CN112553747B - 一种混杂纤维经编格栅的制备方法 - Google Patents

一种混杂纤维经编格栅的制备方法 Download PDF

Info

Publication number
CN112553747B
CN112553747B CN202011567244.XA CN202011567244A CN112553747B CN 112553747 B CN112553747 B CN 112553747B CN 202011567244 A CN202011567244 A CN 202011567244A CN 112553747 B CN112553747 B CN 112553747B
Authority
CN
China
Prior art keywords
modulus
warp
fiber
grid
branches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011567244.XA
Other languages
English (en)
Other versions
CN112553747A (zh
Inventor
梁训美
汪昕
吴智深
张晓非
赵纯锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Road Engineering Materials Co ltd
Southeast University
Original Assignee
Shandong Road Engineering Materials Co ltd
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Road Engineering Materials Co ltd, Southeast University filed Critical Shandong Road Engineering Materials Co ltd
Priority to CN202011567244.XA priority Critical patent/CN112553747B/zh
Publication of CN112553747A publication Critical patent/CN112553747A/zh
Application granted granted Critical
Publication of CN112553747B publication Critical patent/CN112553747B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/693Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural or synthetic rubber, or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/06Glass
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明公开了一种混杂纤维经编格栅的制备方法,包括以下步骤:配置经向格栅支,所述经向格栅支由高模量纤维和低模量纤维混合而成;配置纬向格栅支,所述纬向格栅支由高模量纤维和低模量纤维混合而成;对经向格栅支和纬向格栅支的低模量纤维纱施加预张力;采用施加预应力后的经向格栅支和纬向格栅支进行正交编织,得到横纵交织的经编格栅;对编织后的经编格栅进行浸渍液浸渍并固化;将固化成型后的格栅进行放张预应力。本发明经编格栅固化成型后低模量纤维中存在初始应力,减少低模量纤维纱的受力滞后,以保证混杂纤维单支格栅受力均匀、变形协调,这样充分利用了不同纤维的优势,解决了单一纤维格栅强度低、延性差的问题。

Description

一种混杂纤维经编格栅的制备方法
技术领域
本发明涉及复合材料技术领域,尤其涉及一种混杂纤维经编格栅的制备方法。
背景技术
纤维经编格栅因其优异的力学性能已在土木工程中被广泛使用,应用在水泥混凝土结构中,增强混凝土克服混凝土抗拉强度低、延性差、抗冲击性能差等问题;用于增强道路工程中沥青混合料面层,提高路面稳定性、延缓反射裂缝、提高抗疲劳性能等;还可应用于路基、路堤、边坡的加固等,提高受力稳定性。
纤维经编格栅所用的纤维可为碳纤维、玻璃纤维、玄武岩纤维等,碳纤维强度高、模量高,但是典型的脆性材料,变形能力较差,且价格较高,用于增强结构易发生脆性断裂;玻璃纤维延性较好,价格相对较低,但强度与模量偏低,用于增强加固致使刚度和承载力均较低;玄武岩纤维力学性能与玻璃纤维相当,且具有更好的耐温性能和耐腐蚀性能。因此为充分发挥不同纤维的优势,解决单一纤维的缺陷,混杂纤维复合材料应运而生。混杂纤维经编格栅可充分发挥不同模量、不同强度纤维的优势,制得的格栅制品具有强度高、延性好、变形协调、受力均匀的特点。
现有的混杂纤维经编格栅的制备方法主要有格栅支内采用相同的纤维,格栅支之间采用不同的纤维交替出现,或者经纬向采用不同的纤维,此两种方法均存在混杂后的纤维经编格栅受力不均匀,无法充分利用不同纤维的优势。
发明内容
本发明解决的技术问题在于提供混杂纤维经编格栅的制备方法,该方法制备的混杂纤维经编格栅具有强度高、延性好、受力均匀、变形协调的特点。
有鉴于此,本发明提供了一种混杂纤维经编格栅的制备方法,包括以下步骤:
配置经向格栅支,所述经向格栅支由高模量纤维和低模量纤维混合而成;
配置纬向格栅支,所述纬向格栅支由高模量纤维和低模量纤维混合而成;
对经向格栅支和纬向格栅支的低模量纤维纱施加预张力;
采用施加预应力后的经向格栅支和纬向格栅支进行正交编织,得到横纵交织的编织网;
将编织后的经、纬向纱线经过浸渍液浸渍,并高温固化;
将固化成型后的格栅进行放张预应力。
优选的,所述纤维为高模量纤维和低模量纤维;
优选的,所述的高模量纤维布置于格栅支的中部,低模量纤维布置于格栅支的边侧,在单支格栅中高模量纤维占单支格栅纤维总量的15%~25%。
优选的,所述的高模量纤维为碳纤维,其抗拉强度为4800MPa左右,模量为230GPa左右,延伸率为1.8%,所述的低模量纤维为E-玻璃纤维或玄武岩纤维,E-玻璃纤维强度为3000MPa左右,模量为72GPa左右,延伸率为4.1%,玄武岩纤维强度为3000MPa,模量为85Gpa,延伸率为3.1%。
优选的,所述的混杂纤维格栅中,所述纤维的含量为85~92wt%,所述的浸渍涂层的含量8~15wt%。
优选的,所述的预张力施加需在混杂格栅编织前进行,混杂格栅编织、浸渍完成高温固化后再进行预张力放张。
优选的,所述的编织过程为分批段编织,每批段编织的长度最长不超过编织平台的长度,宽度最宽不超过编织平台宽度,具体可依据设备及需求进行调整。
优选的,所述的格栅支中纤维纱为连续的纤维纱,纤维纱的粗细依据具体的要求可进行调整。
优选的,所述的浸渍液为可为丁苯胶乳、丙烯酸乳液、环氧树脂、乙烯基树脂、酚醛树脂等。
本发明提供了一种混杂纤维经编格栅的制备方法,包括:配置经、纬向格栅支,经、纬向格栅支由高模量纤维和低模量纤维混合而成,经编前对经、纬向格栅支中的低模量纤维纱施加预张力,并在高温固化成型后对格栅进行预张力放张,固化成型后低模量纤维中存在初始应力,减少低模量纤维纱的受力滞后,以保证混杂纤维单支格栅受力均匀、变形协调,这样充分利用了不同纤维的优势,解决了单一纤维格栅强度低、延性差的问题。
与现有技术相比,本发明的混杂纤维经编格栅通过经编工艺成型,在单支格栅中混杂有高、低模量纤维格栅,受力更加均匀,可以更好的利用不同纤维的优势,并对低模量纤维束施加预张力,以保证受力均匀、协调变形。利用本发明方法制得的混杂纤维经编格栅具有强度高、延性好、受力均匀、变形协调的特点。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明实施例公开了混杂纤维经编格栅的制备方法,包括以下步骤:
配置经向格栅支,所述经向格栅支由高模量纤维和低模量纤维混合而成;
配置纬向格栅支,所述纬向格栅支由高模量纤维和低模量纤维混合而成;
对经向格栅支和纬向格栅支的低模量纤维纱施加预张力;
采用施加预应力后的经向格栅支和纬向格栅支进行正交编织,得到横纵交织的编织网;
将编织后的经、纬向纱线经过浸渍液浸渍,并高温固化;
将固化成型后的格栅进行放张预应力。
按照本发明,制备的混杂纤维经编格栅的过程中,首先高、低模量的纤维纱需要布置于经、纬向的格栅支中,使低模量纤维纱线位于格栅支的外侧,高模量纤维纱线为于格栅支的内侧。高模量纤维纱在单支格栅中的体积含量为15%~25%。高模量纤维纱为碳纤维,低模量纤维纱为玻璃纤维或玄武岩纤维。低模量纤维在经编前需通过预应力施加装置施加预张力。所述的横纵交织纤维纱通过经编线编织后,再经浸渍液浸渍并高温固化,所述的浸渍液可为丁苯胶乳、丙烯酸乳液、环氧树脂、乙烯基树脂、酚醛树脂等。所述的高温固化的具体温度及时间根据所选的浸渍液而定。
实施例1
制备碳纤维、玻璃纤维混杂格栅,配置碳纤维、玻璃纤维的经、纬向混杂格栅支,经、纬向的每支混杂格栅中包含有三束纤维纱,高模量碳纤维纱位于格栅支的中部位置,两束低模量的玻璃纤维纱位于格栅支的边侧位置,碳纤维纱含量占单支格栅纤维纱总体积含量的25%,经、纬向纤维纱布设好后对经、纬向格栅支中的两束低模量玻璃纤维纱施加该束纤维理论承载力的20%作为预张力,再通过经向的纤维经编线将横纵交织的纤维纱束进行编织,将编织好的格栅经过丁苯胶乳浸渍,并在温度120℃下固化10min,将固化成型后的格栅进行放张预应力,并进行收卷,此时格栅支中的低模量纤维纱存在初始的应力,以保证受力时的协调变形,完成收卷后进行下一批段的格栅编织。混杂后的格栅的延伸率为2.9%,相较于原碳纤维格栅的延伸率1.5%,混杂格栅的延性提升93%;混杂后格栅的强度为2700MPa,模量为114GPa,相较于原玻璃纤维格栅的强度1800MPa,模量75GPa,混杂格栅的强度提升50%,模量提升52%,充分改善了原有格栅的性能。
实施例2
制备碳纤维、玄武岩纤维混杂格栅,配置碳纤维、玄武岩纤维的经、纬向混杂格栅支,经、纬向的每支混杂格栅中包含有四束纤维纱,两束高模量的碳纤维纱位于格栅支的中部位置,两束低模量的玻璃纤维纱位于格栅支的边侧位置,碳纤维纱含量占单支格栅纤维纱总量的15%,经、纬向纤维纱布设好后,对经、纬向格栅支中的两束低模量玄武岩纤维纱施加该束玄武岩纤维纱理论承载力的20%作为预张力,再通过经向的纤维经编线将横纵交织的纤维纱束进行编织,将编织好的格栅经过环氧树脂浸渍,并在温度165℃下固化10min,将固化成型后的格栅进行放张预应力,并进行收卷,此时格栅支中的低模量纤维纱存在初始的应力,以保证受力时的协调变形,完成收卷后进行下一批段的格栅编织。混杂后格栅的强度为2900MPa,模量为98GPa,相较于原玄武岩纤维格栅的强度1900MPa,模量85GPa,混杂格栅的强度提升53%,模量提升15%,充分改善了原有格栅的性能。
实施例3
制备碳纤维、玄武岩纤维混杂格栅,配置碳纤维、玄武岩纤维的经、纬向混杂格栅支,经、纬向的每支混杂格栅中包含有四束纤维纱,两束高模量的碳纤维纱位于格栅支的中部位置,两束低模量的玻璃纤维纱位于格栅支的边侧位置,碳纤维纱含量占单支格栅纤维纱总量的20%,经、纬向纤维纱布设好后,对经、纬向格栅支中的两束低模量玄武岩纤维纱施加该束玄武岩纤维纱理论承载力的20%作为预张力,再通过经向的纤维经编线将横纵交织的纤维纱束进行编织,将编织好的格栅经过环氧树脂浸渍,并在温度165℃下固化10min,将固化成型后的格栅进行放张预应力,并进行收卷,此时格栅支中的低模量纤维纱存在初始的应力,以保证受力时的协调变形,完成收卷后进行下一批段的格栅编织。混杂后的格栅的延伸率为2.5%,相较于原碳纤维格栅的延伸率1.5%,混杂格栅的延性提升67%;混杂后格栅的强度为3100MPa,模量为114GPa,相较于原玄武岩纤维格栅的强度1900MPa,模量85GPa,混杂格栅的强度提升63%,模量提升34%,充分改善了原有格栅的性能。

Claims (7)

1.一种混杂纤维经编格栅的制备方法,其特征在于,包括以下步骤:
配置经向格栅支,所述经向格栅支由高模量纤维和低模量纤维混合而成;
配置纬向格栅支,所述纬向格栅支由高模量纤维和低模量纤维混合而成;
对经向格栅支和纬向格栅支中的低模量纤维纱施加预张力;
采用施加预应力后的经向格栅支和纬向格栅支进行正交编织,得到横纵交织的经编格栅;
对编织后的经编格栅进行浸渍液浸渍;
对浸渍液浸渍后的经编格栅进行高温固化;
将固化成型后的格栅进行放张预应力;
所述经向格栅支中高模量纤维占单支格栅纤维总体积的15%~25%;所述纬向格栅支中高模量纤维占单支格栅纤维总量的15%~25%。
2.根据权利要求1所述的制备方法,其特征在于,所述高模量纤维为碳纤维,其抗拉强度为4800MPa左右,模量为230GPa左右,延伸率为1.8%;所述低模量纤维为E-玻璃纤维或玄武岩纤维,E-玻璃纤维强度为3000MPa左右,模量为75GPa左右,延伸率为4.1%,玄武岩纤维强度为3000MPa,模量为85Gpa,延伸率为3.1%。
3.根据权利要求1所述的制备方法,其特征在于,所述经向格栅支和所述纬向格栅支中,高模量纤维布置于格栅支的中部,低模量纤维布置于格栅支的边侧。
4.根据权利要求1所述的制备方法,其特征在于,高温固化的温度为110~180℃,时间为5~20min。
5.根据权利要求1所述的制备方法,其特征在于,所述的混杂纤维格栅中,所述纤维的含量为85~92wt%,所述的浸渍涂层的含量8~15wt%。
6.根据权利要求5所述的制备方法,其特征在于,所述的混杂纤维 格栅的浸渍涂层的含量通过控制浸渍时间来保证,浸渍时间为3~5min。
7.根据权利要求1所述的制备方法,其特征在于,所述浸渍液为丁苯胶乳、丙烯酸乳液、环氧树脂、乙烯基树脂或酚醛树脂。
CN202011567244.XA 2020-12-25 2020-12-25 一种混杂纤维经编格栅的制备方法 Active CN112553747B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011567244.XA CN112553747B (zh) 2020-12-25 2020-12-25 一种混杂纤维经编格栅的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011567244.XA CN112553747B (zh) 2020-12-25 2020-12-25 一种混杂纤维经编格栅的制备方法

Publications (2)

Publication Number Publication Date
CN112553747A CN112553747A (zh) 2021-03-26
CN112553747B true CN112553747B (zh) 2022-08-09

Family

ID=75033082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011567244.XA Active CN112553747B (zh) 2020-12-25 2020-12-25 一种混杂纤维经编格栅的制备方法

Country Status (1)

Country Link
CN (1) CN112553747B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114875672B (zh) * 2022-04-25 2023-06-23 江南大学 一种增强混凝土用经编间隔织物的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101666137A (zh) * 2009-07-30 2010-03-10 华东交通大学 一种碳纤维/玄武岩纤维混杂织物格栅
CN201660735U (zh) * 2009-12-25 2010-12-01 中国建筑科学研究院 一种碳玻璃玄武岩单向混杂纤维布
CN106945310A (zh) * 2016-11-09 2017-07-14 江苏九鼎新材料股份有限公司 一种玻璃纤维拉挤格栅连续化生产线
CN106836651B (zh) * 2017-02-27 2023-07-14 中交四航工程研究院有限公司 混凝土面层抗裂用浮点格栅网、其制造方法及应用
CN107059404B (zh) * 2017-05-08 2019-05-07 北京普诺泰新材料科技有限公司 一种抗变形材料及其制备方法和应用
CN109707918A (zh) * 2018-12-17 2019-05-03 巢湖鹏远金属焊管有限公司 一种不锈钢管表面处理方法
CN211036596U (zh) * 2019-10-24 2020-07-17 合肥浩翰新型材料有限公司 整体增强钢塑土工格栅
CN112048925A (zh) * 2020-08-10 2020-12-08 山东大庚工程材料科技有限公司 一种玄武岩纤维格栅及其制备方法

Also Published As

Publication number Publication date
CN112553747A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
Codispoti et al. Mechanical performance of natural fiber-reinforced composites for the strengthening of masonry
KR101860800B1 (ko) 보강섬유그리드와, 그 보강섬유그리드를 도포하는 도포장치 및 그 보강섬유그리드와 도포장치를 이용한 변형방지 보강 아스팔트 포장 시공방법
Das et al. Applications of fiber reinforced polymer composites (FRP) in civil engineering
CN102021886B (zh) 桥梁拉索用混合型frp筋及其制作方法
CN102235095B (zh) 一种高强度纤维复合材料片材的制备方法
CN107443542B (zh) 一种frp预应力筋无砟轨道板及其制备方法
CN1294236A (zh) 结构增强件和利用该增强件增强一产品的方法
CN112553747B (zh) 一种混杂纤维经编格栅的制备方法
KR102196438B1 (ko) 보강용 탄소섬유 그리드 및 이의 제조방법
DE102008040919A1 (de) Verfahren zur Herstellung eines Betonbauteiles mit einer polymergetränkten textilen Bewehrung sowie Betonbauteil mit einer polymergetränkten textilen Bewehrung
CN102041870B (zh) 混合型碳纤维板及其制作方法
CN108863200B (zh) 用于修补桥梁伸缩缝的水泥基材料、织物混凝土及其制备方法及桥梁伸缩缝修补方法
CN110821047A (zh) 一种复合钢筋frp箍筋及其制备方法
Chin et al. Strengthening of reinforced concrete beams using bamboo fiber/epoxy composite plates in flexure
JP4708534B2 (ja) 繊維強化樹脂成形体からなる補修・補強材およびその製造方法並びに補修・補強材を使用したセメント系構造体
CN108843042A (zh) 一种复合约束加固混凝土柱及其加固方法
CN211313090U (zh) 一种复合钢筋frp箍筋
CN111070735B (zh) 一种预应力形状记忆合金-连续纤维复合筋的制备及其使用方法
DE202004007601U1 (de) Multiaxialgelege
CN105421330B (zh) 一种复合针刺布经编格栅及其生产方法
CA3116064A1 (en) Composite rebar
CN113152201B (zh) 一种混杂纤维经编格栅
CN109822931B (zh) 一种增强型天然纤维复合材料及其制备方法
JPH04216749A (ja) 網状成形体
Flayeh et al. The use of fiberglass textile-reinforced mortar (TRM) jacketing system to enhance the load capacity and confinement of concrete columns

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant