CN112563872B - 一种基于gsa和esa双波长泵浦掺铥激光器 - Google Patents

一种基于gsa和esa双波长泵浦掺铥激光器 Download PDF

Info

Publication number
CN112563872B
CN112563872B CN202011456628.4A CN202011456628A CN112563872B CN 112563872 B CN112563872 B CN 112563872B CN 202011456628 A CN202011456628 A CN 202011456628A CN 112563872 B CN112563872 B CN 112563872B
Authority
CN
China
Prior art keywords
thulium
esa
gsa
energy level
pumping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011456628.4A
Other languages
English (en)
Other versions
CN112563872A (zh
Inventor
黄海涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN202011456628.4A priority Critical patent/CN112563872B/zh
Publication of CN112563872A publication Critical patent/CN112563872A/zh
Application granted granted Critical
Publication of CN112563872B publication Critical patent/CN112563872B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094096Multi-wavelength pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix

Abstract

本发明公开了一种基于GSA和ESA双波长泵浦掺铥激光器,由GSA泵浦源、ESA泵浦源、泵浦光合束器、输入镜、掺铥激光介质及输出镜组成。GSA为基态吸收,对应掺铥激光介质的3H63H4跃迁,ESA为激发态吸收,对应3F43H4的跃迁。通过GSA泵浦源泵浦,基于3H63H4跃迁导致的基态吸收,将掺铥激光介质中Tm3+离子抽运到3H4能级,实现该能级粒子数第一次布局。同时铥离子间的交叉驰豫过程会进一步实现亚稳态3F4能级的粒子数布局。通过ESA泵浦源泵浦,利用3F43H4跃迁导致的激发态吸收,将3F4能级上积聚的粒子数精准抽运至3H4能级,实现3H4能级粒子数的第二次布局。本发明提出的通过GSA和ESA双波长泵浦掺铥激光介质的方案可以有效提高3H43H5跃迁上能级粒子数布局,提高2.3‑2.5μm波段激光输出功率。

