CN112531078B - Defect passivation method for solving problem of light attenuation of copper indium gallium selenide solar cell - Google Patents
Defect passivation method for solving problem of light attenuation of copper indium gallium selenide solar cell Download PDFInfo
- Publication number
- CN112531078B CN112531078B CN202011509085.8A CN202011509085A CN112531078B CN 112531078 B CN112531078 B CN 112531078B CN 202011509085 A CN202011509085 A CN 202011509085A CN 112531078 B CN112531078 B CN 112531078B
- Authority
- CN
- China
- Prior art keywords
- layer
- indium gallium
- copper indium
- gallium selenide
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 40
- 230000007547 defect Effects 0.000 title claims abstract description 28
- 238000002161 passivation Methods 0.000 title claims abstract description 20
- 238000000151 deposition Methods 0.000 claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 16
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 14
- 230000031700 light absorption Effects 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims description 35
- 238000001704 evaporation Methods 0.000 claims description 30
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 28
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 24
- 239000010949 copper Substances 0.000 claims description 20
- 230000008021 deposition Effects 0.000 claims description 15
- 229910052786 argon Inorganic materials 0.000 claims description 14
- 239000012495 reaction gas Substances 0.000 claims description 14
- 229910052783 alkali metal Inorganic materials 0.000 claims description 13
- 239000007789 gas Substances 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 12
- 150000001340 alkali metals Chemical class 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 229910052738 indium Inorganic materials 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 6
- 238000010549 co-Evaporation Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims 1
- 239000010409 thin film Substances 0.000 abstract description 16
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 abstract description 3
- HVMJUDPAXRRVQO-UHFFFAOYSA-N copper indium Chemical compound [Cu].[In] HVMJUDPAXRRVQO-UHFFFAOYSA-N 0.000 abstract description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 abstract 1
- 239000011669 selenium Substances 0.000 abstract 1
- 230000008020 evaporation Effects 0.000 description 26
- 230000008569 process Effects 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 238000007650 screen-printing Methods 0.000 description 8
- 239000011734 sodium Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 238000001755 magnetron sputter deposition Methods 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 229910016001 MoSe Inorganic materials 0.000 description 2
- 229910052774 Proactinium Inorganic materials 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/128—Annealing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
- H10F10/167—Photovoltaic cells having only PN heterojunction potential barriers comprising Group I-III-VI materials, e.g. CdS/CuInSe2 [CIS] heterojunction photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/129—Passivating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种解决铜铟镓硒太阳能电池光衰问题的缺陷钝化方法,包括以下步骤:(1)在衬底上沉积Mo背电极;(2)在Mo背电极上沉积铜铟镓硒光吸收层;(3)在铜铟镓硒光吸收层上沉积CdS缓冲层;(4)在CdS缓冲层上沉积高阻i‑ZnO层和ZnO:Al窗口层,形成铜铟镓硒太阳能电池;(5)对铜铟镓硒太阳能电池进行缺陷钝化处理。本发明能够有效减少铜铟镓硒太阳能电池的缺陷密度,延长铜铟镓硒薄膜太阳能电池的最佳使用寿命,提高户外铜铟镓硒薄膜太阳能电池的实际使用功率。
The invention discloses a defect passivation method for solving the problem of light decay of a copper indium gallium selenide solar cell, comprising the following steps: (1) depositing a Mo back electrode on a substrate; (2) depositing a copper indium gallium on the Mo back electrode selenium light absorption layer; (3) depositing a CdS buffer layer on the copper indium gallium selenide light absorption layer; (4) depositing a high resistance i-ZnO layer and a ZnO:Al window layer on the CdS buffer layer to form a copper indium gallium selenide solar energy (5) Defect passivation treatment for copper indium gallium selenide solar cells. The invention can effectively reduce the defect density of the copper indium gallium selenide solar cell, prolong the optimal service life of the copper indium gallium selenide thin film solar cell, and improve the actual use power of the outdoor copper indium gallium selenide thin film solar cell.
Description
技术领域technical field
本发明涉及太阳能电池生产技术领域,特别涉及一种解决铜铟镓硒太阳能电池光衰问题的缺陷钝化方法。The invention relates to the technical field of solar cell production, in particular to a defect passivation method for solving the problem of light decay of copper indium gallium selenide solar cells.
背景技术Background technique
随着能源危机的日趋严重,可再生能源越来越受到人们的重视,其中,太阳光能以其取之不尽、清洁无污染成为最具潜力的技术,硅基太阳能技术是目前最为成熟的,也是市场占有率最高的,但是受制于高耗能、高污染的制备过程,使其并不能成为最理想的太阳能技术,近年来,薄膜太阳能技术开始兴起,由于薄膜电池具有重量轻、成本低、易安装等优点,一经提出便有了迅猛的发展,其中,铜铟镓硒薄膜太阳电池具有光电转换效率较高、稳定性好、抗辐射等诸多优势,成为了最有发展前途的薄膜光伏器件。With the increasingly serious energy crisis, people pay more and more attention to renewable energy. Among them, solar energy has become the most potential technology with its inexhaustible, clean and pollution-free technology, and silicon-based solar energy technology is currently the most mature technology. , also has the highest market share, but it is not the most ideal solar technology due to the high energy consumption and high pollution preparation process. In recent years, thin film solar technology has begun to rise. , easy installation and other advantages, once it was proposed, it has developed rapidly. Among them, copper indium gallium selenide thin film solar cells have many advantages such as high photoelectric conversion efficiency, good stability, radiation resistance, etc., and have become the most promising thin film photovoltaics. device.
铜铟镓硒太阳能电池的基本结构由衬底、背电极层、吸收层、缓冲层、窗口层、减反层、电极层组成。理论上来说铜铟镓硒太阳能电池的光衰现象相较于晶硅太阳能电池和非晶硅太阳能电池要弱很多,但是在实际使用中铜铟镓硒太阳能电池出现了不同程度的光衰现象,这可能是由以下几点原因导致的:The basic structure of a copper indium gallium selenide solar cell consists of a substrate, a back electrode layer, an absorption layer, a buffer layer, a window layer, an antireflection layer, and an electrode layer. In theory, the light decay of CIGS solar cells is much weaker than that of crystalline silicon solar cells and amorphous silicon solar cells, but in actual use, CIGS solar cells have different degrees of light decay. This may be caused by the following reasons:
1、对于CIGS电池来说,碱金属含量高的电池容易产生光衰现象,这是由于在吸收层的制备过程中掺杂了过量的钠,在光的激发作用下导致钠从吸收层的晶界位置迁移至耗尽层,钠在耗尽层的累积并通过耗尽层运输引起了内部电场的降低,这种迁移引起了分流路径的生成,这种分流路径的生成导致了并联电阻和开路电压的下降,从而引起了光衰现象。Theelen, M., Hans, V., Barreau, N., Steijvers, H., Vroon, Z., & Zeman, M.(2015). The impact of alkali elements on the degradation of CIGS solar cells.Progress in Photovoltaics: Research and Applications, 23(5), 537–545. doi:10.1002/pip.2610 。1. For CIGS cells, cells with high alkali metal content are prone to light decay. This is due to the excessive sodium doping during the preparation of the absorption layer, which leads to the excitation of sodium from the absorption layer. The migration of the boundary site to the depletion layer, the accumulation of sodium in the depletion layer and the transport through the depletion layer cause the reduction of the internal electric field, this migration causes the generation of shunt paths, and the generation of shunt paths leads to parallel resistance and open circuit The drop in voltage causes the phenomenon of light decay. Theelen, M., Hans, V., Barreau, N., Steijvers, H., Vroon, Z., & Zeman, M.(2015). The impact of alkali elements on the degradation of CIGS solar cells.Progress in Photovoltaics : Research and Applications, 23(5), 537–545. doi:10.1002/pip.2610.
2、在长时间的户外使用下,在光的激发与水蒸气的作用下AZO层出现水合作用,一部分ZnO会逐步形成Zn(OH)2导致电池片电性能下降,产生光衰现象。Han, C. (2020).Analysis of moisture-induced degradation of thin-film photovoltaic module.Solar Energy Materials and Solar Cells, 210, 110488. doi:10.1016/j.solmat.2020.110488 。2. Under the long-term outdoor use, the AZO layer will appear hydration under the action of light excitation and water vapor, and a part of ZnO will gradually form Zn(OH) 2 , which will lead to the decline of the electrical performance of the cell and the phenomenon of light decay. Han, C. (2020). Analysis of moisture-induced degradation of thin-film photovoltaic module. Solar Energy Materials and Solar Cells, 210, 110488. doi:10.1016/j.solmat.2020.110488.
3、在吸收层的制备过程中背电极Mo层会与Se形成MoSe2层,若MoSe2层过薄,在CIGS电池的使用过程中,Mo层容易在水汽和温度的作用下被氧化形成MoOx,同时Na+进入MoOx基体中发生氧还原反应:,NaxMoO3中不同的钠含量导致了不同的电导率并使得Na+向膜层进行扩散,这种现象导致了CIGS电池产生光衰。Theelen, M., & Daume, F. (2016).Stability of Cu(In,Ga)Se2 solar cells: A literature review. Solar Energy,133, 586–627. doi:10.1016/j.solener.2016.04.010。3. During the preparation process of the absorber layer, the Mo layer of the back electrode will form a MoSe 2 layer with Se. If the MoSe 2 layer is too thin, the Mo layer will be easily oxidized under the action of water vapor and temperature to form MoO during the use of the CIGS battery. At the same time, Na + enters into MoO x matrix and oxygen reduction reaction occurs : , Different sodium content in Na x MoO 3 leads to different electrical conductivity and makes Na + diffuse into the film layer, which leads to the generation of light in CIGS cells decline. Theelen, M., & Daume, F. (2016). Stability of Cu(In,Ga)Se 2 solar cells: A literature review. Solar Energy, 133, 586–627. doi:10.1016/j.solener.2016.04. 010.
在现有的工艺制备方法下铜铟镓硒薄膜太阳能电池在户外实际使用的过程中容易出现光衰现象,在湿度较大的情况下户外长时间使用后电池的光电转换效率出现显著下降,影响了铜铟镓硒薄膜太阳能电池的正常使用功率和预期使用寿命。Under the existing process preparation method, copper indium gallium selenide thin-film solar cells are prone to light decay during actual outdoor use. The normal use power and expected service life of copper indium gallium selenide thin film solar cells.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种解决铜铟镓硒太阳能电池光衰问题的缺陷钝化方法,能够有效减少铜铟镓硒太阳能电池的缺陷密度,延长铜铟镓硒薄膜太阳能电池的最佳使用寿命,提高户外铜铟镓硒薄膜太阳能电池的实际使用功率。The purpose of the present invention is to provide a defect passivation method for solving the problem of light decay of copper indium gallium selenide solar cells, which can effectively reduce the defect density of copper indium gallium selenide solar cells and prolong the optimal service life of copper indium gallium selenide thin film solar cells , to improve the actual power of outdoor copper indium gallium selenide thin film solar cells.
本发明解决其技术问题所采用的技术方案是:The technical scheme adopted by the present invention to solve its technical problems is:
一种解决铜铟镓硒太阳能电池光衰问题的缺陷钝化方法,包括以下步骤:A defect passivation method for solving the problem of light decay of copper indium gallium selenide solar cells, comprising the following steps:
(1)在衬底上沉积Mo背电极;(1) Deposition of Mo back electrode on the substrate;
(2)在Mo背电极上沉积铜铟镓硒光吸收层;(2) depositing a copper indium gallium selenide light absorbing layer on the Mo back electrode;
(3)在铜铟镓硒光吸收层上沉积CdS缓冲层;(3) depositing a CdS buffer layer on the copper indium gallium selenide light absorption layer;
(4)在CdS缓冲层上沉积高阻i-ZnO层和ZnO:Al窗口层,形成铜铟镓硒太阳能电池;(4) Depositing a high-resistance i-ZnO layer and a ZnO:Al window layer on the CdS buffer layer to form a copper indium gallium selenide solar cell;
(5)对铜铟镓硒太阳能电池进行缺陷钝化处理,具体为:(5) Defect passivation treatment for copper indium gallium selenide solar cells, specifically:
将铜铟镓硒太阳能电池放入气氛炉中,对炉膛进行抽气,抽气完毕后通入反应气体,采用以下程序进行热处理:Put the copper indium gallium selenide solar cell into the atmosphere furnace, and exhaust the furnace. After the exhaust is completed, the reaction gas is introduced, and the following procedures are used for heat treatment:
以5-10℃每分钟的升温速度升温至80-120℃,保温1-3小时,采用I型反应气体;Raise the temperature to 80-120°C at a heating rate of 5-10°C per minute, keep the temperature for 1-3 hours, and use type I reactive gas;
以2-5℃每分钟的升温速度升温至180-230℃,保温24-72小时,采用II型反应气体;Raise the temperature to 180-230°C at a heating rate of 2-5°C per minute, keep the temperature for 24-72 hours, and use type II reactive gas;
热处理结束后停止加热,自然降至室温,对炉膛抽气并通入压缩空气,得到热处理后的铜铟镓硒太阳能电池。After the heat treatment is completed, the heating is stopped, the temperature is naturally lowered to room temperature, the furnace is pumped and compressed air is introduced to obtain a copper indium gallium selenide solar cell after the heat treatment.
作为优选,Mo背电极厚度为450-550nm。Preferably, the thickness of the Mo back electrode is 450-550 nm.
作为优选,铜铟镓硒光吸收层厚度为1.0-3.0μm。Preferably, the thickness of the copper indium gallium selenide light absorbing layer is 1.0-3.0 μm.
作为优选,CdS缓冲层的厚度为30-70nm。Preferably, the thickness of the CdS buffer layer is 30-70 nm.
作为优选,i-ZnO层和 ZnO:Al窗口层总厚度控制在110-250nm。Preferably, the total thickness of the i-ZnO layer and the ZnO:Al window layer is controlled at 110-250 nm.
作为优选,步骤(5)中,所述反应气体流速控制在10 - 50cm3·min-1。Preferably, in step (5), the flow rate of the reaction gas is controlled at 10 - 50 cm 3 ·min -1 .
作为优选,所述I型反应气体为惰性气体,惰性气体选自氮气、氩气、氮/氩混合气中的一种。氮/氩混合气中氮的体积含量为10-90%。Preferably, the I-type reaction gas is an inert gas, and the inert gas is selected from nitrogen, argon, and nitrogen/argon mixture. The volume content of nitrogen in the nitrogen/argon mixture is 10-90%.
作为优选,所述II型反应气体为氧化性气体,氧化性气体选自干燥空气、氧/氩混合气中的一种。氧/氩混合气中氧的体积含量为20-70%。Preferably, the type II reactive gas is an oxidizing gas, and the oxidizing gas is selected from one of dry air and an oxygen/argon mixture. The volume content of oxygen in the oxygen/argon mixture is 20-70%.
作为优选,步骤(2)中,在Mo背电极上先沉积碱金属预置层后再沉积铜铟镓硒光吸收层,碱金属预置层的厚度2-20nm,碱金属预置层材料选自NaF、KF、RbF、CsF中的一种。Preferably, in step (2), an alkali metal preset layer is first deposited on the Mo back electrode, and then a copper indium gallium selenide light absorbing layer is deposited. The thickness of the alkali metal preset layer is 2-20 nm, and the material of the alkali metal preset layer is selected One of NaF, KF, RbF, CsF.
作为优选,沉积铜铟镓硒光吸收层采用三步共蒸法,第1步:将衬底温度升到300-450℃,共蒸发In、Ga、Se,沉积厚度为0.5-1.2μm,其中0.2≤Ga/(In+Ga)≤0.5;第二步:将衬底温度升高至450-650℃,共蒸发Cu、Se,沉积厚度为0.5-0.8μm,使0.95≤Cu/(In+Ga)≤1.20;第3步:保持衬底温度不变,共蒸发In、Ga、Se,沉积厚度为0.2-0.5μm,最终控制CIGS中0.82≤Cu/(In+Ga)≤0.95, 0.2≤Ga/(In+Ga)≤0.4。Preferably, the copper indium gallium selenide light absorbing layer is deposited by a three-step co-evaporation method. The first step: raising the substrate temperature to 300-450 ° C, co-evaporating In, Ga, and Se, the deposition thickness is 0.5-1.2 μm, wherein 0.2≤Ga/(In+Ga)≤0.5; the second step: raise the substrate temperature to 450-650℃, co-evaporate Cu and Se, and the deposition thickness is 0.5-0.8μm, so that 0.95≤Cu/(In+ Ga)≤1.20; Step 3: Keep the substrate temperature unchanged, co-evaporate In, Ga, Se, the deposition thickness is 0.2-0.5μm, and finally control CIGS 0.82≤Cu/(In+Ga)≤0.95, 0.2≤ Ga/(In+Ga)≤0.4.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明在铜铟镓硒窗口层制备完成后进行的热处理可以有效减少铜铟镓硒太阳能电池内部的缺陷密度,增加铜铟镓硒太阳能电池在使用过程中的稳定性。The heat treatment performed after the preparation of the copper indium gallium selenide window layer in the present invention can effectively reduce the defect density inside the copper indium gallium selenide solar cell and increase the stability of the copper indium gallium selenide solar cell during use.
本发明的缺陷钝化技术可以降低薄膜的表面方阻,增加薄膜的导电率,增强其光电性能。The defect passivation technology of the present invention can reduce the surface resistance of the thin film, increase the electrical conductivity of the thin film, and enhance its optoelectronic properties.
本发明的缺陷钝化技术可以有效减少丝网印刷工艺铜铟镓硒太阳能电池在室外长时间使用后产生的光衰现象,增加铜铟镓硒太阳能电池的实际使用功率以及预期使用寿命。The defect passivation technology of the invention can effectively reduce the light decay phenomenon of the copper indium gallium selenide solar cell in the screen printing process after being used outdoors for a long time, and increase the actual use power and the expected service life of the copper indium gallium selenide solar cell.
由于铜网印刷工艺不同于丝网印刷工艺其生产过程中无银浆的烧结步骤,这导致铜网印刷电池片在使用过程中光衰现象更明显,本发明的缺陷钝化技术不但提高了铜网压印工艺下电池片的光电转换效率(提升约0.2%),而且有效抑制了其使用过程中的光衰现象。Since the copper screen printing process is different from the screen printing process, there is no silver paste sintering step in the production process, which leads to more obvious light decay phenomenon of the copper screen printing cell during use. The defect passivation technology of the present invention not only improves the copper screen printing process. The photoelectric conversion efficiency of the cell under the screen imprinting process is increased by about 0.2%, and the light decay phenomenon during its use is effectively suppressed.
附图说明Description of drawings
图1为经过热处理与未经过热处理后铜铟镓硒电池片的缺陷密度图。Figure 1 shows the defect density diagram of the copper indium gallium selenide cell after heat treatment and without heat treatment.
图2为经过热处理与未经过热处理后窗口层方阻分部图。Figure 2 is a partial view of the square resistance of the window layer after heat treatment and without heat treatment.
图3为铜网压印工艺下未经热处理与经过热处理后测试的电池片光衰曲线。Figure 3 shows the light decay curves of the cells tested without heat treatment and after heat treatment under the copper mesh embossing process.
图4为丝网印刷工艺下未经热处理与经过热处理后测试的电池片光衰曲线。Figure 4 shows the light decay curves of the cells tested without heat treatment and after heat treatment under the screen printing process.
具体实施方式Detailed ways
下面通过具体实施例,对本发明的技术方案作进一步的具体说明。The technical solutions of the present invention will be further described in detail below through specific embodiments.
本发明中,若非特指,所采用的原料和设备等均可从市场购得或是本领域常用的。下述实施例中的方法,如无特别说明,均为本领域的常规方法。In the present invention, unless otherwise specified, the raw materials and equipment used can be purchased from the market or commonly used in the field. The methods in the following examples, unless otherwise specified, are conventional methods in the art.
总实施方案general implementation
一种解决铜铟镓硒太阳能电池光衰问题的缺陷钝化方法,包括以下步骤:A defect passivation method for solving the problem of light decay of copper indium gallium selenide solar cells, comprising the following steps:
(1)在衬底上沉积Mo背电极;Mo背电极厚度为450-550nm。(1) Deposit Mo back electrode on the substrate; the thickness of Mo back electrode is 450-550nm.
(2)在Mo背电极上先沉积碱金属预置层后再沉积铜铟镓硒光吸收层,碱金属预置层的厚度2-20nm,碱金属预置层材料选自NaF、KF、RbF、CsF中的一种。铜铟镓硒光吸收层厚度为1.0-3.0μm。沉积铜铟镓硒光吸收层采用三步共蒸法,第1步:将衬底温度升到300-450℃,共蒸发In、Ga、Se,沉积厚度为0.5-1.2μm,其中0.2≤Ga/(In+Ga)≤0.5;第二步:将衬底温度升高至450-650℃,共蒸发Cu、Se,沉积厚度为0.5-0.8μm,使0.95≤Cu/(In+Ga)≤1.20;第3步:保持衬底温度不变,共蒸发In、Ga、Se,沉积厚度为0.2-0.5μm,最终控制CIGS中0.82≤Cu/(In+Ga)≤0.95, 0.2≤Ga/(In+Ga)≤0.4。(2) First deposit an alkali metal pre-layer on the Mo back electrode, and then deposit a copper indium gallium selenide light absorbing layer. The thickness of the alkali metal pre-layer is 2-20nm, and the material of the alkali metal pre-layer is selected from NaF, KF, RbF , one of CsF. The thickness of the copper indium gallium selenide light absorption layer is 1.0-3.0 μm. The copper indium gallium selenide light absorption layer is deposited by a three-step co-evaporation method. The first step: the substrate temperature is raised to 300-450 ° C, and In, Ga and Se are co-evaporated, and the deposition thickness is 0.5-1.2 μm, where 0.2≤Ga /(In+Ga)≤0.5; the second step: raise the substrate temperature to 450-650℃, co-evaporate Cu and Se, the deposition thickness is 0.5-0.8μm, so that 0.95≤Cu/(In+Ga)≤ 1.20; Step 3: Keep the substrate temperature unchanged, co-evaporate In, Ga, Se, the deposition thickness is 0.2-0.5μm, and finally control 0.82≤Cu/(In+Ga)≤0.95 in CIGS, 0.2≤Ga/( In+Ga)≤0.4.
(3)在铜铟镓硒光吸收层上沉积CdS缓冲层;CdS缓冲层的厚度为30-70nm。(3) depositing a CdS buffer layer on the copper indium gallium selenide light absorbing layer; the thickness of the CdS buffer layer is 30-70 nm.
(4)在CdS缓冲层上沉积高阻i-ZnO层和ZnO:Al窗口层,形成铜铟镓硒太阳能电池;i-ZnO层和 ZnO:Al窗口层总厚度控制在110-250nm。(4) A high-resistance i-ZnO layer and a ZnO:Al window layer were deposited on the CdS buffer layer to form a copper indium gallium selenide solar cell; the total thickness of the i-ZnO layer and the ZnO:Al window layer was controlled at 110-250 nm.
(5)对铜铟镓硒太阳能电池进行缺陷钝化处理,具体为:(5) Defect passivation treatment for copper indium gallium selenide solar cells, specifically:
将铜铟镓硒太阳能电池放入气氛炉中,对炉膛进行抽气,抽气完毕后通入反应气体,反应气体流速控制在10 - 50cm3·min-1,采用以下程序进行热处理:Put the copper indium gallium selenide solar cell into the atmosphere furnace, and the furnace chamber is pumped. After the pumping is completed, the reaction gas is introduced.
以5-10℃每分钟的升温速度升温至80-120℃,保温1-3小时,采用I型反应气体;I型反应气体为惰性气体,惰性气体选自氮气、氩气、氮/氩混合气中的一种。The temperature is raised to 80-120°C at a heating rate of 5-10°C per minute, and the temperature is maintained for 1-3 hours. The I-type reaction gas is used; the I-type reaction gas is an inert gas, and the inert gas is selected from nitrogen, argon, and nitrogen/argon mixed. A kind of air.
以2-5℃每分钟的升温速度升温至180-230℃,保温24-72小时,采用II型反应气体;所述II型反应气体为氧化性气体,氧化性气体选自干燥空气、氧/氩混合气中的一种。The temperature is increased to 180-230°C at a heating rate of 2-5°C per minute, and the temperature is maintained for 24-72 hours, and a type II reaction gas is used; the type II reaction gas is an oxidizing gas, and the oxidizing gas is selected from dry air, oxygen/ One of the argon mixtures.
热处理结束后停止加热,自然降至室温,对炉膛抽气并通入压缩空气,得到热处理后的铜铟镓硒太阳能电池。After the heat treatment is completed, the heating is stopped, the temperature is naturally lowered to room temperature, the furnace is pumped and compressed air is introduced to obtain a copper indium gallium selenide solar cell after the heat treatment.
实施例1Example 1
1.利用磁控溅射法在不锈钢衬底上覆盖一层厚度为500nm的Mo背电极。1. A layer of Mo back electrode with a thickness of 500 nm was covered on the stainless steel substrate by magnetron sputtering.
2.在真空度为1×10-3Pa的共蒸发腔抽中将衬底温度升到300℃,于Mo层表面共蒸发一层NaF层,NaF蒸发源温度为765℃,蒸发时间为10min。2. Raise the substrate temperature to 300°C in a co-evaporation chamber with a vacuum of 1×10 -3 Pa, and co-evaporate a NaF layer on the surface of the Mo layer. The NaF evaporation source temperature is 765°C and the evaporation time is 10min. .
第一步沉积:将衬底温度升到550℃,共蒸发In、Ga、Se,其中In蒸发源温度为1040℃,Ga蒸发源温度为1120℃,Se蒸发源温度为460℃,蒸发时间为10min。The first step deposition: raise the substrate temperature to 550°C, co-evaporate In, Ga, and Se, where the In evaporation source temperature is 1040°C, the Ga evaporation source temperature is 1120°C, the Se evaporation source temperature is 460°C, and the evaporation time is 10min.
第二步沉积:保持衬底温度不变,蒸发Cu、Se,其中Cu蒸发源温度为1350℃,Se蒸发源温度为480℃,蒸发时间为20min。The second step of deposition: keep the substrate temperature unchanged, and evaporate Cu and Se, wherein the Cu evaporation source temperature is 1350°C, the Se evaporation source temperature is 480°C, and the evaporation time is 20min.
第三步沉积:保持衬底温度不变,共蒸发In、Ga、Se,其中In蒸发源温度为1010℃,Ga蒸发源温度为1080℃,Se蒸发源温度为440℃,蒸发时间为10min。The third step deposition: keep the substrate temperature unchanged, co-evaporate In, Ga, and Se, where the In evaporation source temperature is 1010 °C, the Ga evaporation source temperature is 1080 °C, the Se evaporation source temperature is 440 °C, and the evaporation time is 10min.
3.利用化学水浴法在铜铟镓硒薄膜层上沉积45nm厚的CdS缓冲层。3. A CdS buffer layer with a thickness of 45 nm was deposited on the copper indium gallium selenide thin film layer by chemical water bath method.
4.利用磁控溅射法在铜铟镓硒薄膜层上沉积总厚度为120nm的高阻i-ZnO层和ZnO:Al窗口层。4. A high-resistance i-ZnO layer and a ZnO:Al window layer with a total thickness of 120 nm were deposited on the copper indium gallium selenide thin film layer by magnetron sputtering.
5.将铜铟镓硒太阳能电池放入气氛炉中,对炉膛进行抽气,以20cm3·min-1的速度向炉膛内冲入氮气,以5℃·min-1的速度将气氛炉升温至100℃,保温2小时;随后对炉膛进行抽气并通入干燥空气,以2℃·min-1的速度将气氛炉升温至200℃,保温48小时。5. Put the copper indium gallium selenide solar cell into the atmosphere furnace, pump the furnace chamber, flush nitrogen into the furnace chamber at a speed of 20cm 3 ·min -1 , and heat the atmosphere furnace at a speed of 5°C ·min -1 to 100°C, and kept for 2 hours; then, the furnace was evacuated and dry air was introduced, and the atmosphere furnace was heated to 200°C at a speed of 2°C·min -1 , and kept for 48 hours.
6.停止气氛炉的加热,待气氛炉冷却至室温后抽出炉内的氮气并通入压缩空气,开炉后得到热处理完成的铜铟镓硒太阳能电池。6. Stop the heating of the atmosphere furnace, and after the atmosphere furnace is cooled to room temperature, the nitrogen in the furnace is drawn out and compressed air is introduced, and the copper indium gallium selenide solar cell after the heat treatment is obtained after the furnace is opened.
7.对经过热处理过的铜铟镓硒太阳能电池与未经热处理过的铜铟镓硒太阳能电池使用相同条件下的铜网压印工艺与层压工艺得到成品铜铟镓硒太阳能电池。7. Using the copper mesh embossing process and lamination process under the same conditions for the heat-treated copper indium gallium selenide solar cell and the unheated copper indium gallium selenide solar cell to obtain a finished copper indium gallium selenide solar cell.
8.将两种铜铟镓硒太阳能电池放于户外实际使用60天,保持组件温度在25℃,用符合IEC 904-9要求的B级模拟器,按照GB/T 6495.1的规定,在1000W·m-2辐照度下,每隔10天对电池片进行电流-电压特性的测量,处理数据后得到电池片的光衰曲线图3。图3表明经过热处理后的铜网印刷工艺电池片其光电转换效率提升,并且其光衰效应明显减弱。8. Put the two kinds of copper indium gallium selenide solar cells in the outdoor for 60 days of actual use, keep the module temperature at 25 ℃, use a B-level simulator that meets the requirements of IEC 904-9, according to the provisions of GB/T 6495.1, at 1000W· Under the irradiance of m -2 , the current-voltage characteristics of the cell were measured every 10 days, and the light decay curve of the cell was obtained after processing the data. Figure 3 shows that the photoelectric conversion efficiency of the copper screen printing process cell after heat treatment is improved, and its light decay effect is significantly weakened.
实施例2Example 2
1.利用磁控溅射法在不锈钢衬底上覆盖一层厚度为500nm的Mo背电极;1. A layer of Mo back electrode with a thickness of 500nm was covered on the stainless steel substrate by magnetron sputtering;
2.在真空度为1×10-3Pa的共蒸发腔抽中将衬底温度升到280℃,于Mo层表面共蒸发一层NaF层,NaF蒸发源温度为770℃,蒸发时间为10min。2. Raise the substrate temperature to 280 °C in a co-evaporation chamber with a vacuum of 1×10 -3 Pa, and co-evaporate a NaF layer on the surface of the Mo layer. The NaF evaporation source temperature is 770 °C and the evaporation time is 10 min. .
第一步沉积:将衬底温度升到525℃,共蒸发In、Ga、Se,其中In蒸发源温度为1060℃,Ga蒸发源温度为1130℃,Se蒸发源温度为465℃,蒸发时间为10min。The first step deposition: raise the substrate temperature to 525°C, co-evaporate In, Ga, and Se, where the In evaporation source temperature is 1060°C, the Ga evaporation source temperature is 1130°C, the Se evaporation source temperature is 465°C, and the evaporation time is 10min.
第二步沉积:保持衬底温度不变,蒸发Cu、Se,其中Cu蒸发源温度为1380℃,Se蒸发源温度为480℃,蒸发时间为19min。The second deposition step: keep the substrate temperature unchanged, and evaporate Cu and Se, wherein the Cu evaporation source temperature is 1380°C, the Se evaporation source temperature is 480°C, and the evaporation time is 19min.
第三步沉积:保持衬底温度不变,共蒸发In、Ga、Se,其中In蒸发源温度为995℃,Ga蒸发源温度为1040℃,Se蒸发源温度为450℃,蒸发时间为15min。The third step deposition: keep the substrate temperature unchanged, co-evaporate In, Ga, and Se, where the In evaporation source temperature is 995 °C, the Ga evaporation source temperature is 1040 °C, the Se evaporation source temperature is 450 °C, and the evaporation time is 15min.
3.利用化学水浴法在铜铟镓硒薄膜层上沉积50nm厚的CdS缓冲层;3. A 50nm thick CdS buffer layer was deposited on the copper indium gallium selenide thin film layer by chemical water bath method;
4.利用磁控溅射法在铜铟镓硒薄膜层上沉积总厚度为110nm的高阻i-ZnO层和ZnO:Al窗口层。4. A high-resistance i-ZnO layer and a ZnO:Al window layer with a total thickness of 110 nm were deposited on the copper indium gallium selenide thin film layer by magnetron sputtering.
5.将铜铟镓硒太阳能电池放入气氛炉中,对炉膛进行抽气,以30cm3·min-1的速度向炉膛内冲入体积比为9:1的氮气/氩气混合气,以10℃·min-1的速度将气氛炉升温至90℃,保温3小时;随后对炉膛进行抽气,通入体积比为3:7的氧/氩混合气,以5℃·min-1的速度将气氛炉升温至180℃,保温72小时。5. Put the copper indium gallium selenide solar cell into the atmosphere furnace, pump the furnace chamber, and rush into the furnace chamber with a nitrogen/argon gas mixture with a volume ratio of 9:1 at a speed of 30 cm 3 ·min −1 . The atmosphere furnace was heated to 90°C at a speed of 10°C·min -1 , and kept for 3 hours; then the furnace was evacuated, and an oxygen/argon mixture with a volume ratio of 3:7 was introduced, and the temperature was 5°C·min -1 . Speed the atmosphere furnace to 180°C and hold for 72 hours.
6.停止气氛炉的加热,待气氛炉冷却至室温后抽出炉内的氮气/氩气混合气并通入压缩空气,开炉后得到热处理完成的铜铟镓硒太阳能电池。6. Stop the heating of the atmosphere furnace. After the atmosphere furnace is cooled to room temperature, the nitrogen/argon gas mixture in the furnace is drawn out and compressed air is introduced. After the furnace is opened, the heat-treated copper indium gallium selenide solar cell is obtained.
7.对经过热处理过的铜铟镓硒太阳能电池与未经热处理过的铜铟镓硒太阳能电池使用相同条件下的丝网印刷工艺与层压工艺得到成品铜铟镓硒太阳能电池。7. Using the screen printing process and lamination process under the same conditions for the heat-treated copper indium gallium selenide solar cell and the unheated copper indium gallium selenide solar cell to obtain a finished copper indium gallium selenide solar cell.
8.将两种铜铟镓硒太阳能电池放于户外实际使用60天,保持组件温度在25℃,用符合IEC 904-9要求的B级模拟器,按照GB/T 6495.1的规定,在1000W·m-2辐照度下,每隔10天对电池片进行电流-电压特性的测量,处理数据后得到电池片的光衰曲线图4。图4表明经过热处理后的丝网印刷工艺电池片其光衰效应得到明显改善。8. Put the two kinds of copper indium gallium selenide solar cells in the outdoor for 60 days of actual use, keep the module temperature at 25 ℃, use a B-level simulator that meets the requirements of IEC 904-9, according to the provisions of GB/T 6495.1, at 1000W· Under m -2 irradiance, the current-voltage characteristics of the cell were measured every 10 days, and the light decay curve of the cell was obtained after processing the data. Figure 4 shows that the light decay effect of the screen-printed cell after heat treatment is significantly improved.
图1为经过热处理与未经过热处理后铜铟镓硒电池片(按照实施例1的方法制备)的缺陷密度图。CIGS电池片内部缺陷密度较高时碱金属元素通常在界面附近聚集,这导致在电池片的实际使用过程中碱金属元素进一步发生偏聚,这会造成界面附近的电荷与吸收层内部的电荷分布不均匀,使得电池片光电性能下降,产生光衰现象。TCO工序过后经过缺陷钝化处理后电池片内部缺陷密度下降,这可以有效防止碱金属在晶界处堆积,减少使用过程中的偏聚现象从而减少光衰效应。图2为经过热处理与未经过热处理后窗口层方阻分部图, TCO工序后经过热处理的电池片表面方阻下降,这可能是由于经过长时间的热处理使得电池片表面更加致密、孔隙率减小,方阻的减小能带来电池片FF的提升。Figure 1 is the defect density diagram of the copper indium gallium selenide cell (prepared according to the method of Example 1) after heat treatment and without heat treatment. When the defect density inside the CIGS cell is high, the alkali metal elements usually aggregate near the interface, which leads to further segregation of the alkali metal elements during the actual use of the cell, which will cause the charge near the interface and the charge distribution inside the absorber layer. Non-uniformity, the photoelectric performance of the cell is reduced, resulting in the phenomenon of light decay. After the TCO process, the defect density inside the cell decreases after the defect passivation treatment, which can effectively prevent the accumulation of alkali metals at the grain boundary, reduce the segregation phenomenon during use, and reduce the light decay effect. Figure 2 is a partial view of the square resistance of the window layer after heat treatment and without heat treatment. After the TCO process, the surface resistance of the heat-treated cell decreased. This may be due to the fact that the surface of the cell is denser and the porosity is reduced after a long time of heat treatment. Small, the reduction of the square resistance can bring about the improvement of the FF of the cell.
以上所述的实施例只是本发明的一种较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。The above-mentioned embodiment is only a preferred solution of the present invention, and does not limit the present invention in any form, and there are other variations and modifications under the premise of not exceeding the technical solution recorded in the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011509085.8A CN112531078B (en) | 2020-12-18 | 2020-12-18 | Defect passivation method for solving problem of light attenuation of copper indium gallium selenide solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011509085.8A CN112531078B (en) | 2020-12-18 | 2020-12-18 | Defect passivation method for solving problem of light attenuation of copper indium gallium selenide solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112531078A CN112531078A (en) | 2021-03-19 |
CN112531078B true CN112531078B (en) | 2022-05-20 |
Family
ID=75001987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011509085.8A Active CN112531078B (en) | 2020-12-18 | 2020-12-18 | Defect passivation method for solving problem of light attenuation of copper indium gallium selenide solar cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112531078B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103474505A (en) * | 2012-06-06 | 2013-12-25 | 尚越光电科技有限公司 | Alkali metal doping method in large-scale production of CIGS (copper, indium, gallium, selenium) thin-film solar cell |
CN104518052A (en) * | 2013-10-08 | 2015-04-15 | 台积太阳能股份有限公司 | Method of making photovoltaic device having high quantum efficiency |
CN104952982A (en) * | 2014-03-27 | 2015-09-30 | 台积太阳能股份有限公司 | Method of making photovoltaic device through tailored heat treatment |
CN106057928A (en) * | 2016-07-27 | 2016-10-26 | 华南理工大学 | Stainless steel flexible substrate copper-indium-gallium-selenium thin-film solar cell capable of blocking spread of iron effectively and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7585547B2 (en) * | 2006-04-13 | 2009-09-08 | Solopower, Inc. | Method and apparatus to form thin layers of materials on a base |
US20100243043A1 (en) * | 2009-03-25 | 2010-09-30 | Chuan-Lung Chuang | Light Absorbing Layer Of CIGS Solar Cell And Method For Fabricating The Same |
US8900664B2 (en) * | 2012-09-14 | 2014-12-02 | Intermolecular, Inc. | Method of fabricating high efficiency CIGS solar cells |
-
2020
- 2020-12-18 CN CN202011509085.8A patent/CN112531078B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103474505A (en) * | 2012-06-06 | 2013-12-25 | 尚越光电科技有限公司 | Alkali metal doping method in large-scale production of CIGS (copper, indium, gallium, selenium) thin-film solar cell |
CN104518052A (en) * | 2013-10-08 | 2015-04-15 | 台积太阳能股份有限公司 | Method of making photovoltaic device having high quantum efficiency |
CN104952982A (en) * | 2014-03-27 | 2015-09-30 | 台积太阳能股份有限公司 | Method of making photovoltaic device through tailored heat treatment |
CN106057928A (en) * | 2016-07-27 | 2016-10-26 | 华南理工大学 | Stainless steel flexible substrate copper-indium-gallium-selenium thin-film solar cell capable of blocking spread of iron effectively and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN112531078A (en) | 2021-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103915516B (en) | A kind of sodium doping method of CIGS base film photovoltaic material | |
CN110137297B (en) | A kind of P-I-N junction solar cell based on flexible substrate and preparation method | |
CN112490315A (en) | Cadmium telluride solar cell and preparation method thereof | |
CN103956391A (en) | AZO/Si heterojunction solar battery and manufacturing method thereof | |
CN103474511B (en) | The preparation method of copper indium gallium selenide optical absorption layer and copper-indium-galliun-selenium film solar cell | |
CN108257852A (en) | A kind of preparation method of Ag doping absorbing layer of copper-zinc-tin-sulfur film solar cell | |
CN108172643A (en) | A kind of CdTe tandem solar cell and its manufacturing method | |
CN112563118B (en) | In-doped CdS thin film, preparation method and prepared CIGS battery | |
CN105355699B (en) | A kind of many many lamination cadmium telluride diaphragm solar batteries of knot and preparation method thereof | |
CN113745359B (en) | A method for preparing a cadmium telluride gradient absorption layer and a solar cell | |
CN110224037A (en) | Copper-zinc-tin-sulfur film solar cell and preparation method thereof | |
CN106229362B (en) | Preparation method of copper indium gallium selenide thin film and copper indium gallium selenide thin film | |
CN101882653B (en) | Preparation method of solar battery based on nano CdS (Cadmium Sulfide) film | |
CN112531078B (en) | Defect passivation method for solving problem of light attenuation of copper indium gallium selenide solar cell | |
CN103268906B (en) | Cadmium sulphide membrane and there is the preparation method of the solar cell of cadmium sulphide membrane | |
CN112786713B (en) | High-efficiency ultrathin copper indium gallium selenium thin-film solar cell and preparation method thereof | |
JP2007059484A (en) | Solar cell and method of manufacturing the same | |
CN112563117B (en) | Preparation method of copper zinc tin sulfur selenium film with sulfur component gradient | |
CN108493299A (en) | Azo transparent conductive film and its preparation method and application | |
CN115101611A (en) | AgSbS 2-based inorganic thin-film solar cell and preparation method thereof | |
CN111244197B (en) | A kind of copper-based thin film solar cell positive electrode and preparation method thereof | |
CN112259639A (en) | Low-cost preparation method applied to CIGS thin-film solar cell with glass substrate | |
CN111223963A (en) | Alkali metal doping treatment method for large-scale production of copper indium gallium selenide thin-film solar cells | |
CN114843355B (en) | A large-area CZTSSe solar cell and its preparation method | |
CN113540288B (en) | A room temperature vulcanized copper-based absorber film and solar cell and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP02 | Change in the address of a patent holder | ||
CP02 | Change in the address of a patent holder |
Address after: Room 211, Building 3, No. 399 Xingguo Road, Linping Street, Linping District, Hangzhou City, Zhejiang Province, 311103 Patentee after: Still more photoelectric Polytron Technologies Inc. Address before: Room 603, building 1, Shangyue Green Valley Center, 1999 yuhangtang Road, Wuchang Street, Yuhang District, Hangzhou City, Zhejiang Province Patentee before: Still more photoelectric Polytron Technologies Inc. |