CN112551482B - 一种微棒腔自由频谱宽度的精细控制方法 - Google Patents

一种微棒腔自由频谱宽度的精细控制方法 Download PDF

Info

Publication number
CN112551482B
CN112551482B CN202011437379.4A CN202011437379A CN112551482B CN 112551482 B CN112551482 B CN 112551482B CN 202011437379 A CN202011437379 A CN 202011437379A CN 112551482 B CN112551482 B CN 112551482B
Authority
CN
China
Prior art keywords
micro
fsr
rod cavity
annealing
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011437379.4A
Other languages
English (en)
Other versions
CN112551482A (zh
Inventor
温钦
崔雯雯
耿勇
周恒�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202011437379.4A priority Critical patent/CN112551482B/zh
Publication of CN112551482A publication Critical patent/CN112551482A/zh
Application granted granted Critical
Publication of CN112551482B publication Critical patent/CN112551482B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00047Cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00642Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
    • B81C1/00714Treatment for improving the physical properties not provided for in groups B81C1/0065 - B81C1/00706
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0035Testing
    • B81C99/004Testing during manufacturing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种微棒腔自由频谱宽度的精细控制方法,首先根据目标FSR选择相应尺寸的玻璃棒进行微棒腔的加工,然后根据测得的微棒腔FSR与目标FSR的差值,最后通过激光迭代退火技术对微棒腔FSR进行迭代优化,从而实现FSR的精细控制并获得理想的FSR,这样可以实现不同精度的FSR的控制,并且迭代优化后的微腔能够保持超高Q值,从而有利于耗散克尔孤子的产生及应用。

Description

一种微棒腔自由频谱宽度的精细控制方法
技术领域
本发明属于光学器件技术领域,更为具体地讲,涉及一种微棒腔自由频谱宽度的精细控制方法。
背景技术
回音壁模式(whispering-gallery mode,后简称WGM)光学微腔,通过全反射的形式将光限制在很小的空间内,具有超高的品质因数(Q-factor,后简称Q值)与较小的模式体积。满足特定波长的光在其中发生谐振,使腔内具有极高的能量密度,可以极大地提升光与物质的相互作用,因此成为研究光学非线性现象的理想平台。耗散克尔孤子,是一种基于高Q值光学微腔产生的锁模的光学频率梳。因为其具有较高的重复频率、较好的相干性以及光滑的频谱包络,耗散克尔孤子在不同领域得到广泛应用。数十年来,耗散克尔孤子已经在由不同材料和不同加工技术所制造的微腔中产生,其重复频率覆盖从数十GHz到THz的范围。
在双梳光谱学以及超大容量相干光通信等应用中,需要产生两个重复频率相近的耗散克尔孤子,而耗散克尔孤子的重复频率主要由光学微腔的自由频谱宽度(freespectral range,后简称FSR)所决定。对于WGM光学微腔,其FSR与微腔的半径大致成反比关系。由于WGM光学微腔较小的尺寸,其半径上较小的偏差将会较大地影响微腔的FSR。因此,各种精密加工的技术被用于精确地控制光学微腔的半径,从而控制微腔的FSR。目前,在晶片上通过光刻和干湿刻蚀制造的二氧化硅微腔以及通过高精密车床打磨加工的氟化镁微腔等平台已经实现了FSR的精确控制。本发明所针对的,是一种由二氧化碳激光器在高速旋转的玻璃棒上融刻加工的盘状光学微腔,称为微棒腔。对于微棒腔,目前仅能通过在加工前对玻璃棒的尺寸优化来实现对其FSR的控制。此优化方案仅能在微腔加工前进行,且无法实现FSR的精确控制。
因此,需要提出新的方法,实现在对微棒腔FSR进行准确测量后,还能进行精细的优化和控制。
发明内容
本发明的目的在于克服现有技术的不足,提供一种微棒腔自由频谱宽度的精细控制方法,通过激光迭代退火技术对微棒腔FSR的精细控制,从而获得理想的FSR。
为实现上述发明目的,本发明为一种微棒腔自由频谱宽度的精细控制方法,其特征在于,包括以下步骤:
(1)、构建退火时间表
(1.1)、设置退火时间t1
(1.2)、按照退火时间t1对不同半径的测试微棒腔进行激光退火,测量退火前后测试微棒腔的自由频谱宽度的变化量ΔFSR以及对应Q值,重复上述操作n次,最后计算平均值;
若Q值的平均值大于预设阈值,则将ΔFSR的平均值与对应的退火时间存入退火时间表,否则,进入放弃该数据并进入步骤(1.3);
(1.3)、设置新的退火时间t2,且t2<t1,重复步骤(1.2)过程,然后以此类推,从而构建出由不同半径的测试微棒腔的ΔFSR与对应的退火时间组成的退火时间表;
(2)、设置微棒腔的目标自由频谱宽度FSRt
(3)、根据目标自由频谱宽度计算微棒腔半径;
Figure BDA0002828960750000021
Figure BDA0002828960750000022
其中,微棒腔的自由频谱宽度为微棒腔内同族两个相邻模式之间的频率间距Δffsr或波长间距Δλfsr,c为光在真空中的速度,λ表示微棒腔谐振峰的波长,η为微棒腔的折射率,R为微棒腔半径;
(4)、根据微棒腔半径R选择对应半径为R+Δr的玻璃棒,其中,Δr为矫正量且必须为正数;将玻璃棒固定在旋转电机上并以速度v0旋转,然后使用二氧化碳激光器在旋转的玻璃棒上进行加工,加工出盘状的微棒腔;
(5)测量待优化的微棒腔的自由频谱宽度;
利用相位调制器将外腔激光器发射的激光调制出两个边带并设置其调制频率略小于FSRt,然后通过外腔激光器对微棒腔进行快速波长扫描,当激光通过锥形光纤耦合进入微棒腔后,两个调制边带会在功率透过谱中形成谐振峰,再测量调制边带的谐振峰与相邻谐振模式谐振峰的频率差值,并通过马赫曾德尔干涉仪(MZI)对测量的频率差值进行校准,从而精准测得微棒腔的自由频谱宽度FSRc
(6)、将测得的自由频谱宽度FSRc与目标自由频谱宽度FSRt进行比较,若两者的差值ΔFSR在给定的误差范围内,则微棒腔的自由频谱宽度控制结束;否则,进入步骤(7);
(7)、调整旋转电机的转速v1以及二氧化碳激光器的焦距f,使微棒腔进行激光退火时微棒腔表面缓慢而均匀受热;