Description

一种基于GSA和ESA双波长泵浦掺铥激光器
技术领域
本发明属于激光技术领域,具体涉及一种基于GSA和ESA双波长泵浦掺铥激光器。
背景技术
Tm3+离子能级结构丰富,是目前己知各类稀土离子中波长调谐范围最宽的,潜在的跃迁可以覆盖0.8-3.8μm,并且可由多波长泵浦并获得多个波长的激光运转。目前针对掺Tm3+激光的绝大部分研究工作集中在3F43H6的跃迁过程,其发射波长在1.8-2.1μm(取决于基质材料)。实际上,Tm3+潜在激光跃迁过程多样,其中发射波长位于2.3-2.5μm波段3H43H5跃迁格外引人注意。
基于掺Tm激光介质实现2.3-2.5μm波段激光运转具有如下优势:(1)室温四能级激光运转。激光下能级3H5在基态3H6上方约9000cm-1处,为四能级运转,无再吸收,温度效应弱,可室温运转。另外,相对于2μm波段,2.3-2.5μm波段处于水的弱吸收区,激光运转时受周围空气湿度的影响小;(2)光谱特性优良。Tm3+离子在2.3-2.5μm波段的受激发射截面大,且增益带宽宽,可以支持飞秒量级锁模脉冲产生;(3)容易获得高质量激光材料。相对于Cr2+掺杂II-IV族硫化物介质,掺铥激光材料制备工艺更加成熟可靠,基质种类更加丰富(如Tm:YAG、Tm:YLF等),为寻找光谱特性优良、热导率高、光学透过率高且物化性能稳定的掺铥激光介质提供了更多可能。
为实现掺铥激光介质2.3-2.5μm波段激光运转,通常采用约0.8μm波段激光泵浦的传统方案。但该泵浦方案中Tm3+离子3F4能级的粒子数捕获效应是实现2.3-2.5μm波段激光高效运转的难点之一。Tm3+离子之间存在较强的交叉弛豫过程(3H4+3H63F4+3F4),加之3F4能级寿命很长,会导致3F4能级粒子数的大量积聚,这对于传统的2μm波段(3F43H6)跃迁是一个有利因素,但是对于2.3-2.5μm波段激光产生极为不利。一方面,3F4能级粒子数的增加直接对应3H4能级有效粒子数的减少,造成泵浦能量的严重损失。另一方面3F4能级粒子数积聚后会加剧与之相关的能量转移过程,引入新的损耗,如上转换过程会导致一个Tm3+离子回到基态,另一个Tm3+离子被激发到3H5能级,之后通过非辐射跃迁到低能级时,又会在激光介质内部产生额外的热量。综上,基于约0.8μm波段激光泵浦掺铥激光介质产生2.3-2.5μm波段激光存在以下问题:(1)量子亏损大,激光介质会产生较高的热负荷;(2)3H43H5激光跃迁与高增益的3F43H6跃迁存在着强烈的竞争。
发明内容
本发明公开了一种基于GSA和ESA双波长泵浦2.3-2.5μm波段掺铥激光器方案。如图1所示,通过GSA泵浦源泵浦,基于3H63H4跃迁导致的基态吸收,将掺铥激光介质中Tm3+离子抽运到3H4能级,实现该能级粒子数第一次布局。同时利用3H4+3H63F4+3F4交叉驰豫过程会进一步实现亚稳态3F4能级的粒子数布局。进一步通过ESA泵浦源泵浦,利用3F43H4跃迁导致的激发态吸收,将3F4能级上积聚的粒子数精准抽运至3H4能级,实现3H4能级粒子数的第二次布局。本发明提出的GSA和ESA双波长泵浦方案可以构建2.3-2.5μm波段激光上能级3H4能级粒子数双布局机制,有效增加3H4能级的粒子数布局,提高2.3-2.5μm波段激光输出功率。
本发明是以如下技术方案实现的:一种基于GSA和ESA双波长泵浦2.3-2.5μm波段掺铥激光器,由GSA泵浦源、ESA泵浦源、泵浦光合束器、输入镜、掺铥激光介质及输出镜组成。所述的GSA泵浦源(1)和ESA泵浦源(2)分别发射GSA泵浦光和ESA泵浦光,经泵浦光合束器(3)及输入镜(4)入射至掺铥激光介质(5),输入镜(4)与输出镜(6)组成2.3-2.5μm波段激光谐振腔,产生2.3-2.5μm波段激光。
进一步的,如图1所示,GSA为基态吸收,对应掺铥激光介质的3H63H4跃迁,其作用为实现3H4能级的粒子数布局,同时基于交叉驰豫过程会进一步实现亚稳态3F4能级的粒子数布居。
进一步的,如图1所示,ESA为激发态吸收,对应掺铥激光介质的3F43H4跃迁,其作用为将积聚在3F4能级上铥离子精准抽运至3H4能级,进一步提高3H4能级的粒子数布局。
进一步的,所述的掺铥激光介质为Tm:YAG、Tm:YAP、Tm:YLF固体介质、掺铥氟化物光纤介质中的任意一种。
所述泵浦光合束器的作用为实现GSA泵浦光与ESA泵浦光的合束,共同入射至掺铥激光介质。
所述输入镜所镀制膜系的作用为对GSA泵浦光、ESA泵浦光具有高透射率,同时对2.3-2.5μm波段具有高反射率。输出镜所镀制膜系的作用为对2.3-2.5μm波段激光具有部分反射率,从而实现2.3-2.5μm波段激光输出。
本发明提出了一种基于GSA和ESA双波长泵浦2.3-2.5μm波段掺铥激光器方案。GSA为基态吸收(ground state absorption,GSA),对应掺铥激光介质的3H63H4跃迁,ESA为激发态吸收(excited state absorption,ESA),对应掺铥激光介质的3F43H4的跃迁。通过GSA泵浦源泵浦,基于3H63H4跃迁导致的基态吸收,将掺铥激光介质中Tm3+离子抽运到3H4能级,实现该能级粒子数第一次布局。同时利用3H4+3H63F4+3F4的交叉驰豫(Crossrelaxation,CR)过程会进一步实现亚稳态3F4能级的粒子数布居。进一步通过ESA泵浦源泵浦,利用3F43H4跃迁导致的激发态吸收,将3F4能级上积聚的粒子数精准抽运至3H4能级,实现3H4能级粒子数的第二次布局。因此本发明提出的GSA和ESA双波长泵浦方案可以构建3H43H5跃迁激光上能级粒子数双布局机制,有效增加3H4能级的粒子数布局,提高2.3-2.5μm波段激光输出功率。
有益效果:与现有技术方案相比,本发明的技术方案具有以下有益技术效果:
(1)由于Tm3+离子间交叉弛豫过程而导致3F4能级的粒子数捕获效应是限制2.3-2.5μm波段掺铥激光器功率提升重要因素。本发明引入ESA泵浦过程可以将积聚在3F4能级的Tm3+离子精准抽运至3H4能级,从而构建GSA(3H63H4)和ESA(3F43H4)双波长泵浦的新机制。
(2)与现有0.8μm单波长泵浦方案相比,本发明提出GSA和ESA双波长泵浦2.3-2.5μm波段掺铥激光器方案,可以有效降低0.8μm波段单波长激光泵浦时掺铥激光介质3F4能级的粒子数捕获效应,通过引入3F43H4跃迁对应的ESA过程,将积聚在3F4能级上铥离子精准抽运至3H4能级,有效增加3H43H5激光跃迁所需的粒子数布局。因此可以看到与传统0.8μm波段泵浦机制不同的是,在该双波长泵浦方案中,Tm离子间的交叉弛豫过程对2.3-2.5μm激光产生起到了积极的作用。
附图说明
图1为Tm离子能级结构图;
图2为GSA和ESA双波长泵浦2.3-2.5μm掺铥激光器示意图;
其中,1-GSA泵浦源;2-ESA泵浦源;3-泵浦光合束器;4-输入镜;5-掺铥激光介质;6-输出镜。
具体实施方式
实施例:
下面以0.8μm和1.45μm双波长泵浦2.3μmTm:YLF激光器为例,说明本发明所提出的基于GSA和ESA双波长泵浦2.3-2.5μm掺铥激光器方案。
根据Tm:YLF的基态吸收光谱及激发态吸收光谱,3H63H4跃迁对应的吸收带处于0.78-0.8μm波段,峰值吸收波长位于780nm,3F43H4跃迁对应的吸收带处于1.45μm波段,峰值吸收波长位于1452nm。因此,GSA与ESA泵浦源分别选用商品化的780nm和1452nm半导体激光器。780nm和1452nm波段激光双波长泵浦时,3H4激光上能级粒子数布局过程可以分为以下两步:第一步是通过780nm波段激光泵浦,基于3H63H4跃迁导致的基态吸收,将Tm3+离子抽运到3H4能级,实现该能级粒子数第一次布局。同时交叉驰豫过程会进一步实现亚稳态3F4能级的粒子数布局。第二步通过1452nm波段激光泵浦,利用3F43H4跃迁导致的激发态吸收,将3F4能级上积聚的粒子数精准抽运至3H4能级,实现2.3μm激光上能级3H4的第二次布局。
泵浦光合束器镀膜情况为:一面对780nm镀制减反膜(45度入射),另一面镀制780nm高透膜及1452nm高反膜(45度入射),780nm和1452nm半导体激光器发出的泵浦经准直聚焦后由泵浦光合束器合成一路泵浦光,入射至Tm:YLF晶体,Tm:YLF晶体的铥离子掺杂浓度可选择为1.5at.%。
输入镜的镀膜情况为:一面对780nm和1452nm镀制减反膜,另一面镀制780nm和1452nm高透及2250-2400nm高反射膜。输出镜的镀膜情况为:一面镀制2250-2400nm部分反射膜(典型透过率为1.5%),另一面镀制2250-2400nm减反膜。

Claims (2)

1.一种基于GSA和ESA双波长泵浦2.3-2.5μm波段掺铥激光器,其特征在于:该激光器包括GSA泵浦源(1)和ESA泵浦源(2),所述GSA泵浦源(1)和ESA泵浦源(2)分别发射GSA泵浦光和ESA泵浦光,经泵浦光合束器(3)及输入镜(4)入射至掺铥激光介质(5),输入镜(4)与输出镜(6)组成2.3-2.5μm波段激光谐振腔,产生2.3-2.5μm波段激光;
GSA为基态吸收,对应掺铥激光介质的3H63H4跃迁;ESA为激发态吸收,对应掺铥激光介质的3F43H4跃迁;通过GSA泵浦源(1)泵浦,基于3H63H4跃迁导致的基态吸收,将掺铥激光介质中Tm3+离子抽运到3H4能级,实现该能级粒子数第一次布局,同时利用3H4+3H63F4+3F4的交叉驰豫过程实现亚稳态3F4能级的粒子数布居;通过ESA泵浦源(2)泵浦,利用3F43H4跃迁导致的激发态吸收,将3F4能级上积聚的粒子数精准抽运至3H4能级,实现3H4能级粒子数的第二次布局。
2.根据权利要求1所述的一种基于GSA和ESA双波长泵浦2.3-2.5μm波段掺铥激光器,其特征在于:所述掺铥激光介质为Tm:YAG、Tm:YAP、Tm:YLF固体介质、掺铥氟化物光纤介质中的任意一种。
CN202011456628.4A 2020-12-10 2020-12-10 一种基于gsa和esa双波长泵浦掺铥激光器 Active CN112563872B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011456628.4A CN112563872B (zh) 2020-12-10 2020-12-10 一种基于gsa和esa双波长泵浦掺铥激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011456628.4A CN112563872B (zh) 2020-12-10 2020-12-10 一种基于gsa和esa双波长泵浦掺铥激光器

Publications (2)

Publication Number Publication Date
CN112563872A CN112563872A (zh) 2021-03-26
CN112563872B true CN112563872B (zh) 2022-06-17

Family

ID=75062697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011456628.4A Active CN112563872B (zh) 2020-12-10 2020-12-10 一种基于gsa和esa双波长泵浦掺铥激光器

Country Status (1)

Country Link
CN (1) CN112563872B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115133390A (zh) * 2022-08-29 2022-09-30 山东大学 一种用于无创血糖检测的中红外固体激光器
CN116742463B (zh) * 2023-08-15 2024-04-02 长春理工大学 一种双波长泵浦键合晶体的中红外激光器
CN117317792B (zh) * 2023-11-29 2024-02-23 长春理工大学 一种基态诱导激发态混合泵浦中红外激光器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818129A (ja) * 1994-06-29 1996-01-19 Matsushita Electric Ind Co Ltd 希土類イオン添加短波長レーザ光源装置及び希土類イオン添加光増幅器
CN103762488A (zh) * 2014-01-15 2014-04-30 江苏师范大学 高功率窄线宽可调谐激光器
CN104852260A (zh) * 2015-05-29 2015-08-19 电子科技大学 双波长调q脉冲光纤激光器
CN106374330A (zh) * 2016-12-02 2017-02-01 江苏师范大学 一种腔内泵浦掺铥固体激光器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969154A (en) * 1989-12-22 1990-11-06 The United States Of America As Represented By The Secretary Of The Navy Room-temperature, flashpumped, 2 micron solid state laser with high slope efficiency
EP1241747A1 (en) * 2001-03-16 2002-09-18 Alcatel Pumping scheme for waveguide amplifier
US7113328B2 (en) * 2002-03-11 2006-09-26 Telefonaktiebolaget Lm Ericsson (Publ) Dual-wavelength pumped thulium-doped optical fiber amplifier
CN1317600C (zh) * 2003-12-30 2007-05-23 武汉光迅科技股份有限公司 用自发辐射光源为辅助泵浦的增益位移型掺铥光纤放大器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818129A (ja) * 1994-06-29 1996-01-19 Matsushita Electric Ind Co Ltd 希土類イオン添加短波長レーザ光源装置及び希土類イオン添加光増幅器
CN103762488A (zh) * 2014-01-15 2014-04-30 江苏师范大学 高功率窄线宽可调谐激光器
CN104852260A (zh) * 2015-05-29 2015-08-19 电子科技大学 双波长调q脉冲光纤激光器
CN106374330A (zh) * 2016-12-02 2017-02-01 江苏师范大学 一种腔内泵浦掺铥固体激光器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Lauren Guillemot等;Thulium laser at ∼2.3 μm based on upconversion pumping;《Optics Letters》;20190815;第44卷(第16期);第4071-4074页 *

Also Published As

Publication number Publication date
CN112563872A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
CN112563872B (zh) 一种基于gsa和esa双波长泵浦掺铥激光器
Fields et al. Highly efficient Nd: YVO4 diode‐laser end‐pumped laser
Koch et al. Photon avalanche upconversion laser at 644 nm
US6891878B2 (en) Eye-safe solid state laser system and method
Kissel et al. High-power diode laser pumps for alkali lasers (DPALs)
Allen et al. Diode‐pumped single‐mode fluorozirconate fiber laser from the 4 I 11/2→ 4 I 13/2 transition in erbium
US5590141A (en) Method and apparatus for generating and employing a high density of excited ions in a lasant
Wang et al. GSA and ESA dual-wavelength pumped 2.3 μm Tm: YLF laser on the 3 H 4→ 3 H 5 transition
Page et al. Demonstrations of diode-pumped and grating-tuned ZnSe: Cr2+ lasers
Schellhorn et al. Modeling of intracavity-pumped quasi-three-level lasers
US4995046A (en) Room temperature 1.5 μm band quasi-three-level laser
JP2000340865A (ja) レーザ発振器及びレーザ増幅器
JP2002329908A (ja) レーザ増幅器
CN115693378A (zh) 一种高效率产生2.3μm激光的装置及方法
US20050047466A1 (en) Gain boost with synchronized multiple wavelength pumping in a solid-state laser
US5388112A (en) Diode-pumped, continuously tunable, 2.3 micron CW laser
Kalachev et al. Study of a Tm: Ho: YLF laser pumped by a Raman shifted erbium-doped fibre laser at 1678 nm
CN112688146A (zh) 一种1064nm腔内泵浦2.3μm掺铥固体激光器
CN218632780U (zh) 一种高效率产生2.3μm激光的装置
CN117317792B (zh) 一种基态诱导激发态混合泵浦中红外激光器
Tonelli et al. Comparison of Tm-sensitized Ho: Yag and Ho: YLF crystals for a laser-pumped 2 μm CW oscillator
CN210296860U (zh) 光纤激光器
Fan Quasi-three-level lasers
Fromzel et al. Efficiency and tuning of the erbium-doped glass lasers
CN113991417A (zh) 1.6μm掺铒激光腔内泵浦的2μm掺铥固体激光器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant