CN112528582A - 原型滤波器生成方法、装置、信道化方法和星载通信装置 - Google Patents

原型滤波器生成方法、装置、信道化方法和星载通信装置 Download PDF

Info

Publication number
CN112528582A
CN112528582A CN202110174610.3A CN202110174610A CN112528582A CN 112528582 A CN112528582 A CN 112528582A CN 202110174610 A CN202110174610 A CN 202110174610A CN 112528582 A CN112528582 A CN 112528582A
Authority
CN
China
Prior art keywords
organism
prototype filter
optimal solution
optimization
cost function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110174610.3A
Other languages
English (en)
Other versions
CN112528582B (zh
Inventor
安建平
王帅
李琦
吴玉清
刘萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202110174610.3A priority Critical patent/CN112528582B/zh
Publication of CN112528582A publication Critical patent/CN112528582A/zh
Application granted granted Critical
Publication of CN112528582B publication Critical patent/CN112528582B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/32Circuit design at the digital level
    • G06F30/337Design optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Image Processing (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

本发明提供一种原型滤波器生成方法、装置、信道化方法和星载通信装置,其中原型滤波器生成方法包括:基于任意通道数余弦调制滤波器组的混叠失真误差模型,确定余弦调制滤波器组的原型滤波器的参数优化代价函数;参数优化代价函数使得生成的超高阶原型滤波器满足近似完美重构条件;对参数优化代价函数进行全局迭代寻优,直至当前轮寻优得到的最优解的适应度达到预设阈值;以该最优解为初值进行参数优化代价函数的局部寻优,得到原型滤波器的滤波器参数。本发明抑制了相邻子带以及非相邻子带间的带外泄露和频谱混叠失真,降低了海量参数规划问题求解的计算复杂度,并提高了超高阶原型滤波器的生成效率。

Description

原型滤波器生成方法、装置、信道化方法和星载通信装置
技术领域
本发明涉及信号处理技术领域,尤其涉及一种原型滤波器生成方法、装置、信道化方法和星载通信装置。
背景技术
M通道非均匀双正交余弦调制滤波器组(CMFB)可以基于第IV类离散余弦变换对线性相位FIR原型滤波器进行均匀对偶调制,实现宽带复杂频谱的细粒度柔性分解,并通过对若干子带的综合重构完成特定波形的多尺度全相干反演。因此,CMFB结构凭借资源开销小、波形分析灵活度高等优势,被广泛应用于宽带卫星通信、雷达认知对抗、智能语音和图像处理等领域。以下一代低轨卫星隐蔽通信为例,特定时段内用户数量、各用户频谱位置及所占带宽随机动态变化,系统业务类型繁杂,子带波形标准、模式多样,对CMFB宽带通信收发机的数字信道化和抗干扰能力提出严峻挑战。
低通原型滤波器的设计是实现CMFB的关键,而原型滤波器的阶数与系统计算复杂度密切相关。日益膨胀的信号带宽和不断细化的频谱资源分配要求使得接收机信道化规模与频带分析密度呈现指数级增长态势,导致更加陡峭的原型滤波器过渡带,也意味着更高的滤波器阶数,进而大幅增加CMFB参数的设计难度、延长了开发周期。而信道数的成倍增加同时将加剧子带间的频谱混叠失真,因此,迫切需要一种更加高效,且能抑制子带间频谱混叠失真的原型滤波器参数设计和优化方法。
目前的原型滤波器参数设计优化方法包括基于梯度的迭代算法和自然启发式优化技术。应对上述由信道数攀升带来的设计困难时,前者虽具有较快的收敛性能,但容易陷入局部最优;而后者拥有良好的全局寻优能力,但收敛速度有限。此外,现有方案在进行原型滤波器参数设计优化时,通常只考虑相邻子带间频谱混叠效应的抑制与抵消。然而,事实上在对接收机进行大规模信道化时,远端用户由于通道非理想隔离导致的能量泄露在CMFB进行多抽样率切换的过程中,同样会被翻折到目标用户所在子带,引发子带间频谱混叠失真,导致系统误码率性能恶化。
发明内容
本发明提供一种原型滤波器生成和滤波方法、装置、电子设备和存储介质,用以实现强混叠抑制和低频响失真的信道化能力,并提高原型滤波器参数设计和优化的效率。
本发明提供一种原型滤波器生成方法,包括:
基于任意通道数余弦调制滤波器组的混叠失真误差模型,确定所述余弦调制滤波器组的原型滤波器的参数优化代价函数;所述参数优化代价函数使得生成的原型滤波器满足近似完美重构条件;
对所述参数优化代价函数进行全局迭代寻优,直至当前轮寻优得到的最优解的适应度达到预设阈值;
以所述最优解为初值进行参数优化代价函数的局部寻优,得到所述原型滤波器的滤波器参数。
根据本发明提供的一种原型滤波器生成方法,所述当前轮寻优得到的最优解是针对种群中的各个生物体依次进行互利共生搜索、偏利共生搜索和寄生搜索后得到的;任一生物体对应所述参数规划目标的一个候选解;
其中,针对所述种群中的任一生物体进行互利共生搜索,具体包括:
随机选择所述种群中的另一生物体;
基于所述任一生物体、所述另一生物体、当前的最优解、个体获益权重,以及所述任一生物体与所述另一生物体之间的互利向量,分别生成所述任一生物体对应的更新生物体和所述另一生物体对应的更新生物体;所述个体获益权重使得生物体的获益程度随全局寻优迭代次数变化;
若任一更新生物体的适应度大于当前的最优解的适应度,则将所述任一更新生物体作为当前的最优解。
根据本发明提供的一种原型滤波器生成方法,所述任一生物体对应的更新生物体和所述另一生物体对应的更新生物体,是基于如下公式确定的:
Figure 197324DEST_PATH_IMAGE001
其中,
Figure 980472DEST_PATH_IMAGE002
为所述任一生物体或所述另一生物体,
Figure 536088DEST_PATH_IMAGE003
为所述任一生物体 或所述另一生物体对应的更新生物体,rand(0,1)表示[0,1]之间的随机缩放因子,
Figure 961253DEST_PATH_IMAGE004
为当 前的最优解,{1,2}表示随机取1或2的受益因子,w k 为所述个体获益权重,Mv为所述互利向 量;
Figure 393414DEST_PATH_IMAGE005
其中,k为当前的全局寻优迭代次数。
根据本发明提供的一种原型滤波器生成方法,所述参数优化代价函数为:
Figure 940939DEST_PATH_IMAGE006
其中,M为信道数,K为离散频域采样点数;N为原型滤波器长度;
Figure 187113DEST_PATH_IMAGE007
Figure 415969DEST_PATH_IMAGE008
Figure 962357DEST_PATH_IMAGE009
为角频率,d为系统理想群延迟;
Figure 352887DEST_PATH_IMAGE010
Figure 289619DEST_PATH_IMAGE011
Figure 587745DEST_PATH_IMAGE012
Figure 191901DEST_PATH_IMAGE013
为原型滤波器的滤波器参数;
Figure 505332DEST_PATH_IMAGE014
Figure 194939DEST_PATH_IMAGE015
Figure 296756DEST_PATH_IMAGE016
Figure 755419DEST_PATH_IMAGE017
Figure 753331DEST_PATH_IMAGE018
Figure 195814DEST_PATH_IMAGE019
Figure 570163DEST_PATH_IMAGE020
表示向量内积;
Figure 680071DEST_PATH_IMAGE021
Figure 114463DEST_PATH_IMAGE022
分别表示取括号中的实数和虚数部分。
根据本发明提供的一种原型滤波器生成方法,所述以所述最优解为初值进行参数优化代价函数的局部寻优,具体包括:
采用如下公式更新最优解,直至达到预设终止条件或达到预设局部寻优迭代次数:
Figure 784522DEST_PATH_IMAGE023
其中,
Figure 431404DEST_PATH_IMAGE024
为更新前的最优解,
Figure 864659DEST_PATH_IMAGE025
为更新后的最优解,
Figure 938794DEST_PATH_IMAGE026
为quasi- Hessian矩阵,
Figure 293552DEST_PATH_IMAGE027
为Jacobian矩阵,
Figure 478546DEST_PATH_IMAGE028
为单位矩阵,
Figure 31887DEST_PATH_IMAGE029
为组合系数,
Figure 542503DEST_PATH_IMAGE030
为梯度向量。
本发明还提供一种信道化方法,包括:
基于余弦调制滤波器组对多载波信号进行子带分解与柔性综合处理;
其中,所述余弦调制滤波器组的原型滤波器是基于如上述任一种所述原型滤波器生成方法生成的。
本发明还提供一种原型滤波器生成装置,包括:
参数规划目标转换单元,用于基于任意通道数余弦调制滤波器组的混叠失真误差模型,确定所述余弦调制滤波器组的原型滤波器的参数优化代价函数;所述参数优化代价函数使得生成的原型滤波器满足近似完美重构条件;
全局寻优单元,用于对所述参数优化代价函数进行全局迭代寻优,直至当前轮寻优得到的最优解的适应度达到预设阈值;
局部寻优单元,用于以所述最优解为初值进行参数优化代价函数的局部寻优,得到所述原型滤波器的滤波器参数。
本发明还提供一种星载通信装置,包括:
接收天线,用于接收星地、星间通信信号;
射频通道,用于对接收天线输出射频信号进行步进衰减、滤波、可变增益控制以及程控下变频,得到中频模拟信号;
模拟数字转换器,用于将所述中频模拟信号转换为数字信号;
信道化处理单元,用于基于余弦调制滤波器组对所述数字信号进行子带分解与柔性综合处理;
其中,所述余弦调制滤波器组的原型滤波器是基于如上述任一种所述原型滤波器生成方法生成的。
本发明还提供一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述任一种所述原型滤波器生成方法或信道化方法的步骤。
本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述原型滤波器生成方法或信道化方法的步骤。
本发明提供的原型滤波器生成和滤波方法、装置、电子设备和存储介质,基于任意通道数余弦调制滤波器组的混叠失真误差模型,确定余弦调制滤波器组的原型滤波器的参数优化代价函数,使得生成的原型滤波器满足近似完美重构条件,然后对参数优化代价函数进行全局寻优,直至当前轮寻优得到的最优解的适应度达到预设阈值,再基于最优解进行局部寻优,得到原型滤波器的滤波器参数,达到接收波形内全部用户间频带泄露串扰近似完全抵消的效果,抑制了相邻子带以及非相邻子带间的带外泄露和频谱混叠失真,并且通过全局寻优和局部寻优的联合求解方式,实现参数规划问题求解的快速收敛,降低了海量参数规划问题求解的计算复杂度,并提高了超高阶原型滤波器的生成效率。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的原型滤波器生成方法的流程示意图;
图2为本发明提供的共生生物搜索方法收敛速度的示意图;
图3为本发明提供的原型滤波器生成方法的性能评估示意图;
图4为本发明提供的原型滤波器生成装置的结构示意图;
图5为本发明提供的电子设备的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例提供的原型滤波器生成方法的流程示意图,如图1所示,该方法包括:
步骤110,基于任意通道数余弦调制滤波器组的混叠失真误差模型,确定余弦调制滤波器组的原型滤波器的参数优化代价函数;参数优化代价函数使得生成的原型滤波器满足近似完美重构条件;
步骤120,对参数优化代价函数进行全局迭代寻优,直至当前轮寻优得到的最优解的适应度达到预设阈值;
步骤130,以最优解为初值进行参数优化代价函数的局部寻优,得到原型滤波器的滤波器参数。
具体地,为了设计和优化余弦调制滤波器组的原型滤波器的滤波器参数,可以首先将原型滤波器的参数设计优化问题转换为无约束非凸非线性的大规模参数规划问题,以便于超高阶线性相位原型滤波器的参数规划问题求解。此处,本发明实施例基于余弦调制滤波器组的传递函数,建立完备的CMFB系统混叠失真误差模型。其中,混叠失真误差模型用于计算CMFB系统中的混叠失真误差。在混叠失真误差模型基础上,以混叠失真误差最小为目标,可以确定得到余弦调制滤波器组的原型滤波器的参数优化代价函数,实现超高阶原型滤波器参数设计问题到无约束非线性大规模参数规划问题的转换。此处,M信道的余弦调制滤波器组的传递函数可以为以下形式:
Figure 915716DEST_PATH_IMAGE031
其中,第m个分析滤波器的频响为
Figure 904400DEST_PATH_IMAGE032
,第m个综合滤波器 的频响为
Figure 515510DEST_PATH_IMAGE033
Figure 925588DEST_PATH_IMAGE034
Figure 51676DEST_PATH_IMAGE035
Figure 844052DEST_PATH_IMAGE036
Figure 106406DEST_PATH_IMAGE037
Figure 896507DEST_PATH_IMAGE038
N为原型滤波器长度。
由于在对接收机进行大规模信道化时,远端用户导致的能量泄露在CMFB进行多抽样率切换的过程中,可能会被翻折到目标用户所在子带,引发子带间频谱混叠失真,因此,本发明实施例在设定参数规划目标时,以生成的原型滤波器满足近似完美重构条件(Near Perfect Reconstruction,NPR)作为参数优化代价函数。即,待生成的原型滤波器的滤波器参数可以满足以下条件:
Figure 244312DEST_PATH_IMAGE039
其中,
Figure 840379DEST_PATH_IMAGE040
ad为系统理想增益 和群延迟。
将根据该参数优化代价函数进行寻优得到的最优解作为原型滤波器的滤波器参数,可以使得原型滤波器满足近似完美重构条件。在此基础上,输入信号经过余弦调制滤波器组的处理之后,输出信号与输入信号间存在尽可能小的失真,从而达到接收波形内全部用户间频带泄露串扰近似完全抵消的效果,抑制了相邻子带以及非相邻子带间的带外泄露和频谱混叠失真。
基于上述确定得到的参数优化代价函数,利用全局寻优算法进行全局迭代寻优。此处,为了使得全局寻优算法对初值脱敏,从而避免参数规划陷入局部最优,可以采用仿生算法进行全局寻优,例如蚁群算法、粒子群优化算法和共生生物搜索算法。迭代进行全局寻优,直至当前轮寻优得到的最优解的适应度达到预设阈值。其中,适应度是基于最优解以及参数规划目标确定的,用于表征该最优解符合参数规划目标的程度。若当前轮寻优得到的最优解的适应度达到预设阈值,则基于该最优解进行局部寻优,实现参数规划问题求解的快速收敛,降低海量参数规划问题求解的计算复杂度,从而提高超高阶原型滤波器的生成效率。
本发明实施例提供的方法,基于任意通道数余弦调制滤波器组的混叠失真误差模型,确定余弦调制滤波器组的原型滤波器的参数优化代价函数,使得生成的原型滤波器满足近似完美重构条件,然后对参数优化代价函数进行全局寻优,直至当前轮寻优得到的最优解的适应度达到预设阈值,再基于最优解进行局部寻优,得到原型滤波器的滤波器参数,达到接收波形内全部用户间频带泄露串扰近似完全抵消的效果,抑制了相邻子带以及非相邻子带间的带外泄露和频谱混叠失真,并且通过全局寻优和局部寻优的联合求解方式,实现参数规划问题求解的快速收敛,降低了海量参数规划问题求解的计算复杂度,并提高了超高阶原型滤波器的生成效率。
基于上述实施例,当前轮寻优得到的最优解是针对种群中的各个生物体依次进行互利共生搜索、偏利共生搜索和寄生搜索后得到的;任一生物体对应参数规划目标的一个候选解;
其中,针对种群中的任一生物体进行互利共生搜索,具体包括:
随机选择种群中的另一生物体;
基于该生物体、该另一生物体、当前的最优解、个体获益权重,以及该生物体与该另一生物体之间的互利向量,分别生成该生物体对应的更新生物体和该另一生物体对应的更新生物体;个体获益权重使得生物体的获益程度随全局寻优迭代次数变化;
若任一更新生物体的适应度大于当前的最优解的适应度,则将该更新生物体作为当前的最优解。
具体地,为了使全局寻优算法对初始值脱敏,从而避免由于初始值的选取不当导致全局寻优算法陷入局部最优,本发明实施例选取共生生物搜索算法对参数规划问题进行全局寻优。其中,共生生物搜索算法模拟了生物界中生物通过共生的种群关系来增强自身对环境的适应能力这一特性实现寻优过程。共生生物搜索算法在求解优化问题时,随机构造多个生物体形成生物种群作为初始候选解;基于参数规划目标建立适应度评价体系衡量各智能体间适应期望目标的程度;通过个体间的互利共生、偏利共生及寄生关系进行简单交互,以改善单个智能体的适应程度,最终涌现群体智能指导优化搜索,进而取得参数规划问题的最优解。
具体而言,针对种群中的各个生物体,依次进行互利共生搜索、偏利共生搜索和寄生搜索,直至遍历完种群中的所有生物体,完成当前轮的全局寻优,此时得到的最优解即为当前轮的最优解。
其中,针对种群中的任一生物体
Figure 957239DEST_PATH_IMAGE041
进行互利共生搜索时,首先随机选择种群中 的另一生物体
Figure 183821DEST_PATH_IMAGE042
Figure 18922DEST_PATH_IMAGE043
针对生物体
Figure 153100DEST_PATH_IMAGE044
和生物体
Figure 395906DEST_PATH_IMAGE042
,分别生成新的候选解,即对应的更新生物体,具体 可以基于生物体
Figure 324547DEST_PATH_IMAGE045
或生物体
Figure 850207DEST_PATH_IMAGE046
、当前的最优解、两个生物体之间的互利向量,以及个 体获益权重,生成对应的更新生物体。其中,两个生物体之间的互利向量用于表征两个生物 体间的关系特征,例如,可以取两个生物体的平均向量,即
Figure 522496DEST_PATH_IMAGE047
,作为互利向量。
此处,本发明实施例在进行互利共生搜索,生成新的候选解时,引入了个体获益权重,用于随全局寻优迭代次数的变化改变生物体在互利共生搜索时的获益程度,使得每一轮迭代时,各生物体在互利共生搜索阶段生成对应的更新生物体时,互利向量所产生的影响不同。由于个体获益权重使得生物体在互利共生搜索时的获益程度随全局寻优迭代次数呈波动状态,可以有效提升共生生物搜索算法的局部寻优能力。
若产生的任一更新生物体的适应度大于当前的最优解的适应度,则将该更新生物体作为当前的最优解,实现最优解的更新。
当生物体
Figure 410687DEST_PATH_IMAGE044
完成互利共生搜索,即可进行下一步的偏利共生搜索。随机选择种 群中的另一生物体
Figure 979071DEST_PATH_IMAGE042
ij,并生成生物体
Figure 523185DEST_PATH_IMAGE044
对应的新的候选解。例如,可以采用如下 公式生成新的候选解