(8)、微棒腔激光退火;
查询退火时间表,找到对应半径下对应的ΔFSR及退火时间,然后按照该退火时间对微棒腔进行激光退火,再返回步骤(5)。
本发明的发明目的是这样实现的:
本发明为一种微棒腔自由频谱宽度的精细控制方法,首先根据目标FSR选择相应尺寸的玻璃棒进行微棒腔的加工,然后根据测得的微棒腔FSR与目标FSR的差值,最后通过激光迭代退火技术对微棒腔FSR进行迭代优化,从而实现FSR的精细控制并获得理想的FSR,这样可以实现不同精度的FSR的控制,并且迭代优化后的微腔能够保持超高Q值,从而有利于耗散克尔孤子的产生及应用。
附图说明
图1是微棒腔的加工及FSR优化装置示意图;
图2是本发明一种微棒腔自由频谱宽度的精细控制方法流程图;
图3是FSR精确测量时的功率透过谱;
图4是30s退火时间进行4次退火后的FSR,FSR变化量以及Q值变化趋势;
图5是不同退火时间下5次退火实验对应的FSR平均变化量及平均Q值变化趋势;
图6是初始加工的微腔以及退火一次和两次后的耗散克尔孤子光谱图及其射频拍频图。
具体实施方式
下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。
实施例
图1是微棒腔的加工及FSR优化装置示意图。
在本实施例中,如图1所示,微棒腔的加工及FSR优化装置包括二氧化碳激光器,扩束-聚焦镜组,玻璃棒夹持及旋转平台组成。本实施例中,使用二氧化碳激光器作为微腔加工及激光退火的工具,激光器应具备功率动态调节功能,以适应不同加工及退火阶段的需求;通过扩束-聚焦镜组,激光以较高的能量密度聚焦到玻璃棒表面;玻璃棒夹持及旋转平台由高速旋转电机配合玻璃棒固定螺母组成,激光在高速旋转的玻璃棒上聚焦,从而实现微腔的均匀加工和处理。扩束-聚焦镜组固定于二轴电动位移台,以实现激光焦距以及加工位置的变化。
本发明针对微棒腔FSR的精细优化需求而提出,使用微棒腔的加工平台,在对微棒腔FSR进行精确测量后使用激光退火技术迭代加工,实现其FSR的精细控制。
图2是本发明一种微棒腔自由频谱宽度的精细控制方法流程图。
在本实施例中,如图2所示,本发明一种微棒腔自由频谱宽度的精细控制方法,包括以下步骤:
S1、构建退火时间表
S1.1、设置退火时间t1
S1.2、按照退火时间t1对不同半径的测试微棒腔进行激光退火,测量退火前后测试微棒腔的自由频谱宽度的变化量ΔFSR以及对应Q值,重复上述操作n次,最后计算平均值;
若Q值的平均值大于预设阈值,则将ΔFSR的平均值与对应的退火时间存入退火时间表,否则,进入放弃该数据并进入步骤S1.3;
S1.3、设置新的退火时间t2,且t2<t1,重复步骤S1.2过程,然后以此类推,从而构建出由不同半径的测试微棒腔的ΔFSR与对应的退火时间组成的退火时间表;
S2、设置微棒腔的目标自由频谱宽度FSRt
S3、根据目标自由频谱宽度计算微棒腔半径;
Figure BDA0002828960750000051
Figure BDA0002828960750000052
其中,微棒腔的自由频谱宽度为微棒腔内同族两个相邻模式之间的频率间距Δffsr或波长间距Δλfsr,c为光在真空中的速度,λ表示微棒腔谐振峰的波长,η为微棒腔的折射率,R为微棒腔半径;
S4、根据微棒腔半径R选择对应半径为R+Δr的玻璃棒,其中,Δr为矫正量且必须为正数;在本实施例中,可以根据目标FSR,选择对应半径的玻璃棒,使得加工的微棒腔的FSR尽可能接近目标值,以减少精细优化的次数。
将玻璃棒固定在旋转电机上并以速度v0旋转,然后使用二氧化碳激光器在旋转的玻璃棒上进行加工,加工出盘状的微棒腔,微棒腔具有超高Q值,以保证光学非线性效应在其中的产生;
S5、测量待优化的微棒腔的自由频谱宽度;
在本实施例中,为了解决激光器扫描速度不稳定的问题,使用边带调制方案来提高测量精度。
具体过程为:利用相位调制器将外腔激光器发射的激光调制出两个边带并设置其调制频率略小于FSRt,然后通过外腔激光器对微棒腔进行快速波长扫描,当激光通过锥形光纤耦合进入微棒腔后,两个调制边带会在功率透过谱中形成谐振峰,由于源于信号发生器的调制频率可以精确到Hz量级,因此只需测量调制边带与相邻谐振模式频率的差值,即可求得FSR,因此,我们提供测量调制边带的谐振峰与相邻谐振模式谐振峰的频率差值,并通过马赫曾德尔干涉仪(MZI)对测量的频率差值进行校准,从而使得测量的精度达到几十Hz的量级,进而精准测得微棒腔的自由频谱宽度FSRc
S6、将测得的自由频谱宽度FSRc与目标自由频谱宽度FSRt进行比较,若两者的差值ΔFSR在给定的误差范围内,则微棒腔的自由频谱宽度控制结束;否则,进入步骤S7;
S7、调整旋转电机的转速v1以及二氧化碳激光器的焦距f,使微棒腔进行激光退火时微棒腔表面缓慢而均匀受热,且保证Q值不受较大影响;
S8、微棒腔激光退火;
查询退火时间表,找到对应半径下对应的ΔFSR及退火时间,然后按照该退火时间对微棒腔进行激光退火,再返回步骤S5。
为了更好地说明本发明的技术效果,采用一个具体的实施例进行了实验验证。
本次实验中所采用的微棒腔加工及激光退火装置如图1所示。在微腔加工过程中,采用波长10600nm,最大输出功率30W的二氧化碳激光器,其支持以0-100%占空比工作。微腔加工过程中,焦距52.8mm的聚焦镜以正焦距、约24%的占空比工作,以加工出理想形态的微棒腔;激光退火过程中,聚焦镜较正焦距后退8mm,二氧化碳激光器以约40%的占空比工作,以使微腔表面缓慢均匀加热。加工出的微棒腔其直径约3mm,对应自由频谱宽度约22GHz。
为了对加工的微棒腔FSR进行准确测量,使用边带调制方案。外腔激光器在1550nm-1551nm的范围内以5nm/s的速度扫频,经过相位调制器后,激光通过锥形光纤耦合进入微腔,记录的功率透过谱如图3左图所示。图3左图中所框部分为目标模式谐振峰,图中箭头标注的是同族相邻模式间的FSR。图3右图则是左图中所框部分的放大图,目标模式左右两侧的谐振峰是由相邻模式相位调试边带所产生,其与目标模式频域上差值为Δf。调制频率设为fm,则FSR=fm+Δf。设定的调制频率为21.8GHz,如图3所示,测得Δf为107.0MHz,因此对应的精确测量的FSR为21.907GHz。
设定FSR优化目标为增大约100MHz,精度在10MHz以内。已测试30s退火时间对应约25MHz的FSR优化精度,故采用30s退火时间连续对微腔进行激光退火处理,每次退火后精确测量其FSR以及Q值。如图4所示,在4次退火后,微腔FSR总变化量为101.4MHz,对应Q值约2.2×108。每次退火对应FSR增大约24MHz-26MHz,Q值保持在2.0×108以上。
为了说明本发明中通过激光退火时间的改变可以实现对微棒腔FSR控制精度的改变,同时保持超高Q值,在不同退火时间下重复进行5次激光退火实验。记录不同退火时间下每次退火处理所引起的微腔FSR以及Q值的变化,5次退火的FSR变化平均值以及平均Q值如图5所示。可以看到,随着退火时间的减少,微腔FSR的平均变化量也在减小,由30s退火时间时的25MHz减少到10s退火时间时的约2MHz。同时,对应模式的Q值也随退火时间的缩短而降低,这是由于较短的退火时间会导致微腔表面熔融不完全,因为影响其光滑度。但是在所有场景下,微棒腔仍然保持了超高的Q值(>108)。
为了说明本发明通过迭代激光退火技术实现对微棒腔FSR的精确控制后,仍可以产生耗散克尔孤子,在20s的退火时间下进行了对应的实验。实验中采用辅助激光加热的方法产生耗散克尔孤子。在初始加工的微棒腔产生耗散克尔孤子并测量其重复频率后,对微棒腔进行激光退火处理,然后再次产生耗散克尔孤子并测量其重复频率。如图6所示,上方的左中右三个图分别是初始加工的微棒腔以及同一个腔分别经过一次和两次20s的激光退火后产生的耗散克尔孤子的光谱图。三个光谱图都是使用约22dBm功率的泵浦光,在1550nm附近产生的宽约20nm-30nm的耗散克尔孤子。如图6下图所示,左中右分别为对应上图三个耗散克尔孤子的射频拍频图。由图中可知,第一次激光退火后产生的孤子重复频率较初始增大7.4MHz,第二次激光退火后产生的孤子重复频率较第一次退火后增大10.7MHz。由此,证明了本发明对于微腔的FSR以及产生的耗散克尔孤子的重复频谱的精细控制作用。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

Claims (1)

1.一种微棒腔自由频谱宽度的精细控制方法,其特征在于,包括以下步骤:
(1)、构建退火时间表
(1.1)、设置退火时间t1
(1.2)、按照退火时间t1对不同半径的测试微棒腔进行激光退火,测量退火前后测试微棒腔的自由频谱宽度的变化量ΔFSR以及对应Q值,重复上述操作n次,最后计算平均值;
若Q值的平均值大于预设阈值,则将ΔFSR的平均值与对应的退火时间存入退火时间表,否则,进入放弃该数据并进入步骤(1.3);
(1.3)、设置新的退火时间t2,且t2<t1,重复步骤(1.2)过程,然后以此类推,从而构建出由不同半径的测试微棒腔的ΔFSR与对应的退火时间组成的退火时间表;
(2)、设置微棒腔的目标自由频谱宽度FSRt
(3)、根据目标自由频谱宽度计算微棒腔半径;
其中,微棒腔的自由频谱宽度为微棒腔内同族两个相邻模式之间的频率间距Δffsr和波长间距Δλfsr,c为光在真空中的速度,λ表示微棒腔谐振峰的波长,η为微棒腔的折射率,R为微棒腔半径;
(4)、根据微棒腔半径R选择对应半径为R+Δr的玻璃棒,其中,Δr矫正量且必须为正数;将玻璃棒固定在旋转电机上并以速度v0旋转,然后使用二氧化碳激光器在旋转的玻璃棒上进行加工,加工出盘状的微棒腔;
(5)、测量待优化的微棒腔的自由频谱宽度;
利用相位调制器将外腔激光器发射的激光调制出两个边带并设置其调制频率略小于FSRt,然后通过外腔激光器对微棒腔进行快速波长扫描,当激光通过锥形光纤耦合进入微棒腔后,两个调制边带会在功率透过谱中形成谐振峰,再测量调制边带的谐振峰与相邻谐振模式谐振峰的频率差值,并通过马赫曾德尔干涉仪(MZI)对测量的频率差值进行校准,从而精准测得微棒腔的自由频谱宽度FSRc
(6)、将测得的自由频谱宽度FSRc与目标自由频谱宽度FSRt进行比较,若两者的差值ΔFSR在给定的误差范围内,则微棒腔的自由频谱宽度控制结束;否则,进入步骤(7);
(7)、调整旋转电机的转速v1以及二氧化碳激光器的焦距f,使微棒腔进行激光退火时微棒腔表面缓慢而均匀受热;
(8)、微棒腔激光退火;
查询退火时间表,找到对应半径下对应的ΔFSR及退火时间,然后按照该退火时间对微棒腔进行激光退火,再返回步骤(5)。
CN202011437379.4A 2020-12-10 2020-12-10 一种微棒腔自由频谱宽度的精细控制方法 Active CN112551482B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011437379.4A CN112551482B (zh) 2020-12-10 2020-12-10 一种微棒腔自由频谱宽度的精细控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011437379.4A CN112551482B (zh) 2020-12-10 2020-12-10 一种微棒腔自由频谱宽度的精细控制方法

Publications (2)

Publication Number Publication Date
CN112551482A CN112551482A (zh) 2021-03-26
CN112551482B true CN112551482B (zh) 2023-04-18

Family

ID=75060565

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011437379.4A Active CN112551482B (zh) 2020-12-10 2020-12-10 一种微棒腔自由频谱宽度的精细控制方法

Country Status (1)

Country Link
CN (1) CN112551482B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114951961B (zh) * 2022-05-17 2023-03-07 电子科技大学 一种少模、耦合稳定的wgm光学微棒腔制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193416A (ja) * 2002-12-12 2004-07-08 Toshiba Corp レーザ線幅狭窄化装置
CN1879206A (zh) * 2003-12-16 2006-12-13 国际商业机器公司 绝缘体上硅晶片的成形绝缘层及其制造方法
FR2909368A1 (fr) * 2006-12-21 2008-06-06 Commissariat Energie Atomique Procede de realisation de micro-cavites
CN104501729A (zh) * 2014-12-04 2015-04-08 中国科学院上海微系统与信息技术研究所 一种基于mems工艺的光纤f-p应变计及成型方法
CN105428990A (zh) * 2015-12-15 2016-03-23 电子科技大学 光学微腔中克尔光梳的确定性孤子锁模方法
US10148244B1 (en) * 2015-09-15 2018-12-04 National Technology & Engineering Solutions Of Sandia, Llc Trimming method for microresonators and microresonators made thereby
CN109633821A (zh) * 2018-12-24 2019-04-16 暨南大学 一种微腔耦合系统的制备方法和微波光子滤波器
CN109809685A (zh) * 2019-03-18 2019-05-28 华南理工大学 可输出单模高性能激光的微晶玻璃回音壁模式谐振腔及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6836366B1 (en) * 2000-03-03 2004-12-28 Axsun Technologies, Inc. Integrated tunable fabry-perot filter and method of making same
US20060245456A1 (en) * 2005-04-28 2006-11-02 Precision Photonics Corporation Systems and methods for generating high repetition rate ultra-short optical pulses
US9391423B2 (en) * 2008-12-16 2016-07-12 Massachusetts Institute Of Technology Method and applications of thin-film membrane transfer
US9557556B2 (en) * 2013-03-18 2017-01-31 Si-Ware Systems Integrated apertured micromirror and applications thereof
US9505649B2 (en) * 2013-09-13 2016-11-29 Corning Incorporated Ultralow expansion glass
US9223156B2 (en) * 2014-02-14 2015-12-29 Wisconsin Alumni Research Foundation Free-space laser tuning of optical microcavities
WO2019032938A1 (en) * 2017-08-11 2019-02-14 North Carolina State University OPTICALLY TRANSPARENT MICRO-MACHINED ULTRASONIC TRANSMITTER (CMUT)

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193416A (ja) * 2002-12-12 2004-07-08 Toshiba Corp レーザ線幅狭窄化装置
CN1879206A (zh) * 2003-12-16 2006-12-13 国际商业机器公司 绝缘体上硅晶片的成形绝缘层及其制造方法
FR2909368A1 (fr) * 2006-12-21 2008-06-06 Commissariat Energie Atomique Procede de realisation de micro-cavites
CN104501729A (zh) * 2014-12-04 2015-04-08 中国科学院上海微系统与信息技术研究所 一种基于mems工艺的光纤f-p应变计及成型方法
US10148244B1 (en) * 2015-09-15 2018-12-04 National Technology & Engineering Solutions Of Sandia, Llc Trimming method for microresonators and microresonators made thereby
CN105428990A (zh) * 2015-12-15 2016-03-23 电子科技大学 光学微腔中克尔光梳的确定性孤子锁模方法
CN109633821A (zh) * 2018-12-24 2019-04-16 暨南大学 一种微腔耦合系统的制备方法和微波光子滤波器
CN109809685A (zh) * 2019-03-18 2019-05-28 华南理工大学 可输出单模高性能激光的微晶玻璃回音壁模式谐振腔及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
K. Biermann等.Controlled growth of exciton–polariton microcavities using in situ spectral reflectivity measurements.《Journal of Crystal Growth》.2011,第323卷第56-59页. *
Li Zhou等.Broadening free spectral range of an evanescent-wave pumped Whispering-Gallery-Mode fibre laser by Vernier effect.《Optics Communications》.2011,第284卷(第13期),第3387-3390页. *
Peng Shi.High-Q photonic crystal heterostructure microcavities by tuning air holes.《Optics Communications》.2019,第446卷第 88-92页. *
卢宇.基于锥形回音壁模式微腔的法诺共振研究.《中国优秀硕士论文电子期刊 基础科学》.2019,(第undefined期),全文. *
温钦等.回音壁模式光学微腔的激发模式控制.《光学学报》.2020,第40卷第156-164页. *
王博洋.回音壁模式光学微腔制备及色散设计.《中国优秀硕士论文电子期刊 基础科学》.2019,全文. *

Also Published As

Publication number Publication date
CN112551482A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
Wang et al. A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect
US8077749B2 (en) Pulsed laser source with adjustable grating compressor
US4886538A (en) Process for tapering waveguides
CN112551482B (zh) 一种微棒腔自由频谱宽度的精细控制方法
US6884960B2 (en) Methods for creating optical structures in dielectrics using controlled energy deposition
US8993919B2 (en) Laser source and laser beam machine
CN113009618A (zh) 一种利用飞秒激光直写技术制备啁啾光纤光栅的方法
JP4122386B2 (ja) テラヘルツ波発生装置あるいはテラヘルツ波増幅装置
US20050167410A1 (en) Methods for creating optical structures in dielectrics using controlled energy deposition
Xia et al. Soliton microcombs in integrated chalcogenide microresonators
CN112670806B (zh) 一种微腔孤子光频梳的移频系统及移频方法
Wen et al. Precise control of micro-rod resonator free spectral range via iterative laser annealing
Tian et al. Automatic correction assisted microwave photonic sensor system for resolution enhancement in humidity measurement
Shiozaki et al. Utilizing broadband light from a superluminescent diode for excitation of photonic crystal high-Q nanocavities
EP0302043B1 (en) Process of tapering waveguides
CN109755850B (zh) 一种基于微腔的中红外拉曼超快光纤激光振荡器
US7074342B2 (en) Method of manufacturing optical crystal element of laser
Locke et al. Performance of an unstable oscillator on a 30-kW CW gas dynamic laser
CN113169500A (zh) 通过晶体移动来控制激光束参数
CN114951961B (zh) 一种少模、耦合稳定的wgm光学微棒腔制备方法
US9341781B2 (en) Laser machining and mechanical control of optical microresonators
CN113703246A (zh) 基于负热光系数硫系微腔的孤子频梳自产生系统及方法
Zhu et al. Active bandwidth control of external-cavity system for improving mode-hop-free synchronous tuning characteristics of an external-cavity diode laser
Dikaev et al. A simple method of determining the profiles of diffused waveguides
CN114825022B (zh) 一种基于特种掺杂光纤的可调微腔孤子光频梳系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant