CN112546245A - 一种用于缺血性心脏病基因靶向治疗的载基因显影微泡及其制备方法 - Google Patents

一种用于缺血性心脏病基因靶向治疗的载基因显影微泡及其制备方法 Download PDF

Info

Publication number
CN112546245A
CN112546245A CN202011423454.1A CN202011423454A CN112546245A CN 112546245 A CN112546245 A CN 112546245A CN 202011423454 A CN202011423454 A CN 202011423454A CN 112546245 A CN112546245 A CN 112546245A
Authority
CN
China
Prior art keywords
gene
developing
microbubble
microvesicle
cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011423454.1A
Other languages
English (en)
Inventor
田海
孙露
陈巍
黄明莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Harbin Medical University
Original Assignee
Harbin Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Medical University filed Critical Harbin Medical University
Priority to CN202011423454.1A priority Critical patent/CN112546245A/zh
Publication of CN112546245A publication Critical patent/CN112546245A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/223Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/4886Metalloendopeptidases (3.4.24), e.g. collagenase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/50Hydrolases (3) acting on carbon-nitrogen bonds, other than peptide bonds (3.5), e.g. asparaginase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0028Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/24Metalloendopeptidases (3.4.24)
    • C12Y304/24007Interstitial collagenase (3.4.24.7), i.e. matrix metalloprotease 1 or MMP1
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/01Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
    • C12Y305/01098Histone deacetylase (3.5.1.98), i.e. sirtuin deacetylase

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Radiology & Medical Imaging (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种用于缺血性心脏病基因靶向治疗的载基因显影微泡及其制备方法。所述的载基因显影微泡包括阳离子显影微泡以及分散于显影微泡外壳表面的治疗基因质粒,其中,所述的显影微泡具有正电性的脂质双分子层外壳以及包裹在外壳内部的生物惰性气体,所述的治疗基因质粒包括含有基质金属蛋白酶抑制因子‑3(TIMP‑3)和沉默信息调节因子3(SIRT3)基因的质粒。该基因微泡制剂在超声作用下集中空化并释放目的基因,快速对靶器官进行基因转染,转染效率高、靶向性强、安全无创、可反复操作。另外,该基因显影微泡可以同时在超声下显影,对缺血心肌的灌注情况进行检测和诊断,在治疗的同时能够准确的评估,使治疗更精确。

Description

一种用于缺血性心脏病基因靶向治疗的载基因显影微泡及其 制备方法
技术领域
本发明涉及一种用于缺血性心脏病基因靶向治疗的载基因显影微泡及其制备方法。本发明属于生物医药技术领域。
背景技术
世界范围内每年大概有近2000万人死于心血管疾病,而这个数字至2030年将会迅速增长至2630万人[1-2]。随着生活水平的提高以及生活方式的改变,近40年来,我国缺血性心脏病的发病率及死亡率亦呈逐年上升态势,在所有心脏疾病中居首位。缺血性心脏病可引发心脏功能细胞的不可逆性坏死、炎症细胞浸润、心肌间质重构等一系列的内在变化,最终导致难以控制的心力衰竭甚至死亡[3-4]。目前,国际上针对缺血性心脏疾病的标准临床治疗手段包括药物溶栓治疗、介入支架及冠脉搭桥手术等,这些治疗方式均以重建缺血区域的血运为主要目的称为急诊冠脉再血管化(CR),虽然能够通过恢复残存心肌供血、改善心脏功能达到治疗的效果,然而并不能彻底阻止或者逆转缺血对心脏组织造成的病理损害,所以仍有相当一部分患者在治疗的近期,尤其是远期出现心力衰竭影响患者的生存质量,甚至造成死亡。近20年来缺血性心脏病患者的死亡率始终没有明显下降[5-8]。因此,如何在恢复血供的同时,针对缺血损伤的病理进程及病理损害进行精准的调控,以有效降低急诊CR治疗后心衰的发生率,改善患者的生存质量并降低死亡率,是目前心血管病医生迫切希望解决的一个难题。
缺血性心脏病会造成心脏功能细胞的调亡、炎症反应、心肌间质重构等一系列病理生理改变,造成心肌纤维化、瘢痕形成等病理损伤,影响心脏的舒缩功能,最终造成心力衰竭甚至死亡[3-4]。而对缺血心肌给予急诊CR治疗后,上述的病理改变并不会完全逆转。有文献显示,缺血心肌在急诊CR后会在一定程度上继续存在心脏细胞凋亡、炎性细胞浸润、炎症因子释放、基质金属蛋白酶激活和胶原组织增生等现象[9-12],其中心脏功能细胞的继续丧失会直接导致心脏功能单位的减少,同时会进一步诱导炎性因子释放,加重周围心肌细胞的进一步损伤及间质的纤维化;另一方面,炎症反应、基质金属蛋白酶激活和胶原组织增生等会造成不良心室间质重构,最终可导致纤维瘢痕形成和心功能下降。而在目前的临床治疗过程中,在急诊CR后并没有针对上述病理改变进行精准、有效的后续治疗手段,从而导致急诊CR治疗后近期、尤其是远期心衰发生率高、治疗效果差。
应用基因治疗以达到对缺血性心脏病的精准治疗一直是心血管研究领域力求实现突破性进展的努力方向,其在实验室阶段的治疗效果已经在大量的体内、体外实验中得到强有力的印证。本发明人既往通过多项研究证实以骨髓间充质干细胞为载体,应用基质金属蛋白酶抑制因子-3(TIMP-3)、血管内皮生长因子(VEGF)和沉默信息调节因子3(SIRT3)等基因对缺血性心脏疾病进行基因治疗能够在一定程度上逆转缺血组织的相应病理改变,改善心脏功能,最终达到对缺血性心脏病的有效治疗[13-17]。相较于体外细胞基因转染的可控性,体内基因转染因其在转染效率以及在安全性、有效性、靶向性等多方面存在较多制约因素而无法有效开展,限制了其临床的应用。
目前,常规的体内基因转染方式主要包括将病毒、质粒或者携带基因的细胞直接注射到靶器官或直接输注到血液循环系统中[18-20]。这些转染方式主要存在以下缺陷:①转染途径受限:将携带目的基因的载体直接注射于靶器官内,虽可实现目的基因向靶器官的直接定向传输,但往往会造成组织侵入性的创伤,存在一定的风险性,且可重复操作性差;而将携带目的基因的载体输注于血液循环系统中,虽然是一种微创的转染手段,但是由于载体随血液系统流经全身,所以不能准确定位,且转染效率低下、转染效果不稳定;②基因载体受限:质粒载体相对安全,但是会在短时间内被血浆中的DNA酶快速清除而造成转染效率低下,病毒类载体转染率相对较高但因存在潜在的毒性、致癌、致畸作用等而在安全性方面存在较大问题,而利用转染了目的基因的细胞移植尤其是干细胞移植虽然能够参与受损组织的修复与再生,但目前干细胞移植仍存在种子细胞类型的选择、细胞不稳定分化、移植细胞存活率低和临床应用安全性等问题尚未解决。而对于缺血性心脏病CR后的进一步治疗,需要针对缺血损伤的不同病理阶段的不同病理损伤有针对性的应用不同的基因进行重复的精准治疗方能达到最佳的治疗效果。这就更需要一种损伤小、操作简单以便于实现反复操作,能够高效精准的将目的基因转染靶器官,可以针对不同的病理阶段存在多种剂型的体内基因转染方式以实现对缺血性心脏病最有效的精准治疗。
近年来,随着超声波靶向微泡击碎技术(UTMD)的高速发展以及其介导基因转染时无需长时间准备即能够达到无创、靶向、高效转染效果的特性[21-25]为实现上述治疗需求带来了可能。本发明人前期研究已经证实了应用UTMD技术可将携带特定基因的脂质微泡击碎从而实现动物体内基因的靶向转染,即实现对大鼠及小鼠缺血性心脏疾病的无创、靶向基因治疗,从而显著改善心脏功能[18-20,26]。因此,在本申请中我们将SIRT3的抗氧化应激损伤的特性、TIMP-3的抗间质重构能力和UTMD的体内基因转染优势结合起来,针对缺血性心脏损伤的不同病理阶段及不同病理损伤,分别制造两种剂型的基因显影微泡,应用UTMD无创靶向技术分别在缺血后的不同时间点,应用特定的频次,在急诊CR后的心肌组织中改变损伤局部SIRT3及TIMP-3的表达含量,提高心肌组织自身的抗氧化应激损伤和抗间质重构的能力,进而改善急诊CR后的近期及远期的治疗效果,为进一步改善临床对缺血性心脏病的治疗效果,并提高患者的生存质量及生存率探索出一种易于临床转化、无创、高效、精准的治疗方法。
参考文献:
[1]Benjamin EJ,Muntner P,Alonso A,et al.Heart disease and strokestatistics-2019update:a report from the American HeartAssociation.Circulation.2019;139:56-66.
[2]O’Neill BJ,Rana SN,Bowman V.An integrated approach for vascularhealth:a call to action.Can J Cardiol.2015;31:99-102.
[3]Kang HJ,Kim HS,Zhang SY,et al.Effects of intracoronary infusion ofperipheral blood stem-cells mobilised with granulocyte-colony stimulatingfactor on left ventricular systolic function and restenosis after coronarystenting in myocardial infarction:the MAGIC cell randomised clinicaltrial.Lancet 2004;363:751-6.
[4]Wollert KC,Meyer GP,Lotz J,et al.Intracoronary autologous bone-marrow cell transfer after myocardial infarction:the BOOST randomisedcontrolled clinical trial.Lancet 2004;364:141-8.
[5]Gershlick AH,Khan JN,Kelly DJ,et al.Randomized trial ofcompleteversus lesion-only revascularization in patients undergoing primarypercutaneous coronary intervention for STEMI and multivessel disease:theCvLPRIT trial.Journal of the American College ofCardiology 2015;65:963-72.
[6]Pizarro G,Fernandez-Friera L,Fuster V,et al.Long-term benefit ofearly pre-reperfusion metoprolol administration in patients with acutemyocardial infarction:results from the METOCARD-CNIC trial(Effect ofMetoprolol in Cardioprotection During an Acute Myocardial Infarction).Journalof the American College of Cardiology 2014;63:2356-62.
[7]Sloth AD,Schmidt MR,Munk K,et al.Improved long-term clinicaloutcomes in patients with ST-elevation myocardial infarction undergoingremote ischaemic conditioning as an adjunct to primary percutaneous coronaryintervention.European heartjournal 2014;35:168-75.
[8]Salim SV,Alvaro Alonso,Emelia JB,et al.Explaining the slowdown inmedical spending growth among the elderly.Circulation,2020;141:139-596.
[9]Gomes KM,Bechara LR,Lima VM,et al.Aldehydic load and aldehydedehydrogenase 2 profile during the progression of post-myocardial infarctioncardiomyopathy:benefits of Alda-1.International journal of cardiology2015;179:129-38.
[10]Fernandez-Jimenez R,Garcia-Prieto J,Sanchez-Gonzalez J,etal.Pathophysiology Underlying the Bimodal Edema Phenomenon After MyocardialIschemia/Reperfusion.Journal of the American College of Cardiology 2015;66:816-28.
[11]Gardner RT,Habecker BA.Infarct-derived chondroitin sulfateproteoglycans prevent sympathetic reinnervation after cardiac ischemia-reperfusion injury.The Journal of neuroscience:the official journal of theSociety for Neuroscience 2013;33:7175-83.
[12]Wei M,Xin P,Li S,et al.Repeated remote ischemic postconditioningprotects against adverse left ventricular remodeling and improves survival ina rat model ofmyocardial infarction.Circulation research 2011;108:1220-5.
[13]Tian H,Cimini M,Fedak PW,et al.TIMP-3 deficiency acceleratescardiac remodeling after myocardial infarction.Journal of molecular andcellular cardiology2007;43:733-43.
[14]Tian H,Huang ML,Liu KY,et al.Inhibiting matrix metalloproteinaseby cell-based timp-3 gene transfer effectively treats acute and chronicischemic cardiomyopathy.Cell transplantation 2012;21:1039-53.
[15]Huang ML,Tian H,Wu J,et al.Myometrial cells induce angiogenesisand salvage damaged myocardium.American journal of physiology Heart andcirculatory physiology 2006;291:H2057-66.
[16]Yao J,Jiang SL,Liu W,et al.Tissue inhibitor of matrixmetalloproteinase-3 or vascular endothelial growth factor transfection ofaged human mesenchymal stem cells enhances cell therapy after myocardialinfarction.Rejuvenation research 2012;15:495-506.
[17]Wang XQ,Shao Y,Ma CY,et al.Decreased SIRT3 in aged humanmesenchymal stromal/stem cells increases cellular susceptibility to oxidativestress.Journal ofcellular and molecular medicine 2014;18:2298-310.
[18]Paul A,Ge Y,Prakash S,Shum-Tim D.Microencapsulated stem cells fortissue repairing:implications in cell-based myocardial therapy.RegenMed.2009;4:733-745.
[19]Katz MG,Fargnol AS,Weber T,Hajjar RJ,Bridges CR.Use of adeno-associated virus vector for cardiac gene delivery in large-animal surgicalmodels of heart failure.Human Gene Therapy Clinical Development.2017;28:157-164.
[20]Su CH,Wu YJ,Wang HH,Yeh HI.Nonviral gene therapy targetingcardiovascular system.American Journal of Physiology Heart and CirculatoryPhysiology.2012;303:629-638.
[21]Chen S,Shohet RV,Bekeredjian R,et al.Optimization of ultrasoundparameters for cardiac gene delivery of adenoviral or plasmiddeoxyribonucleic acid by ultrasound-targeted microbubble destruction.Journalof the American College of Cardiology 2003;42:301-8.
[22]Fujii H,Li SH,Wu J,et al.Repeated and targeted transfer ofangiogenic plasmids into the infarcted rat heart via ultrasound targetedmicrobubble destruction enhances cardiac repair.European heartjournal 2011;32:2075-84.
[23]Fujii H,Sun Z,Li SH,et al.Ultrasound-targeted gene deliveryinduces angiogenesis after a myocardial infarction in mice.JACCCardiovascular imaging2009;2:869-79.
[24]Zhao YZ,Lu CT,Li XK,et al.Improving the cardio protective effectof aFGF in ischemic myocardium with ultrasound-mediated cavitation of heparinmodified microbubbles:preliminary experiment.Journal of drug targeting2012;20:623-31.
[25]WJ Cao,PN Matkar,HH Chen,A Mofid,HLeong-Poi.Microbubbles andultrasound:therapeutic applications in diabetic nephropathy.Adv Exp MedBiol.2016;880:309-330.
[26]Sun L,Huang CW,Wu J,et al.The use of cationic microbubbles toimprove ultrasound-targeted gene delivery to the ischemicmyocardium.Biomaterials2013;34:2107-16.
发明内容
本发明是以当今社会主要健康问题——缺血性心脏病为基点,克服了目前临床上药物溶栓、经皮冠状动脉导管介入(PCI)、冠脉搭桥等急诊CR治疗手段无法完全阻断缺血的病理损伤,造成近期、尤其是远期心力衰竭的发生,降低患者生存质量及生存率的缺点,提供了一种针对缺血性心脏损伤的病理进程及病理损伤,应用无创、靶向基因转染技术,实现心脏组织的精准、个体化基因调控的多剂型制剂。从而有效完成急诊CR后的进一步治疗,已达到对缺血性心脏病的最佳治疗效果。
为了达到上述目的,本发明采用了以下技术手段:
本发明公开了一种用于缺血性心脏病靶向治疗的载基因显影微泡,所述的载基因显影微泡包括阳离子显影微泡以及分散于显影微泡外壳表面的治疗基因质粒,其中,所述的显影微泡具有正电性的脂质双分子层外壳以及包裹在外壳内部的生物惰性气体,所述的治疗基因质粒包括含有基质金属蛋白酶抑制因子-3(TIMP-3)和沉默信息调节因子3(SIRT3)基因的质粒。
其中,优选的,所述的阳离子显影微泡通过以下方法制备得到:
将二棕榈酰磷脂酰胆碱(DPPC)、二硬脂酰基磷脂酰乙醇胺-聚乙二醇2000(DSPE-PEG2000)、DC胆固醇(DC-Chol)按照质量比4-6:1-3:0.1-1的比例进行混合,再加入三氯甲烷使其充分溶解;旋转蒸发仪减压蒸发,去除有机溶剂形成脂膜;在脂膜中加入甘油与PBS混合液,42℃水浴30min-1h,取脂膜和甘油、PBS混悬液加入管形瓶中;冷却后用C3F8置换管形瓶内空气2次,机械震荡,即得高浓度阳离子显影微泡,经60Co伽马射线辐射或紫外线消毒灭菌,正常放置4℃冰箱保存,-20℃冰箱可稳定保存1月。
其中,优选的,所述的生物惰性气体为C3F8。
其中,优选的,二棕榈酰磷脂酰胆碱(DPPC)、二硬脂酰基磷脂酰乙醇胺-聚乙二醇2000(DSPE-PEG2000)、DC胆固醇(DC-Chol)按照质量比5:2:0.5的比例进行混合。
其中,优选的,旋转蒸发仪50℃减压蒸发。
其中,优选的,甘油与PBS混合液中甘油与PBS的体积比为1:9。
其中,优选的,所述的载基因显影微泡通过以下方法制备得到:
分别制备含有人SIRT3或TIMP-3基因的质粒,以真核表达载体pCDNA3.1做为骨架载体;先将制备好的阳离子显影微泡高频震荡60S,按0.06ml/kg体重计算并获取相应体积的阳离子显影微泡,再按28.5μg/kg体重计算并获取相应体积的含有人SIRT3或TIMP-3基因质粒,如超过微泡最大结合率,则按微泡最大结合率计算即100ul阳离子微泡与40μg质粒结合,与准备好的微泡溶液混合,加0.9%生理盐水稀释至50ml,室温下孵育20min,制得含有人SIRT3或TIMP-3基因的载基因显影微泡制剂。
进一步的,本发明还提出了所述的载基因显影微泡在制备缺血性心脏病靶向治疗的药物制剂中的应用。
其中,优选的,所述的治疗所采用的手段为超声波靶向微泡击碎技术。
再进一步,本发明还提出了所述的药物制剂的应用方法及应用时间。
在常规急诊冠状动脉再血管化治疗(CR)后24小时,建立静脉通路,应用微量输液泵以150ml/h的速度将含有SIRT3基因质粒的微泡制剂持续泵入,同时应用超声诊断仪在二次谐波模式(传送:1.6MHz;接收:3.2MHz)对患者心脏进行超声波冲击,频率由心电记录仪自动触发装置自动控制,每两次心脏收缩触发一次,共持续20分钟,并分别于此后的24小时和48小时各重复一次相同治疗过程。
在常规急诊冠状动脉再血管化治疗(CR)后的第5天,应用微量输液泵以150ml/h的速度将TIMP-3基因微泡制剂持续泵入,同时应用超声诊断仪在二次谐波模式(传送:1.6MHz;接收:3.2MHz)对患者心脏进行超声波冲击,频率由心电记录仪自动触发装置自动控制,每两次心脏收缩触发一次,共持续20分钟,并分别于CR治疗后的第7天和第9天各重复一次相同的治疗过程。
上述过程中SIRT3基因微泡制剂和TIMP-3基因微泡制剂治疗的次数可根据患者的具体病情做适当的增减,但治疗的时间点应尽量遵守,以达到最佳的治疗效果。
为了验证本制剂的应用效果,我们建立了猪的心肌缺血再灌注损伤模型。具体方法如下:首先使用丙泊酚注射液臀部注射法麻醉实验香猪(雄性,2年龄),以8F插管进行气管插管,呼吸机以氧气和空气混合气体及七氟烷进行正压通气及麻醉维持,呼吸频率20次/min,并根据体重调整潮气量(10-12ml/kg)。猪采取右侧卧位,消毒,铺巾,左侧第Ⅳ肋间开胸,切开心包暴露心脏,使用自制无菌套管以4-0prolene缝线阻断冠脉前降支中下1/3处,40min后开放进行血管再通,关胸。送回实验动物中心专用饲养室饲养。模型建立后依照上述方法在不同时间点应用不同的制剂剂型对猪的心肌缺血再灌注损伤进行治疗,并应用超声检测治疗后2周和4周实验动物的心脏功能,结果显示,治疗后实验动物的心脏功能得到了显著的提高。
相较于现有技术,本发明的有益效果是:
缺血性心脏病发病率与死亡率激增已经成为目前国际医疗领域内的重大难题。目前临床上标准的治疗方式包括药物溶栓、介入治疗以及冠脉搭桥手术等急诊冠脉再血管化(CR)治疗。这些治疗方式,虽然能够实现犯罪血管供应区域的再灌注,但并不能完全阻止或逆转缺血对心肌组织损伤的病理改变。所以,仍有大部分患者近期、尤其是远期治疗效果不理想出现心力衰竭甚至死亡,这已经成为目前心血管病治疗的瓶颈。基因治疗可针对CR治疗后仍存在的缺血病理损伤进行精准治疗,但是目前应用于体内基因转染的方式包括将病毒、质粒或者携带基因的细胞直接注射到靶器官或输入血液循环系统中,均由于转染效率低、靶向性差、安全性不确定、无法反复操作等原因限制了其临床应用。本发明将临床已有的超声显影微球和体内基因转染相结合即UTMD技术,与本人既往针对缺血性心脏病病理损伤的研究以及应用SIRT3、TIMP-3等基因对缺血性心脏病进行基因治疗的经验相结合,发明出了此种多剂型载基因量更高的基因显影微泡制剂,操作简单、容易应用、效果确切、治疗精准,对患者不产生生理上的负担。同时能够在治疗的同时,对缺血区域的供血进行深入的评估,做到真正的有的放矢。本发明的载基因显影微泡在对猪的心肌缺血再灌注损伤后的治疗中,已经发现显著改善了实验动物的心脏功能(如图5)。本发明的产生能够进一步改善急诊CR的后续治疗效果,提高患者的生存率、改善患者的生存质量,成为一种安全、有效、精准的临床治疗方式。
附图说明
图1为基因显影微泡制剂的结构和外观;
图2为基因显影微泡制剂的显微镜下形态;
图3为基因显影微泡注射后在心脏超声下逐渐显影的情况;
图4为急诊CR后利用不同基因显影微泡制剂对缺血性心脏病进行治疗的疗程图;
图5为急诊CR经过不同基因显影微泡制剂治疗后实验动物的心脏功能得到了显著改善。
具体实施方式
下面结合具体实施例来进一步描述本发明,本发明的优点和特点将随着描述而清楚。但这些实施例仅是范例性的,并不对本发明的范围构成任何限制。
实施例1载基因显影微泡的制备
1、阳离子显影微泡的制备
将二棕榈酰磷脂酰胆碱(DPPC)5mg、二硬脂酰基磷脂酰乙醇胺-聚乙二醇2000(DSPE-PEG2000)2mg、DC胆固醇(DC-Chol)0.5mg进行混合,再加入5ml三氯甲烷使其充分溶解;旋转蒸发仪50℃减压蒸发1h,去除有机溶剂形成脂膜;在脂膜中加入甘油与0.1mol/L,pH 7.0的PBS混合液0.5ml(甘油:PBS=1:9,体积比),42℃水浴30min,取脂膜和甘油、PBS混悬液加入1.5ml管形瓶中;冷却后用C3F8置换管形瓶内空气2次,机械震荡50s,即得高浓度阳离子微泡。制备好的阳离子微泡外观呈乳白色混悬液(如图1),经60Co伽马射线辐射或紫外线消毒灭菌。应用马尔文粒径电位检测仪检测自制阳离子微泡的电位和粒径。应用库尔特计数仪检测微泡浓度,按标准调成统一浓度制剂。制备好的阳离子显影微泡放置4℃冰箱保存,-20℃冰箱可稳定保存1月。
阳离子显影微泡的理化性质:
所述显影微泡为阳离子微泡,电位为24.97±2.07mv,最高质粒结合率为37.9±1.14%。显微镜下观察微泡呈圆形,大小均一一致,粒径在1.55±0.2um(如图2)。制备的微泡浓度在7.18±0.33×109/ml左右,超声下显影良好(如图3)。
2、载基因显影微泡的制备
分别制备含有人SIRT3(NM_012239.6)或TIMP-3(NM_000362)基因质粒,以真核表达载体pCDNA3.1做为骨架载体。将两种质粒按照指定浓度分别制成制剂并分装。使用前先将制备好的阳离子显影微泡高频震荡60S,按0.06ml/kg体重计算并获取相应体积的阳离子微泡,再按28.5μg/kg体重计算并获取相应体积的含有人SIRT3(NM_012239.6)或TIMP-3(NM_000362)基因质粒(如超过微泡最大结合率,则按微泡最大结合率计算即100ul阳离子微泡与40μg质粒结合)与准备好的微泡溶液混合,加0.9%生理盐水稀释至50ml,室温下孵育20min,制得含有人SIRT3(NM_012239.6)或TIMP-3(NM_000362)基因质粒的显影微泡制剂。
实施例2载基因显影微泡在缺血性心脏病靶向治疗中的应用
为了验证本制剂的应用效果,我们建立了猪的心肌缺血再灌注损伤模型。具体方法如下:首先使用丙泊酚注射液臀部注射法麻醉实验香猪(雄性,2年龄),以8F插管进行气管插管,呼吸机以氧气和空气混合气体及七氟烷进行正压通气及麻醉维持,呼吸频率20次/min,并根据体重调整潮气量(10-12ml/kg)。猪采取右侧卧位,消毒,铺巾,左侧第Ⅳ肋间开胸,切开心包暴露心脏,使用自制无菌套管以4-0prolene缝线阻断冠脉前降支中下1/3处,40min后进行常规急诊冠状动脉再血管化治疗(CR),关胸。送回实验动物中心专用饲养室饲养。
在常规急诊冠状动脉再血管化治疗(CR)后24小时,建立静脉通路,应用微量输液泵以150ml/h的速度将含有SIRT3基因质粒的微泡制剂持续泵入,同时应用超声诊断仪在二次谐波模式(传送:1.6MHz;接收:3.2MHz)对模型心脏进行超声波冲击,频率由心电记录仪自动触发装置自动控制,每两次心脏收缩触发一次,共持续20分钟,并分别于此后的24小时和48小时各重复一次相同治疗过程。
在常规急诊冠状动脉再血管化治疗(CR)后的第5天,应用微量输液泵以150ml/h的速度将含有TIMP-3基因质粒的微泡制剂持续泵入,同时应用超声诊断仪在二次谐波模式(传送:1.6MHz;接收:3.2MHz)对模型心脏进行超声波冲击,频率由心电记录仪自动触发装置自动控制,每两次心脏收缩触发一次,共持续20分钟,并分别CR治疗后的第7天和第9天各重复一次相同的治疗过程。急诊CR后利用不同基因显影微泡制剂对缺血性心脏病进行治疗的疗程图如图4所示。
上述过程中SIRT3基因微泡制剂和TIMP-3基因微泡制剂治疗的次数可根据具体病情做适当的增减,但治疗的时间点应尽量遵守,以达到最佳的治疗效果。
应用超声检测治疗后2周和4周实验动物的心脏功能,结果显示,治疗后实验动物的心脏功能得到了显著的提高(如图5)。

Claims (9)

1.一种用于缺血性心脏病靶向治疗的载基因显影微泡,其特征在于,所述的载基因显影微泡包括阳离子显影微泡以及分散于显影微泡外壳表面的治疗基因质粒,其中,所述的显影微泡具有正电性的脂质双分子层外壳以及包裹在外壳内部的生物惰性气体,所述的治疗基因质粒包括含有基质金属蛋白酶抑制因子-3(TIMP-3)和沉默信息调节因子3(SIRT3)基因的质粒。
2.如权利要求1所述的载基因显影微泡,其特征在于,所述的生物惰性气体为C3F8。
3.如权利要求1或2所述的载基因显影微泡,其特征在于,所述的阳离子显影微泡通过以下方法制备得到:
将二棕榈酰磷脂酰胆碱(DPPC)、二硬脂酰基磷脂酰乙醇胺-聚乙二醇2000(DSPE-PEG2000)、DC胆固醇(DC-Chol)按照质量比4-6:1-3:0.1-1的比例进行混合,再加入三氯甲烷使其充分溶解;旋转蒸发仪减压蒸发,去除有机溶剂形成脂膜;在脂膜中加入甘油与PBS混合液,42℃水浴30min-1h,取脂膜和甘油、PBS混悬液加入管形瓶中;冷却后用C3F8置换管形瓶内空气2次,机械震荡,即得高浓度阳离子显影微泡,经60Co伽马射线辐射或紫外线消毒灭菌,正常放置4℃冰箱保存,-20℃冰箱可稳定保存1月。
4.如权利要求3所述的载基因显影微泡,其特征在于,二棕榈酰磷脂酰胆碱(DPPC)、二硬脂酰基磷脂酰乙醇胺-聚乙二醇2000(DSPE-PEG2000)、DC胆固醇(DC-Chol)按照质量比5:2:0.5的比例进行混合。
5.如权利要求3所述的载基因显影微泡,其特征在于,旋转蒸发仪50℃减压蒸发。
6.如权利要求3所述的载基因显影微泡,其特征在于,甘油与PBS混合液中甘油与PBS的体积比为1:9。
7.如权利要求1所述的载基因显影微泡,其特征在于,所述的载基因显影微泡通过以下方法制备得到:
分别制备含有人SIRT3或TIMP-3基因的质粒,以真核表达载体pCDNA3.1做为骨架载体;先将制备好的阳离子显影微泡高频震荡60S,按0.06ml/kg体重计算并获取相应体积的阳离子显影微泡,再按28.5μg/kg体重计算并获取相应体积的含有人SIRT3或TIMP-3基因质粒,如超过微泡最大结合率,则按微泡最大结合率计算即100ul阳离子微泡与40μg质粒结合,与准备好的微泡溶液混合,加0.9%生理盐水稀释至50ml,室温下孵育20min,制得含有人SIRT3或TIMP-3基因的载基因显影微泡制剂。
8.权利要求1-7任一项所述的载基因显影微泡在制备缺血性心脏病靶向治疗的药物制剂中的应用。
9.如权利要求8所述的应用,其特征在于,所述的治疗所采用的手段为超声波靶向微泡击碎技术。
CN202011423454.1A 2020-12-08 2020-12-08 一种用于缺血性心脏病基因靶向治疗的载基因显影微泡及其制备方法 Pending CN112546245A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011423454.1A CN112546245A (zh) 2020-12-08 2020-12-08 一种用于缺血性心脏病基因靶向治疗的载基因显影微泡及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011423454.1A CN112546245A (zh) 2020-12-08 2020-12-08 一种用于缺血性心脏病基因靶向治疗的载基因显影微泡及其制备方法

Publications (1)

Publication Number Publication Date
CN112546245A true CN112546245A (zh) 2021-03-26

Family

ID=75059699

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011423454.1A Pending CN112546245A (zh) 2020-12-08 2020-12-08 一种用于缺血性心脏病基因靶向治疗的载基因显影微泡及其制备方法

Country Status (1)

Country Link
CN (1) CN112546245A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113559278A (zh) * 2021-08-30 2021-10-29 北京科技大学 用于血栓清除的靶向载药超声微泡及其制备方法
CN115154472A (zh) * 2022-07-27 2022-10-11 北京大学第三医院(北京大学第三临床医学院) 一种具有靶向功能的治疗脑卒中的氢化可的松多功能超声微泡

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
WEI-HUI SHENTU等: "超声靶向击碎微泡技术介导P-选择素靶向阳离子超声微泡改善人血管内皮生长因子165基因转染缺血心肌的实验性研究(英文)", 《JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B(BIOMEDICINE & BIOTECHNOLOGY)》 *
冯闯丽等: "超声微泡联合核定位信号促进SDF-1α基因转染治疗兔心肌梗死", 《西部医学》 *
张东?等: "阳离子微泡提高超声波靶向击碎微泡技术体内基因靶向转染效率及治疗效果的实验研究", 《中国修复重建外科杂志》 *
林美玲等: ""线粒体应激蛋白沉默信息调节因子2相关酶3通过缺氧诱导因子-1α和核转录因子-κB信号通路保护心肌缺血损伤"", 《中国血液流变学杂志》 *
贾智博等: ""TIMP-3基因转染的血管平滑肌细胞移植对心肌梗死后心脏形态和功能的影响"", 《心脏杂志》 *
赵婉亦等: "超声辐照联合微泡在缺血性心脏病治疗中的基础研究进展", 《实用医院临床杂志》 *
邓倾等: "超声联合靶向阳离子微泡介导Ang-1基因转染改善兔缺血心肌功能", 《武汉大学学报(医学版)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113559278A (zh) * 2021-08-30 2021-10-29 北京科技大学 用于血栓清除的靶向载药超声微泡及其制备方法
CN115154472A (zh) * 2022-07-27 2022-10-11 北京大学第三医院(北京大学第三临床医学院) 一种具有靶向功能的治疗脑卒中的氢化可的松多功能超声微泡
CN115154472B (zh) * 2022-07-27 2024-05-07 北京大学第三医院(北京大学第三临床医学院) 一种具有靶向功能的治疗脑卒中的氢化可的松多功能超声微泡

Similar Documents

Publication Publication Date Title
CN112546245A (zh) 一种用于缺血性心脏病基因靶向治疗的载基因显影微泡及其制备方法
JP2016500329A (ja) 吸引ヘッドおよび針電極を備えた胸腔鏡電気穿孔デバイス
CN113143955A (zh) 一种改性聚桂醇泡沫硬化剂和制备方法及应用
ter Haar Intervention and therapy
US20070196283A1 (en) Composition for transfection of DNA into the liver
Pang et al. NIR-absorbing Prussian blue nanoparticles for transarterial infusion photothermal therapy of VX2 tumors implanted in rabbits
Kanemitsu et al. Insulin-like growth factor-1 enhances the efficacy of myoblast transplantation with its multiple functions in the chronic myocardial infarction rat model
Liao et al. Estimating the delivery efficiency of drug-loaded microbubbles in cancer cells with ultrasound and bioluminescence imaging
US20200282196A1 (en) Sonodynamic therapy using microbubbles and pulsed wave ultrasound methods and systems
CN115252782B (zh) 一种携氧仿生分子探针及其制备方法和在hifu及免疫协同治疗癌症中的应用
CN110448701A (zh) 一种用于肿瘤超声治疗的靶向显影微泡及其制备方法
AU2002320348A1 (en) Enhancement of transfection of DNA into the liver
Lei et al. Perioperative nursing of patients with pancreatic cancer treated with a nanoknife
Jiang et al. Low-intensity focused ultrasound guided dodecafluoropentane-loaded acoustic phase-change nanoparticles for treatment of porcine coronary microthromboembolism
US20040151702A1 (en) Production and use of a suspension composition comprising an ultrasound contrast medium
CN111345917A (zh) 小鼠心肌梗死后的心肌注射造模方法及装置
CN113413468B (zh) 一种光热-硬化联合治疗的靶向纳米药物递送系统
Qiu et al. Application of Nanobubble-Based Ultrasound Combined with General Anesthesia for the Treatment of Colon Cancer Patients
Huang et al. Intravital Imaging of Ultrasound-mediated Macromolecule Delivery Through the Blood Tumor Barrier in a Murine Glioma Model with Two-Photon Microscopy
Lin et al. Evaluation of the Therapeutic Effect of Magneto-Nanomicelles Based on Magneto-Thermal and Photo-Thermal Therapy
CN113855650B (zh) 一种免疫代谢心梗贴片及其制备方法与应用
US20230158144A1 (en) Ultrasound-triggered nanocarriers
RU2225233C2 (ru) Способ доставки фотосенсибилизатора в опухолевую ткань мозга
CN105944243A (zh) 一种eNOS表达与活化的调控装置及周围动脉疾病的治疗装置
CN116495798A (zh) 一种亲水性Fe-Cu-Ni-S纳米材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210326

WD01 Invention patent application deemed withdrawn after publication