压痕硬度与抗拉强度成线性关系。这种重要关系允许用轻巧甚至便携的设备,如手持式Rockwell硬度测试仪,对块体金属进行就经济而言重要的无损测试。这种实际关联性帮助金属加工行业中的质量保证远超出实验室和通用测试机的范围。
YS表示屈服强度。屈服点是应力-应变曲线上的,表示弹性行为的极限和塑性行为的开始的点。屈服强度或屈服应力是材料特性,其被定义为材料开始塑性变形时的应力,而屈服点是非线性(弹性+塑性)变形开始的点。在屈服点之前,材料将发生弹性变形并在去除所加应力时恢复其原始形状。一旦经过了屈服点,则一部分变形将是永久且不可逆的。屈服点决定了机械部件的性能极限,因为它代表在没有永久变形情况下可施加的力的上限。在结构工程中,这是一种软失效模式,其通常不会导致灾难性失效或最终失效,除非它加速屈曲。屈服强度是许多材料加工基本技术所利用的关键材料性能:用于以压力重塑材料(如锻造、轧制、压制、弯曲、挤压或液压成形),通过切割(例如机加工)或剪切来分离材料,和用紧固件牢固联接部件。屈服载荷可被看作是施加于托簧中心以拉直其叶片的载荷。偏移屈服点(或弹性极限应力)是发生0.2%塑性变形时的应力。
测量YS的测量方法是众所周知的。这例如可以如此进行,取得具有固定横截面面积的小样品,然后以可控的逐渐增大的力拉拔它,直到样品变形或断裂。这被称为拉伸测试。用机械或光学拉伸计来记录纵向和/或横向应变。屈服行为也可以用虚拟测试(在材料的计算机模型上)来模拟,特别是在宏观屈服由所研究的材料的微观结构控制的情况下。对大多数钢来说,压痕硬度与抗拉强度大致成线性关系,但对一种材料的测量结果不能被用作测量另一种材料的强度的尺度。因此,硬度测试可以是拉伸测试的经济的替代品,以及提供因为例如焊接或成形操作而产生的屈服强度局部变化。但对于紧急情况,进行拉伸测试以消除模糊。
El表示伸长率并且根据ASTM E139(执行金属材料的蠕变、蠕变断裂和应力断裂测试的标准测试方法)进行测量,其测量原理为“断裂后承受载荷”(https://www.astm.org/Standards/E139.htm)。
如图5所示,本发明涉及定性和定量地改性γ’相。因此,有必要研究高温性能。该实施例中的图6示出用于如图2和图3所描述的两种非标准组成的提高的高温性能。
在这两种改性方案中,性能均与铸造和热处理的标准738LC合金相当。应当注意的是,由于对AM材料采用了非优化热处理,故在一种情况下的伸长率显示出低于针对铸造材料所获得的伸长率。这被如在针对非标准组成的图6中所示的蚀刻微观结构证明。从图7中可以看出,因为在增材制造过程中发生外延晶粒生长,故即使在时效处理(垂直于构建方向)之后,晶粒结构形态本质上被拉长。这导致如下观察,即基于按照AMS5410的标准热处理周期,未发生晶粒结构再结晶以获得最高材料性能,所述标准热处理周期包括以下步骤:
·在2050°F+/-10°F的温度下进行固溶退火2小时保持时间,
·在1550°F+/-10°F的温度下时效24小时。
公开了具有对应于改性738LC合金粉末的组成的镍基合金粉末。所述组成如此不同于标准738LC合金,即,相比于标准738LC合金,它可被用于增材制造,例如像基于激光或电子束的粉末床熔融工艺或直接金属沉积工艺,以制造具有减小的、优选最小化的,最好是零裂纹密度的部件。
与738LC合金粉末相比,该镍基合金粉末可具有定量和/或定性改性的γ’相。
根据一个实施例的镍基合金粉末含有至多0.007重量%、优选低于0.007重量%的硼,并且含有3.5重量%至10重量%、优选是3.5重量%至4重量%的铁。
该镍基合金粉末还可以具有小于3重量%的铝含量和大于8.5重量%且优选等于9重量%的量的钼含量。
定性改性的γ’相优选以如下方式被改性,尤其在相同的工艺参数下,裂纹密度应被减小至少10%,优选至少25%,特别优选至少50%。
公开了一种3D打印部件,其包含根据如上所述的镍基合金粉末的材料组成。
所述3D打印部件可以具有本质上被拉长的晶粒结构的形态。

Claims (5)

1.一种镍基合金粉末,其特征在于,
所述粉末含有15.7重量%至16.3重量%铬,8重量%至9重量%钴,1.75至2.25重量%铝,1.75至2.25重量%钛,2.4至2.8重量%钨,1.5至2重量%钽,8.5至9.5重量%钼,0.6至1.1重量%铌,0.09至0.13重量%碳,0.03至0.08重量%锆,0.007至0.012重量%的硼,至多0.05重量%铁,至多0.1重量%铜,至多0.02重量%锰,至多0.03重量%硅,至多0.015重量%磷,至多0.006重量%硫,至多0.03重量%氧,高至0.08重量%的氮含量,至多0.15重量%的总杂质量和余量镍,
其中,所述粉末含有的铝和钛的总量为3.5至4.5重量%。
2.根据权利要求1的镍基合金粉末,其特征在于,所述粉末被用在逐层3D打印中。
3.根据权利要求1的镍基合金粉末,其特征在于,与738LC合金粉末相比,γ’相已被定量和/或定性改性。
4.根据权利要求1所述的镍基合金粉末,其特征在于,所述粉末具有等于9重量%的量的钼含量。
5.一种3D打印的部件,其包含根据前述权利要求中任一项的粉末的材料组成。
CN201980026171.2A 2018-04-25 2019-04-25 增材制造用粉末组成 Active CN112567056B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862662352P 2018-04-25 2018-04-25
US62/662,352 2018-04-25
DE102019002231.9 2019-03-28
DE102019002231 2019-03-28
PCT/IB2019/053413 WO2019207518A1 (en) 2018-04-25 2019-04-25 Powder composition for additive manufacturing

Publications (2)

Publication Number Publication Date
CN112567056A CN112567056A (zh) 2021-03-26
CN112567056B true CN112567056B (zh) 2022-08-23

Family

ID=66752149

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980026171.2A Active CN112567056B (zh) 2018-04-25 2019-04-25 增材制造用粉末组成

Country Status (6)

Country Link
EP (1) EP3784809A1 (zh)
JP (2) JP2021521341A (zh)
KR (1) KR20210003838A (zh)
CN (1) CN112567056B (zh)
CA (1) CA3096440A1 (zh)
WO (1) WO2019207518A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114226708B (zh) * 2021-11-24 2023-07-07 恒新增材制造研究中心(佛山)有限公司 用于3d打印的钢粉末及其制备方法
KR102616606B1 (ko) * 2022-12-09 2023-12-27 터보파워텍(주) 3d프린팅에 의한 가스터빈의 베인 수리 및 코어플러그 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2949234B1 (fr) * 2009-08-20 2011-09-09 Aubert & Duval Sa Superalliage base nickel et pieces realisees en ce suparalliage
EP2886225B1 (en) * 2013-12-23 2017-06-07 Ansaldo Energia IP UK Limited Gamma prime precipitation strengthened nickel-base superalloy for use in powder based additive manufacturing process
JP6499546B2 (ja) * 2015-08-12 2019-04-10 山陽特殊製鋼株式会社 積層造形用Ni基超合金粉末
US10378087B2 (en) * 2015-12-09 2019-08-13 General Electric Company Nickel base super alloys and methods of making the same
JP6793689B2 (ja) * 2017-08-10 2020-12-02 三菱パワー株式会社 Ni基合金部材の製造方法

Also Published As

Publication number Publication date
KR20210003838A (ko) 2021-01-12
US20210086259A1 (en) 2021-03-25
JP2021521341A (ja) 2021-08-26
EP3784809A1 (en) 2021-03-03
CA3096440A1 (en) 2019-10-31
JP2023123497A (ja) 2023-09-05
WO2019207518A1 (en) 2019-10-31
CN112567056A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
JP6057363B1 (ja) Ni基超耐熱合金の製造方法
JP2023123497A (ja) 付加製造のための粉末組成物
Azadi et al. Evaluation of high-temperature creep behavior in Inconel-713C nickel-based superalloy considering effects of stress levels
EP1892307A1 (en) Ni-Fe based forging superalloy excellent in high-temperature strength and high-temperature ductility, method of manufacturing the same, and steam turbine rotor
JP6223743B2 (ja) Ni基合金の製造方法
Mungole et al. A critical examination of the paradox of strength and ductility in ultrafine-grained metals
KR20190073344A (ko) Ni기 단조 합금재 및 그것을 사용한 터빈 고온 부재
EP3202931A1 (en) Ni BASED SUPERHEAT-RESISTANT ALLOY
Rösler et al. Wrought Ni‐Base Superalloys for Steam Turbine Applications beyond 700° C
US20170002449A1 (en) Precipitation hardening nickel-base alloy, part made of said alloy, and manufacturing method thereof
EP2853339B1 (en) Welding material for welding of superalloys
Džugan et al. Characterization of functionally graded materials based on inconel 718 and stainless steel 316L manufactured by DED process
Wheeler et al. Steady-state creep deformation of investment cast near-gamma titanium aluminide
US8906174B2 (en) Ni-base alloy and method of producing the same
Alexopoulos et al. Fatigue behavior of Inconel 718 TIG welds
US12000025B2 (en) Powder composition for additive manufacturing
Friedman et al. Superplastic response in Al-Mg sheet alloys
Chakravarthi et al. Optimization of hot workability and control of microstructure in 18Ni (M250 Grade) maraging steel using processing maps
Joseph et al. Anisotropy of room temperature ductility in Haynes 282 forgings
Lapin et al. The effect of microstructure on mechanical properties of single crystal CMSX-4 superalloy
Kim et al. High temperature deformation mechanism and evolution of dislocation structure during creep of Ni-Base superalloy 713LC
EP4306236A1 (en) High gamma prime nickel based welding material
Baig et al. The Effect of Heat Treatment on the Microstructure and Tensile Properties of Laser Powder Bed Fused (L-PBF)
KR20150126954A (ko) 개선된 니켈 베릴륨계 함금 조성물
Yamagata et al. Microstructure Effect on Enhancement of Room-Temperature Ductility in β-Ti Containing γ-TiAl Based Alloys

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant