CN112549528A - 一种优化的挤压式3d打印电极的制备方法 - Google Patents

一种优化的挤压式3d打印电极的制备方法 Download PDF

Info

Publication number
CN112549528A
CN112549528A CN202011314372.3A CN202011314372A CN112549528A CN 112549528 A CN112549528 A CN 112549528A CN 202011314372 A CN202011314372 A CN 202011314372A CN 112549528 A CN112549528 A CN 112549528A
Authority
CN
China
Prior art keywords
electrode
preparation
extrusion type
printing electrode
steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011314372.3A
Other languages
English (en)
Inventor
董轶凡
谭卉芸
赵旖暄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN202011314372.3A priority Critical patent/CN112549528A/zh
Publication of CN112549528A publication Critical patent/CN112549528A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/002Agents changing electric characteristics
    • B29K2105/0023Agents changing electric characteristics improving electric conduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种优化的挤压式3D打印电极的制备方法,包括以下步骤:(1)将活性物质、导电剂与粘结剂混合,研磨;(2)向混合粉中加入1‑甲基‑2‑吡咯烷酮,搅拌;(3)将制备好的墨水装入注射器中,离心以排除气泡;(4)将制备好的墨水用于制造3D结构电极;(5)将3D结构浸泡在水中,用来去除溶剂,然后冷冻干燥。本发明的有益效果是:相比传统的3D打印不需要传统各种工具和多重处理程序。利用三维设计数据,可以在单个设备上快速准确地制造任意复杂形状结构的电极材料,大大减少了生产成本,缩短了处理周期。对于结构复杂的电极,制造速度也可以很快。

Description

一种优化的挤压式3D打印电极的制备方法
技术领域
本发明涉及3D打印电极领域,尤其涉及一种优化的挤压式3D打印电极的制备方法。
背景技术
如何制造高能量密度和功率密度的存储设备当前新能源研究的一个难点。而在这方面,优化电极结构显得极其重要,因为它极大地影响离子和电子的输运以及动力学反应。其中有一个较长远的策略是制造更厚的电极,具有更高的面积质量负载,以满足高能量密度的要求。
可是传统的叶片铸型厚电极限制了离子和电子在厚电极上的传输,导致功率密度较低,活性物质利用不充分。此外,活性材料在循环过程中与集电极分离,导致周期寿命缩短。
三维(3D)电池被认为是一种很有前途的替代方法,以实现高能量密度和功率密度之间的平衡。3D打印技术,又称先进增材制造技术(advanced additive manufacturing,AM),由于其能够准确、高效地构建复杂的3D结构,近年来在储能领域引起了广泛关注。重要的是,3D打印技术可以通过简单的调整打印层数、改变打印喷嘴、修改打印速度和打印压力来控制电极厚度。
与传统平面电极类似,3D印刷薄膜的厚度很小,不同之处在于,传统电池是固体结构,而薄膜电极具有各种微观结构,可以有效调节电化学性能。3D打印过程中,可以加入聚合物或纤维来赋予电极/电解的柔和性。
发明内容
有鉴于此,本发明主要解决了如何制备高能量密度和功率密度LIBs的三维自支撑厚电极的问题;本发明使用磷酸铁锂纳米颗粒和多壁碳纳米管作原料,获得3D结构电池的技术,由于多壁碳纳米管形成电极微观上的网络,增强电极孔隙率,这意味着增加比表面积从而增加电解液和电极的接触来提高能量密度。通过此技术,使所得电池更容易制造,成本更低,打印速度大幅提高,3D打印电极更平滑,性能也有相对提升。
本发明提出的一种优化的挤压式3D打印电极的制备方法,具体包括以下步骤:
S1:将活性物质、导电剂与粘结剂混合,研磨,得到混合粉;
S2:向所述混合粉中加入适量1-甲基-2-吡咯烷酮,并搅拌,得到制备好的墨水;
S3:将所述制备好的墨水装入注射器中,离心以排除所有气泡,得到排除气泡后的墨水;
S4:使用3D打印机,将所述排除气泡后的墨水用于制造电极,得到3D结构电极;
S5:将所述3D结构电机浸泡在水中,去除溶剂,并冷冻干燥得到3D打印电极。
进一步地,步骤S1中,所述活性物质为磷酸铁锂纳米颗粒;所述导电剂为多壁碳纳米管;所述粘结剂为PVDF。
进一步地,所述PVDF的相对分子质量为130万。
进一步地,所述磷酸铁锂纳米颗粒、多壁碳纳米管和PVDF按质量比7:2:1混合。
步骤S5中,冷冻干燥时间为24小时。
本发明提供的有益效果是:
(1)提供了一种简便、低成本、易于规模化的制备高比表面积增强电极性能的方法,对未来高能量密度锂离子电池的实际应用具有很大的前景。
(2)由于使用多壁碳纳米管形成电极微观上的网络结构,增强了电极的孔隙率,提高了离子和电子的传输。
附图说明
图1是本发明一种优化的挤压式3D打印电极的制备方法流程图;
图2是本发明三维点胶机制作3D结构电极示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。
请参考图1,一种优化的挤压式3D打印电极的制备方法,包括以下:
S1:将活性物质、导电剂与粘结剂混合,研磨,得到混合粉;
优选的,步骤S1中,所述活性物质为磷酸铁锂纳米颗粒;所述导电剂为多壁碳纳米管;所述粘结剂为PVDF。
所述多壁碳纳米管规格为纯度>95%,长度0.5-2μm,直径<8nm。
在一些其他实施例中,所述导电剂还可以为多壁碳纳米管(长)(纯度95%,长度10-30μm,直径8nm)或者石墨化羧基多壁碳纳米管(长)(直径8-15nm,长度10-50μm,-COH:1.28wt%)。
所述PVDF的相对分子质量为130万。
所述磷酸铁锂纳米颗粒、多壁碳纳米管和PVDF按质量比7:2:1混合。
研磨时间为若干分钟,直至成粉。
S2:向所述混合粉中加入适量1-甲基-2-吡咯烷酮,并搅拌,得到制备好的墨水;
优选的步骤S2中搅拌所用到的工具为公转自转搅拌机(ARM 310,Thinky),本领域技术人员也可选择其他具有相同作用的搅拌机;
S3:将所述制备好的墨水装入注射器中,离心以排除所有气泡,得到排除气泡后的墨水;
S4:使用3D打印机,将所述排除气泡后的墨水用于制造电极,得到3D结构电极;
所述3D打印机为全自动三维点胶机,请参考图2,图2是本发明三维点胶机制作3D结构电极示意图。
将装有墨水的针管装在三维点胶机的针管内,针头与平台保持适当距离,根据设定的3D结构电极形状结构,即可打印出所需3D结构电极;图2中右侧上部分即为制作好的3D结构电极,右侧下部分为将上部分放大10倍后的局部图。
S5:将所述3D结构电机浸泡在水中,去除溶剂,并冷冻干燥得到3D打印电极。
3D结构浸泡在水中的时间一般为若干分钟,直至溶剂去除为止,也可根据实际情况浸泡更长时间。冷冻干燥时间为24小时。
通过以上步骤,即制作出3D打印电极。
本发明提供的有益效果是:
(1)提供了一种简便、低成本、易于规模化的制备高比表面积增强电极性能的方法,对未来高能量密度锂离子电池的实际应用具有很大的前景。
(2)由于使用多壁碳纳米管形成电极微观上的网络结构,增强了电极的孔隙率,提高了离子和电子的传输。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种优化的挤压式3D打印电极的制备方法,其特征在于:具体包括以下步骤:
S1:将活性物质、导电剂与粘结剂混合,研磨,得到混合粉;
S2:向所述混合粉中加入适量1-甲基-2-吡咯烷酮,并搅拌,得到制备好的墨水;
S3:将所述制备好的墨水装入注射器中,离心以排除所有气泡,得到排除气泡后的墨水;
S4:使用3D打印机,将所述排除气泡后的墨水用于制造电极,得到3D结构电极;
S5:将所述3D结构电机浸泡在水中,去除溶剂,并冷冻干燥得到3D打印电极。
2.如权利要求1所述的一种优化的挤压式3D打印电极的制备方法,其特征在于:步骤S1中,所述活性物质为磷酸铁锂纳米颗粒;所述导电剂为多壁碳纳米管;所述粘结剂为PVDF。
3.如权利要求2所述的一种优化的挤压式3D打印电极的制备方法,其特征在于:所述PVDF的相对分子质量为130万。
4.如权利要求2所述的一种优化的挤压式3D打印电极的制备方法,其特征在于:所述磷酸铁锂纳米颗粒、多壁碳纳米管和PVDF按质量比7:2:1混合。
5.如权利要求1所述的一种优化的挤压式3D打印电极的制备方法,其特征在于:步骤S5中,冷冻干燥时间为24小时。
CN202011314372.3A 2020-11-20 2020-11-20 一种优化的挤压式3d打印电极的制备方法 Pending CN112549528A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011314372.3A CN112549528A (zh) 2020-11-20 2020-11-20 一种优化的挤压式3d打印电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011314372.3A CN112549528A (zh) 2020-11-20 2020-11-20 一种优化的挤压式3d打印电极的制备方法

Publications (1)

Publication Number Publication Date
CN112549528A true CN112549528A (zh) 2021-03-26

Family

ID=75044445

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011314372.3A Pending CN112549528A (zh) 2020-11-20 2020-11-20 一种优化的挤压式3d打印电极的制备方法

Country Status (1)

Country Link
CN (1) CN112549528A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114420895A (zh) * 2021-12-31 2022-04-29 荆门市格林美新材料有限公司 一种基于3d打印技术制备三元正极电极片的方法
CN114725498A (zh) * 2022-03-31 2022-07-08 中国地质大学(武汉) 基于3d打印制备peo-mof复合固态电解质的方法
CN115706204A (zh) * 2021-08-13 2023-02-17 通用汽车环球科技运作有限责任公司 用于电池的阴极结构及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400964A (zh) * 2013-07-23 2013-11-20 深圳市百纳新能源科技有限公司 一种磷酸铁锂电极的制备方法
CN108963069A (zh) * 2018-06-28 2018-12-07 江苏大学 一种3d打印聚偏氟乙烯压电薄膜的制备方法
CN110752354A (zh) * 2019-09-24 2020-02-04 中国地质大学(武汉) 普适性的3d打印纳米电极浆料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400964A (zh) * 2013-07-23 2013-11-20 深圳市百纳新能源科技有限公司 一种磷酸铁锂电极的制备方法
CN108963069A (zh) * 2018-06-28 2018-12-07 江苏大学 一种3d打印聚偏氟乙烯压电薄膜的制备方法
CN110752354A (zh) * 2019-09-24 2020-02-04 中国地质大学(武汉) 普适性的3d打印纳米电极浆料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115706204A (zh) * 2021-08-13 2023-02-17 通用汽车环球科技运作有限责任公司 用于电池的阴极结构及其制造方法
CN114420895A (zh) * 2021-12-31 2022-04-29 荆门市格林美新材料有限公司 一种基于3d打印技术制备三元正极电极片的方法
CN114725498A (zh) * 2022-03-31 2022-07-08 中国地质大学(武汉) 基于3d打印制备peo-mof复合固态电解质的方法

Similar Documents

Publication Publication Date Title
Cheng et al. Recent advances in electrospun carbon fiber electrode for vanadium redox flow battery: properties, structures, and perspectives
Li et al. Electrospinning‐based strategies for battery materials
Yang et al. Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries
CN112549528A (zh) 一种优化的挤压式3d打印电极的制备方法
Shi et al. 3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion
Li et al. Electrospun carbon-based nanostructured electrodes for advanced energy storage–a review
Peng et al. Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage
US9947918B2 (en) Porous silicon particulates with micropores and mesopores within macropores
CN103311523B (zh) 具有纳米微孔隙的硅碳复合材料及其制备方法与用途
Zhang et al. Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors
CN104868107B (zh) 一种锂离子电池用球形硅碳复合材料及其制备方法和应用
Ma et al. In situ catalytic synthesis of high-graphitized carbon-coated LiFePO4 nanoplates for superior Li-ion battery cathodes
Weng et al. Electrospun carbon nanofiber-based composites for lithium-ion batteries: structure optimization towards high performance
Idrees et al. Material-structure-property integrated additive manufacturing of batteries
Yetiman et al. Microwave-assisted fabrication of high-performance supercapacitors based on electrodes composed of cobalt oxide decorated with reduced graphene oxide and carbon dots
CN105047419B (zh) 二氧化锰/碳复合电极材料及其制备方法以及超级电容器
CN111816852A (zh) 硅基复合负极材料的制备方法
Kakunuri et al. Resorcinol-formaldehyde derived carbon xerogels: A promising anode material for lithium-ion battery
CN107317011A (zh) 一种氮掺杂的有序多孔碳包覆硅纳米复合材料的制备方法
Zhao et al. Electrospun Nanofiber Electrodes for Lithium‐Ion Batteries
CN106848282B (zh) 一种非水电解质二次电池用负极材料及其制备方法和应用
Liu et al. Self-assembly of hierarchical microsized hard carbon-supported Si encapsulated in nitrogen-doped carbon as anode for lithium-ion batteries
Girija et al. Morphology control in nickel cobaltite synthesised via solution routes for electrochemical applications
CN109671907B (zh) 锂硫电池用复合正极片、其制备方法及应用
Dhandapani et al. Progress in Spinel‐Structured Cobaltite‐Based Positive Electrode Materials for Supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210326