CN112564514A - 一种电除尘用高频电源系统 - Google Patents

一种电除尘用高频电源系统 Download PDF

Info

Publication number
CN112564514A
CN112564514A CN202011323835.2A CN202011323835A CN112564514A CN 112564514 A CN112564514 A CN 112564514A CN 202011323835 A CN202011323835 A CN 202011323835A CN 112564514 A CN112564514 A CN 112564514A
Authority
CN
China
Prior art keywords
circuit module
current
voltage
power supply
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011323835.2A
Other languages
English (en)
Inventor
杨沛豪
柴琦
寻志伟
郭志军
贾树旺
高占平
寇水潮
赵守柱
高峰
孙梦瑶
郭新宇
郭霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN202011323835.2A priority Critical patent/CN112564514A/zh
Publication of CN112564514A publication Critical patent/CN112564514A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • H02M5/16Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers for conversion of frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种电除尘用高频电源系统,包括整流电路模块、逆变电路模块和LCC谐振电路模块;其中:整流电路模块用于将三相380V/50Hz的交流电压转为530V的直流电,逆变电路模块用于进行直→交流电压变化,将530V直流电转变为20kHz的高频交流电,LCC谐振电路模块将高频交流电经过电压变压器升压、全桥整流后,完成最后的交→直流变化,形成72kV直流高压电送至除尘器负载。本发明针对高频电源工作原理,从电路拓扑结构分析及元器件数学参数计算、选型两方面,提出电除尘用DC‑DC高频电源电路拓扑设计方案。

Description

一种电除尘用高频电源系统
技术领域
本发明涉及一种电除尘用高频电源系统,应用于火电厂电除尘系统。
背景技术
传统电除尘设备大多采用可控硅工频电源,具有输出直流脉动大、能量转换效率低、三相输出电压不平衡,对用电设备闪络冲击大等缺点。电除尘用高频电源(HighFrequency Power Supply)作为一种新型大功率直流电源用IGBT等大功率开关电子元器件代替传统的可控硅工频电子元器件,与传统工频电源相比,具有输出电压等级高、功率因素高,与电除尘其他用电设备的匹配性能良好、电源的转换效率高等特点。实现了对能源高效利用、提升电除尘工作效率、减少工厂烟气污染粉尘排放的目的。
发明内容
本发明的目的在于提供一种电除尘用高频电源系统,应用于火电厂电除尘系统的DC-DC高频电源电路拓扑结构,针对高频电源工作原理,从电路拓扑结构分析及元器件数学参数计算、选型两方面,提出电除尘用DC-DC高频电源电路拓扑设计方案。
本发明采取如下技术方案来实现的:
一种电除尘用高频电源系统,包括整流电路模块、逆变电路模块和LCC谐振电路模块;其中,整流电路模块用于将三相380V/50Hz的交流电压转为530V的直流电,逆变电路模块用于进行直→交流电压变化,将530V直流电转变为20kHz的高频交流电,LCC谐振电路模块将高频交流电经过电压变压器升压、全桥整流后,完成最后的交→直流变化,形成72kV直流高压电送至除尘器负载。
本发明进一步的改进在于,整流电路模块包括并联设置的三组两两串联的二极管,三相交流电压的U端通过三相交流滤波电感LU连接二极管VD1的正极、二极管VD4的负极,三相交流电压的V端通过三相交流滤波电感LV连接二极管VD3的正极、二极管VD6的负极,三相交流电压的W端通过三相交流滤波电感LW连接二极管VD5的正极、二极管VD2的负极,二极管VD1的负极、二极管VD3的负极和二极管VD5的负极连接滤波电容Cf的一端,二极管VD4的正极、二极管VD6的正极和二极管VD2的正极连接滤波电容Cf的另一端。
本发明进一步的改进在于,二极管短时通入最高电压为:
Figure BDA0002793679790000021
在电压参数选择时增加5.0%裕度,即705×(1+50%)=1058V。
本发明进一步的改进在于,整流电路模块输出功率为72kW,根据最低效率输入整流电路模块功率为:
Figure BDA0002793679790000022
最大输入电流,即电力电子元器件额定电流为:
Figure BDA0002793679790000023
本发明进一步的改进在于,逆变电路模块包括IGBT逆变元器件V1-V4,IGBT逆变元器件V2的集电极连接GBT逆变元器件V1的发射极,IGBT逆变元器件V4的集电极连接GBT逆变元器件V3的发射极,IGBT逆变元器件V1的集电极和IGBT逆变元器件V3的集电极连接在滤波电容Cf的一端,IGBT逆变元器件V2的发射极和IGBT逆变元器件V4的发射极连接在滤波电容Cf的另一端。
本发明进一步的改进在于,IGBT逆变元器件耐流值即最大电流值为整流电路模块输出电流的2倍,整流电路模块输出电流即母线电流IDC=150A,则IGBT逆变元器件耐流值为300A,依据规程:IGBT逆变元器件短时耐流要达到输入电流的2-3倍,所以在IGBT逆变元器件选型时,耐流参数选择为600A;逆变电路模块两端输入电压即整流电路模块输出电压最大值UDC=561V,在全桥逆变电路中,每桥臂由两个IGBT逆变元器件串联组成,故每个IGBT逆变元器件耐压值为561/2=280.5V,依据规程:IGBT逆变元器件短时耐压要达到输入电压的2-3倍,所以在IGBT逆变元器件选型时,耐压参数选择为841.5V。
本发明进一步的改进在于,LCC谐振电路模块包括依次连接的变压器自身漏感Ls、外接串联电容Cs和变压器绕组分布电容Cp
本发明进一步的改进在于,压器自身漏感Ls作为谐振电感,变压器绕组分布电容Cp作为谐振电容,在参数选型上,根据规定:变压器自身漏感和变压器绕组分布电容Cp与设备特性有关,在电除尘用高频电源谐振电路中,变压器自身漏感取值范围为:12μH≤LS≤15μH,变压器绕组分布电容
Figure BDA0002793679790000033
取变压器自身漏感LS=13μH,变压器绕组分布电容CP=1μF,升压变压器匝数比为1:153,外接串联电容Cs选型公式为:
Figure BDA0002793679790000031
其中:fs——逆变电路模块输出频率,kHz;η——电源转换效率,取95%;k——等效分布电容于串联谐振电容之比,取
Figure BDA0002793679790000032
通过计算得出外接串联电容Cs=6μF。
与现有技术相比,本发明至少具有如下有益的技术效果:
1.本发明提出一种电除尘用高频电源系统,提出一种应用于火电厂电除尘系统的DC-DC高频电源电路拓扑结构。
2.本发明针对高频电源工作原理,从电路拓扑结构分析及元器件数学参数计算、选型两方面,提出电除尘用DC-DC高频电源电路拓扑设计方案。
附图说明
图1为电除尘用DC-DC高频电源电路总体拓扑结构图;
图2为电除尘用DC-DC高频电源整流电路拓扑结构图;
图3为电除尘用DC-DC高频电源逆变电路拓扑结构图;
图4为电除尘用DC-DC高频电源LCC并联谐振拓扑结构图。
具体实施方式
下面通过附图,对本发明的技术方案做进一步的详细描述。
如图1所示,输入为三相380V/50Hz工频交流电源,输出直流高压满足66kV-80kV。高频电源采用交→直→交→直的变化过程,工作步骤如下:
(1)三相380V/50Hz的交流电压经过三相电感滤波器除噪、三相整流后得到530V的直流电。
(2)通过IGBT逆变元器件,进行直→交流电压变化,将530V直流电转变为20kHz的高频交流电。
(3)在高频变压器原边上串联谐振电容组,与高频变压器内部分布电容、漏感共同组成LCC谐振电路,实现软开关控制。
(4)高频交流电经过电压变压器升压、全桥整流后,完成最后的交→直流变化,形成72kV直流高压电送至除尘器负载。
如图2所示,整流滤波电路模块作为DC-DC高频电源电路前级电路拓扑,主要用于AC-DC的转换,本发明采用三相桥式半控整流电路。后级加装滤波电容装置。整流电路模块包括并联设置的三组两两串联的二极管,三相交流电压的U端通过三相交流滤波电感LU连接二极管VD1的正极、二极管VD4的负极,三相交流电压的V端通过三相交流滤波电感LV连接二极管VD3的正极、二极管VD6的负极,三相交流电压的W端通过三相交流滤波电感LW连接二极管VD5的正极、二极管VD2的负极,二极管VD1的负极、二极管VD3的负极和二极管VD5的负极连接滤波电容Cf的一端,二极管VD4的正极、二极管VD6的正极和二极管VD2的正极连接滤波电容Cf的另一端。
对于电除尘用高频电源,其输入A、B、C三相电压由厂用电系统提供,相电压有效值为220V,频率为工频50Hz,由于系统波动电压有±5%的波动,所以输入至三相桥式半控整流电路的线电压有效值为:380±5%V,即316V-399V,对应线电压最大值为:510V-564V。根据规程要求:经过整流后输出电压波动允许范围为±10%,则输出电压范围需规定在:459V-620V。
(1)电力电子元器件额定电压
本发明按照二极管耐压水平进行整流电路参数选择,根据规程要求,二极管可短时通入最高电压为:
Figure BDA0002793679790000051
为保证元器件正常工作,在电压参数选择时通常需增加5.0%裕度,即705×(1+50%)=1058V。
(2)电力电子元器件额定电流
电力电子元器件额定电流与三相桥式半控整流电路输出功率成正比,高频电源作为一种DC-DC电源,在运行过程中存在功率损耗,为了得到电力电子元器件额定电流,要根据高频电源整流、滤波模块最低效率ηmin=0.85进行参数选择,高频电源整流、滤波模块输出功率为72kW,根据最低效率输入整流模块功率为:
Figure BDA0002793679790000052
则最大输入电流,即电力电子元器件额定电流为:
Figure BDA0002793679790000053
如图3所示,在电除尘用高频电源电路拓扑中,大多采用全桥逆变电路拓扑结构。逆变电路模块包括IGBT逆变元器件V1-V4,IGBT逆变元器件V2的集电极连接GBT逆变元器件V1的发射极,IGBT逆变元器件V4的集电极连接GBT逆变元器件V3的发射极,IGBT逆变元器件V1的集电极和IGBT逆变元器件V3的集电极连接在滤波电容Cf的一端,IGBT逆变元器件V2的发射极和IGBT逆变元器件V4的发射极连接在滤波电容Cf的另一端。
对于里面所采用的IGBT逆变元器件在选型时,需从(1)耐流值和(2)耐压值两个方面考虑:
(1)耐流值
IGBT逆变元器件耐流值即最大电流值为整流模块输出电流的2倍,根据公式(2),整流模块输出电流即母线电流IDC=150A,则IGBT逆变元器件耐流值为300A,依据规程:IGBT逆变元器件短时耐流要达到输入电流的2-3倍,所以在IGBT逆变元器件选型时,耐流参数选择为600A。
(2)耐压值
逆变电路模块两端输入电压即整流模块输出电压最大值UDC=561V,在全桥逆变电路中,每桥臂由两个IGBT开关元器件串联组成,故每个IGBT逆变元器件耐压值为561/2=280.5V,依据规程:IGBT逆变元器件短时耐压要达到输入电压的2-3倍,所以在IGBT逆变元器件选型时,耐压参数选择为841.5V。
如图4所示:为了在电除尘用高频电源内解决IGBT逆变元器件的损耗问题,通常是采用谐振电路拓扑。LCC并联谐振(Series-Parallel Resonant Converter,SPRC)电路拓扑,是由变压器自身漏感Ls、外接串联电容Cs和变压器绕组分布电容Cp构成,这些需要抑制的寄生参数,在LCC并联谐振电路中得到了很好的利用。变压器自身漏感Ls作为谐振电感,变压器绕组分布电容Cp作为谐振电容。
LCC并联谐振电路具有容性滤波特性,根据运行模式的不同分为:连续电流运行模式(Continuous.Current Mode,CCM)和间断电流运行模式(Discontinuous Current Mode,DCM)。两种运行模式适用于不同功率输出电源内,具有连续电流运行模式CCM的LCC并联谐振电路适用于输出为中小功率的电源内,当IGBT逆变元器件开关频率过高时,实现零电压开断,降低元器件开关损耗。具有间断电流运行模式DCM的LCC并联谐振电路适用于高频、高压、大功率电源电路拓扑中,可以实现零电流开断,同时,具有间断电流运行模式DCM的LCC并联谐振电路拓扑简单,软开关原理简单、易行,输出交流电压动态性能好,可以响应负载大范围变换。
对于LCC并联谐振电路三个参数:变压器自身漏感Ls、外接串联电容Cs和变压器绕组分布电容Cp,在参数选型上,根据规定:变压器自身漏感Ls和变压器绕组分布电容Cp与设备特性有关,在电除尘用高频电源谐振电路中,变压器自身漏感取值范围为:12μH≤LS≤15μH,变压器绕组分布电容
Figure BDA0002793679790000073
本发明取变压器自身漏感LS=13μH,变压器绕组分布电容CP=1μF,升压变压器匝数比为1:153。外接串联电容Cs可以由式(3)计算得到:
Figure BDA0002793679790000071
式(3)中:fs——逆变电路模块输出频率(kHz);
η——电源转换效率,取95%;
k——等效分布电容于串联谐振电容之比,
Figure BDA0002793679790000072
通过计算可以得出外接串联电容Cs=6μF。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (8)

1.一种电除尘用高频电源系统,其特征在于,包括整流电路模块、逆变电路模块和LCC谐振电路模块;其中:
整流电路模块用于将三相380V/50Hz的交流电压转为530V的直流电,逆变电路模块用于进行直→交流电压变化,将530V直流电转变为20kHz的高频交流电,LCC谐振电路模块将高频交流电经过电压变压器升压、全桥整流后,完成最后的交→直流变化,形成72kV直流高压电送至除尘器负载。
2.根据权利要求1所述的一种电除尘用高频电源系统,其特征在于,整流电路模块包括并联设置的三组两两串联的二极管,三相交流电压的U端通过三相交流滤波电感LU连接二极管VD1的正极、二极管VD4的负极,三相交流电压的V端通过三相交流滤波电感LV连接二极管VD3的正极、二极管VD6的负极,三相交流电压的W端通过三相交流滤波电感LW连接二极管VD5的正极、二极管VD2的负极,二极管VD1的负极、二极管VD3的负极和二极管VD5的负极连接滤波电容Cf的一端,二极管VD4的正极、二极管VD6的正极和二极管VD2的正极连接滤波电容Cf的另一端。
3.根据权利要求2所述的一种电除尘用高频电源系统,其特征在于,二极管短时通入最高电压为:
Figure FDA0002793679780000011
在电压参数选择时增加5.0%裕度,即705×(1+50%)=1058V。
4.根据权利要求2所述的一种电除尘用高频电源系统,其特征在于,整流电路模块输出功率为72kW,根据最低效率输入整流电路模块功率为:
Figure FDA0002793679780000012
最大输入电流,即电力电子元器件额定电流为:
Figure FDA0002793679780000013
5.根据权利要求2所述的一种电除尘用高频电源系统,其特征在于,逆变电路模块包括IGBT逆变元器件V1-V4,IGBT逆变元器件V2的集电极连接GBT逆变元器件V1的发射极,IGBT逆变元器件V4的集电极连接GBT逆变元器件V3的发射极,IGBT逆变元器件V1的集电极和IGBT逆变元器件V3的集电极连接在滤波电容Cf的一端,IGBT逆变元器件V2的发射极和IGBT逆变元器件V4的发射极连接在滤波电容Cf的另一端。
6.根据权利要求5所述的一种电除尘用高频电源系统,其特征在于,IGBT逆变元器件耐流值即最大电流值为整流电路模块输出电流的2倍,整流电路模块输出电流即母线电流IDC=150A,则IGBT逆变元器件耐流值为300A,依据规程:IGBT逆变元器件短时耐流要达到输入电流的2-3倍,所以在IGBT逆变元器件选型时,耐流参数选择为600A;逆变电路模块两端输入电压即整流电路模块输出电压最大值UDC=561V,在全桥逆变电路中,每桥臂由两个IGBT逆变元器件串联组成,故每个IGBT逆变元器件耐压值为561/2=280.5V,依据规程:IGBT逆变元器件短时耐压要达到输入电压的2-3倍,所以在IGBT逆变元器件选型时,耐压参数选择为841.5V。
7.根据权利要求6所述的一种电除尘用高频电源系统,其特征在于,LCC谐振电路模块包括依次连接的变压器自身漏感Ls、外接串联电容Cs和变压器绕组分布电容Cp
8.根据权利要求7所述的一种电除尘用高频电源系统,其特征在于,压器自身漏感Ls作为谐振电感,变压器绕组分布电容Cp作为谐振电容,在参数选型上,根据规定:变压器自身漏感和变压器绕组分布电容Cp与设备特性有关,在电除尘用高频电源谐振电路中,变压器自身漏感取值范围为:12μH≤LS≤15μH,变压器绕组分布电容
Figure FDA0002793679780000023
取变压器自身漏感LS=13μH,变压器绕组分布电容CP=1μF,升压变压器匝数比为1:153,外接串联电容Cs选型公式为:
Figure FDA0002793679780000021
其中:fs——逆变电路模块输出频率,kHz;η——电源转换效率,取95%;k——等效分布电容于串联谐振电容之比,取
Figure FDA0002793679780000022
通过计算得出外接串联电容Cs=6μF。
CN202011323835.2A 2020-11-23 2020-11-23 一种电除尘用高频电源系统 Pending CN112564514A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011323835.2A CN112564514A (zh) 2020-11-23 2020-11-23 一种电除尘用高频电源系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011323835.2A CN112564514A (zh) 2020-11-23 2020-11-23 一种电除尘用高频电源系统

Publications (1)

Publication Number Publication Date
CN112564514A true CN112564514A (zh) 2021-03-26

Family

ID=75043139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011323835.2A Pending CN112564514A (zh) 2020-11-23 2020-11-23 一种电除尘用高频电源系统

Country Status (1)

Country Link
CN (1) CN112564514A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113691141A (zh) * 2021-10-11 2021-11-23 重庆平创半导体研究院有限责任公司 一种dc-dc变换器拓扑结构

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
牟晋力: ""高频高压除尘电源研制"", 《中国优秀硕士学位论文全文数据库 信息科技辑2015年第02期》 *
王洪宾: ""高频静电除尘电源的研究"", 《中国优秀硕士学位论文全文数据库 工程科技I辑2015年第02期》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113691141A (zh) * 2021-10-11 2021-11-23 重庆平创半导体研究院有限责任公司 一种dc-dc变换器拓扑结构

Similar Documents

Publication Publication Date Title
Lai et al. A single-stage AC/DC converter based on zero voltage switching LLC resonant topology
CN100416997C (zh) 一种高功率因数高频直流电源
CN1074202C (zh) 交流到直流电力变换器及变换方法
EP3041122A1 (en) Control circuit, switching circuit, power conversion device, charging device, vehicle, and control method
CN111416536A (zh) 基于双向管插入式的单相双升压无桥五电平整流器
CN205283423U (zh) 三相pfc整流电路
CN109951084B (zh) 一种大功率高变比谐振式直流电源及其工作方法
CN107370404A (zh) 集成pfc高压半桥谐振同步整流ac/dc电源模块
CN111756257A (zh) 基于三开关管的双升压三电平整流器
CN101882878A (zh) 电除尘用大功率高频高压整流变压器
CN107171544A (zh) 一种全数字式全桥隔离型单相单级功率因数校正(pfc)变换器
CN112003467A (zh) 一种三开关管无桥型Cuk功率因数校正变换器
CN102437752A (zh) 一种用于航空航天交流直流变换的分级限流电路
CN101340143B (zh) 高功率因数开关变换器
CN106411149A (zh) 一种基于串联补偿的全固态的斩波调压电路及调压方法
CN112564514A (zh) 一种电除尘用高频电源系统
CN102263513B (zh) 一种ac-dc隔离变换电路
CN112260571A (zh) 一种具有软开关特性的高频电源逆变系统
CN205646960U (zh) 一种整流充电装置
Lai et al. Design and implementation of a single-stage LLC resonant converter with high power factor
CN109905035B (zh) 一种能量双向流动的超低纹波电动汽车充电电源
CN110557031A (zh) 一种变频器以及变频器系统
CN105429452A (zh) 一种共模抑制双Boost无桥PFC变换器
CN110601566B (zh) 一种适配器电源及其控制方法
CN210405105U (zh) 一种变频器以及变频器系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210326

RJ01 Rejection of invention patent application after publication