Figure 999166DEST_PATH_IMAGE048
Figure 945125DEST_PATH_IMAGE049
其中rand(-1,1)为[-1,1]之间的随机缩放因子,
Figure 746728DEST_PATH_IMAGE050
为当前的最优解。
Figure 778138DEST_PATH_IMAGE048
的适应度大于
Figure 809808DEST_PATH_IMAGE044
的适应度,即生物体
Figure 875853DEST_PATH_IMAGE044
在与生物体
Figure 582778DEST_PATH_IMAGE042
相互作用 下,能够增强自身的适应度,而使自身不断向最优解靠拢时,将
Figure 304747DEST_PATH_IMAGE044
更新为
Figure 122530DEST_PATH_IMAGE048
。若此时
Figure 777502DEST_PATH_IMAGE048
的适应度大于
Figure 655328DEST_PATH_IMAGE050
,则将当前的最优解更新为
Figure 926910DEST_PATH_IMAGE048
随后,对生物体
Figure 282805DEST_PATH_IMAGE044
进行寄生搜索。随机选择
Figure 323442DEST_PATH_IMAGE044
中的部分维度进行随机变异,产 生寄生生物体
Figure 168907DEST_PATH_IMAGE051
。然后,随机选择种群中的另一生物体
Figure 933644DEST_PATH_IMAGE042
ij,作为宿主,并比较
Figure 93230DEST_PATH_IMAGE051
Figure 988373DEST_PATH_IMAGE042
的适应度,保留其中适应度较高的生物体,而淘汰适应度较低的生物体,实现 优胜劣汰。
当对种群中的每一个生物体均进行了上述的互利共生搜索、偏利共生搜索和寄生搜索后,即完成当前轮的全局寻优。
本发明实施例提供的方法,基于任一生物体、另一生物体、当前的最优解、个体获益权重,以及该生物体与该另一生物体之间的互利向量,分别生成该生物体对应的更新生物体和该另一生物体对应的更新生物体,其中,个体获益权重使得生物体的获益程度随全局寻优迭代次数变化,可以有效提升共生生物搜索算法的局部寻优能力。
基于上述任一实施例,生物体
Figure 942423DEST_PATH_IMAGE044
对应的更新生物体和生物体
Figure 188597DEST_PATH_IMAGE042
对应的更新生 物体,是基于如下公式确定的:
Figure 151873DEST_PATH_IMAGE001
其中,
Figure 839207DEST_PATH_IMAGE002
为生物体
Figure 229737DEST_PATH_IMAGE044
或另一生物体
Figure 697627DEST_PATH_IMAGE042
Figure 464595DEST_PATH_IMAGE003
为生物体
Figure 62892DEST_PATH_IMAGE044
或另一生 物体
Figure 624323DEST_PATH_IMAGE042
对应的更新生物体,rand(0,1)表示[0,1]之间的随机缩放因子,
Figure 313931DEST_PATH_IMAGE004
为当前的最优 解,{1,2}表示随机取1或2的受益因子,w k 为个体获益权重,Mv为互利向量;
Figure 822273DEST_PATH_IMAGE005
其中,k为当前的全局寻优迭代次数。
具体地,在互利共生搜索阶段生成新的候选解,即更新生物体时,可以基于当前的最优解、两个生物体间的互利向量,确定一个获益值,并将该获益值进行随机缩放后加到原本的生物体上,形成新的更新生物体。其中,可以利用个体获益权重改变受益因子后,对互利向量进行加权,并求取当前最优解与加权结果间的差值作为该获益值,以使得生物体间受益因子随全局寻优迭代次数变化,从而使得生物体的获益程度随全局寻优迭代次数变化。即,可以采用如下公式生成更新生物体:
Figure 280936DEST_PATH_IMAGE001
其中,
Figure 13268DEST_PATH_IMAGE002
为生物体
Figure 455751DEST_PATH_IMAGE044
或另一生物体
Figure 298942DEST_PATH_IMAGE042
Figure 80953DEST_PATH_IMAGE003
为生物体
Figure 984187DEST_PATH_IMAGE044
或另一生 物体
Figure 913966DEST_PATH_IMAGE042
对应的更新生物体,rand(0,1)表示[0,1]之间的随机缩放因子,
Figure 560848DEST_PATH_IMAGE004
为当前的最优 解,{1,2}表示随机取1或2的受益因子,w k 为个体获益权重,Mv为互利向量。
此处,个体获益权重w k 可以基于如下公式确定得到:
Figure 203225DEST_PATH_IMAGE005
其中,k为当前的全局寻优迭代次数。
根据上式确定得到的个体获益权重可以随着全局寻优迭代次数的变化而变化。将个体获益权重与受益因子相乘后,可以使得受益因子随全局寻优迭代次数呈震荡状态,从而使得生物体的获益程度也随全局寻优迭代次数呈震荡状态,能够有效提高共生生物搜索的局部寻优能力。
基于上述任一实施例,参数优化代价函数为:
Figure 277360DEST_PATH_IMAGE006
其中,M为信道数,K为离散频域采样点数;N为原型滤波器长度;
Figure 428856DEST_PATH_IMAGE007
Figure 879429DEST_PATH_IMAGE008
Figure 167191DEST_PATH_IMAGE009
为角频率,d为系统理想群延迟;
Figure 615490DEST_PATH_IMAGE010
Figure 519861DEST_PATH_IMAGE011
Figure 508545DEST_PATH_IMAGE012
Figure 650814DEST_PATH_IMAGE013
为原型滤波器的滤波器参数;
Figure 535593DEST_PATH_IMAGE014
Figure 396102DEST_PATH_IMAGE015
Figure 471634DEST_PATH_IMAGE016
Figure 468409DEST_PATH_IMAGE017
Figure 524090DEST_PATH_IMAGE018
Figure 871895DEST_PATH_IMAGE019
Figure 467961DEST_PATH_IMAGE020
表示向量内积;
Figure 584822DEST_PATH_IMAGE021
Figure 811404DEST_PATH_IMAGE022
分别表示取括号中的实数和虚数部分。
具体地,本发明实施例设定的参数优化代价函数,可以使得生成的原型滤波器满 足近似完美重构条件(Near Perfect Reconstruction,NPR)。即,待生成的原型滤波器的滤 波器参数
Figure 380925DEST_PATH_IMAGE052
满足以下条件:
Figure 780683DEST_PATH_IMAGE053
为了便于后续的求解,将上式转换为矩阵形式后作为参数优化代价函数,即:
Figure 220891DEST_PATH_IMAGE006
其中,M为信道数,K为离散频域采样点数;N为原型滤波器长度;
Figure 149533DEST_PATH_IMAGE007
,其维度为2MK×1;
Figure 737509DEST_PATH_IMAGE008
Figure 415658DEST_PATH_IMAGE009
为角频率,d为系统理想群延迟;
Figure 710373DEST_PATH_IMAGE010
Figure 809916DEST_PATH_IMAGE054
为维度为2K×1的零向量;
Figure 885189DEST_PATH_IMAGE011
,其维度为2MK×1;
Figure 361169DEST_PATH_IMAGE012
,其维 度为2K×1;
Figure 510391DEST_PATH_IMAGE013
为原型滤波器的滤波器参数;
Figure 46414DEST_PATH_IMAGE014
,其维度为K×N
Figure 343404DEST_PATH_IMAGE015
,其维度为K×N
Figure 357496DEST_PATH_IMAGE016
, 其维度为K×1;
Figure 423541DEST_PATH_IMAGE017
,其 维度为K×1;
Figure 68149DEST_PATH_IMAGE018
Figure 586855DEST_PATH_IMAGE019
Figure 664358DEST_PATH_IMAGE020
表示向量内积;
Figure 584910DEST_PATH_IMAGE021
Figure 665998DEST_PATH_IMAGE022
分别表示取括号中的实数和虚数部分。
基于上述任一实施例,步骤130具体包括:
采用如下公式更新最优解,直至达到预设终止条件或达到预设局部寻优迭代次数:
Figure 937579DEST_PATH_IMAGE023
其中,
Figure 293474DEST_PATH_IMAGE024
为更新前的最优解,
Figure 271795DEST_PATH_IMAGE025
为更新后的最优解,
Figure 320522DEST_PATH_IMAGE026
为quasi- Hessian矩阵,
Figure 79400DEST_PATH_IMAGE027
为Jacobian矩阵,
Figure 238986DEST_PATH_IMAGE028
为单位矩阵,
Figure 868550DEST_PATH_IMAGE029
为组合系数,
Figure 291441DEST_PATH_IMAGE030
为梯度向量。
具体地,在进行局部寻优时,可以采用Levenberg-Marquardt后适应(LM-postconditioning)算法以加速原型滤波器的参数规划问题的求解速度,以完成超高阶最优化参数的快速聚焦和精准收敛。即,可以采用如下公式更新最优解:
Figure 277895DEST_PATH_IMAGE023
其中,
Figure 241172DEST_PATH_IMAGE024
为更新前的最优解,
Figure 990822DEST_PATH_IMAGE025
为更新后的最优解,
Figure 584614DEST_PATH_IMAGE026
为quasi- Hessian矩阵,
Figure 786925DEST_PATH_IMAGE027
为Jacobian矩阵,
Figure 819472DEST_PATH_IMAGE028
为单位矩阵,
Figure 423629DEST_PATH_IMAGE029
为组合系数,
Figure 188323DEST_PATH_IMAGE030
为梯度向量。
重复上述更新操作,直至达到预设终止条件或达到预设局部寻优迭代次数。其中,预设终止条件和预设局部寻优迭代次数可以根据实际应用场景的需求进行设定,本发明实施例对此不作具体限定。
基于上述任一实施例,本发明实施例提供了一种原型滤波器生成方法,该方法包括:
步骤一、基于余弦调制滤波器组的传递函数,建立完备的系统混叠失真误差模型,确定参数优化代价函数,将超高阶原型滤波器的参数设计优化问题归纳为无约束非线性大规模参数规划问题;
步骤二、初始化信道数M=128,原型滤波器阶数N=512,种群规模(population size)I分别设置为64、128、256、512和1024;LM算法的最大迭代次数P max=100,启动局部寻 优的预设阈值
Figure 877930DEST_PATH_IMAGE055
=0.003。随机生成I个生物体作为初始种群
Figure 183009DEST_PATH_IMAGE056
Figure 110514DEST_PATH_IMAGE057
。此处,rand(N,1)为N维缩放因子向 量,
Figure 842847DEST_PATH_IMAGE058
Figure 302908DEST_PATH_IMAGE059
分别为搜索空间的上下边界。
步骤三、根据参数规划目标中的代价函数
Figure 146099DEST_PATH_IMAGE060
,计算I 个生物体适应度,从中确定当前的最优解
Figure 724847DEST_PATH_IMAGE004
步骤四、设置i=1。
步骤五、随机选择生物体
Figure 831344DEST_PATH_IMAGE042
ji)与
Figure 495543DEST_PATH_IMAGE044
进行互利共生搜索,分别生成
Figure 408005DEST_PATH_IMAGE044
Figure 841260DEST_PATH_IMAGE042
对应的更新生物体,比较更新生物体的适应度以及当前最优解的适应度,判断是否更 新最优解
Figure 118657DEST_PATH_IMAGE004
步骤六、随机选择生物体
Figure 270153DEST_PATH_IMAGE042
ji)与
Figure 720726DEST_PATH_IMAGE044
进行偏利共生搜索,并生成
Figure 211750DEST_PATH_IMAGE044
对应 的新候选解,比较新候选解的适应度以及当前最优解的适应度,判断是否更新最优解
Figure 456787DEST_PATH_IMAGE004
步骤七、对生物体
Figure 367017DEST_PATH_IMAGE044
进行随机变异操作,产生寄生生物体
Figure 355702DEST_PATH_IMAGE051
;随机选择另一 生物体
Figure 701232DEST_PATH_IMAGE042
ji)作为宿主,二者择优保留在种群中。
步骤八、设置ii+1;如果iN,即整个种群更新完毕,当前轮迭代完成,可以进行下一步;否则返回步骤五。
步骤九、若当前轮的最优解的适应度达到启动局部寻优的预设阈值
Figure 382749DEST_PATH_IMAGE055
时,进行下 一步;否则返回步骤四。
步骤十、利用LM后适应算法对步骤九中得到的最优解进行迭代更新。
步骤十一、当达到终止条件或迭代次数达到最大迭代次数P max时,算法停止;否则返回步骤十。
基于上述任一实施例,图2为本发明实施例提供的共生生物搜索方法收敛速度的示意图,如图2所示,扩大种群规模可以有效提高共生生物搜索算法的收敛速度,代价是计算复杂度的增加和整个种群遍历搜索、更新周期的延长。然而,种群规模的差异对于收敛初期即全局寻优阶段算法的收敛效率影响较小,因此为降低计算资源消耗,可以考虑先基于有限的种群规模实现算法的全局寻优,再利用LM后适应算法大幅提升收敛性能,实现快速聚焦和精准收敛。
图3为本发明实施例提供的原型滤波器生成方法的性能评估示意图,该图分别反映了本发明实施例生成的512阶原型滤波器对系统失真误差和混叠误差的抑制效果。如图3所示,生成的原型滤波器实现了±6×10-7dB以内的幅度失真和线性相位系统传递函数,同时127次混叠失真全部被抑制在-95dB以下。
基于上述任一实施例,本发明实施例提供了一种信道化方法,该方法包括:
基于余弦调制滤波器组对多载波信号进行子带分解与柔性综合处理;
其中,余弦调制滤波器组的原型滤波器是利用如上述任一实施例提供的原型滤波器生成方法生成的。
具体地,接收机接收到多载波信号后,利用余弦调制滤波器组对该多载波信号进行子带分解与柔性综合处理,将多载波信号进行分割,得到各个用户分别对应的子带信号。以下一代低轨卫星隐蔽通信为例,由于特定时段内用户数量、各用户频谱位置及所占带宽随机动态变化,系统业务类型繁杂,子带波形标准、模式多样,给多载波信号的分离带来了挑战。然而,目前的多载波信号的处理方式通常需要根据信号的具体状态,例如带宽等,设计相应的滤波器,在应对信号动态变化的场景时,灵活性较差。对此,本发明实施例利用余弦调制滤波器组对接收到的多载波信号进行动态的信道化处理,可以提高低轨卫星通信等信号动态变化场景下的信号处理灵活性。
此外,余弦调制滤波器组的原型滤波器是利用如上述任一实施例提供的原型滤波器生成方法生成的,在此不再赘述。因此,利用该余弦调制滤波器组进行信道化处理,可以达到接收波形内全部用户间频带泄露串扰近似完全抵消的效果,从而抑制了相邻子带以及非相邻子带间的带外泄露和频谱混叠失真。
本发明实施例提供的方法,通过原型滤波器满足近似完美重构条件的余弦调制滤波器组对多载波信号进行子带分解与柔性综合处理,可以达到接收波形内全部用户间频带泄露串扰近似完全抵消的效果,从而抑制了相邻子带以及非相邻子带间的带外泄露和频谱混叠失真。
下面对本发明提供的原型滤波器生成装置进行描述,下文描述的原型滤波器生成装置与上文描述的原型滤波器生成方法可相互对应参照。
基于上述任一实施例,图4为本发明实施例提供的原型滤波器生成装置的结构示意图,如图4所示,该装置包括:参数规划目标转换单元410、全局寻优单元420和局部寻优单元430。
其中,参数规划目标转换单元410用于基于任意通道数余弦调制滤波器组的混叠失真误差模型,确定所述余弦调制滤波器组的原型滤波器的参数优化代价函数;所述参数优化代价函数使得生成的原型滤波器满足近似完美重构条件;
全局寻优单元420用于对所述参数优化代价函数进行全局迭代寻优,直至当前轮寻优得到的最优解的适应度达到预设阈值;
局部寻优单元430用于以所述最优解为初值进行参数优化代价函数的局部寻优,得到所述原型滤波器的滤波器参数。
本发明实施例提供的装置,基于任意通道数余弦调制滤波器组的混叠失真误差模型,确定余弦调制滤波器组的原型滤波器的参数优化代价函数,使得生成的原型滤波器满足近似完美重构条件,然后对参数优化代价函数进行全局寻优,直至当前轮寻优得到的最优解的适应度达到预设阈值,再基于最优解进行局部寻优,得到原型滤波器的滤波器参数,达到接收波形内全部用户间频带泄露串扰近似完全抵消的效果,抑制了相邻子带以及非相邻子带间的带外泄露和频谱混叠失真,并且通过全局寻优和局部寻优的联合求解方式,实现参数规划问题求解的快速收敛,降低了海量参数规划问题求解的计算复杂度,并提高了超高阶原型滤波器的生成效率。
基于上述任一实施例,当前轮寻优得到的最优解是针对种群中的各个生物体依次进行互利共生搜索、偏利共生搜索和寄生搜索后得到的;任一生物体对应参数规划目标的一个候选解;
其中,针对种群中的任一生物体进行互利共生搜索,具体包括:
随机选择种群中的另一生物体;
基于该生物体、该另一生物体、当前的最优解、个体获益权重,以及该生物体与该另一生物体之间的互利向量,分别生成该生物体对应的更新生物体和该另一生物体对应的更新生物体;个体获益权重使得生物体的获益程度随全局寻优迭代次数变化;
若任一更新生物体的适应度大于当前的最优解的适应度,则将该更新生物体作为当前的最优解。
本发明实施例提供的装置,基于任一生物体、另一生物体、当前的最优解、个体获益权重,以及该生物体与该另一生物体之间的互利向量,分别生成该生物体对应的更新生物体和该另一生物体对应的更新生物体,其中,个体获益权重使得生物体的获益程度随全局寻优迭代次数变化,可以有效提升共生生物搜索算法的局部寻优能力。
基于上述任一实施例,生物体
Figure 508837DEST_PATH_IMAGE044
对应的更新生物体和生物体
Figure 35634DEST_PATH_IMAGE042
对应的更新生 物体,是基于如下公式确定的:
Figure 501250DEST_PATH_IMAGE001
其中,
Figure 353668DEST_PATH_IMAGE002
为生物体
Figure 435894DEST_PATH_IMAGE044
或另一生物体
Figure 297539DEST_PATH_IMAGE042
Figure 414400DEST_PATH_IMAGE003
为生物体
Figure 369543DEST_PATH_IMAGE044
或另一生 物体
Figure 204644DEST_PATH_IMAGE042
对应的更新生物体,rand(0,1)表示[0,1]之间的随机缩放因子,
Figure 604402DEST_PATH_IMAGE004
为当前的最优 解,{1,2}表示随机取1或2的受益因子,w k 为个体获益权重,Mv为互利向量;
Figure 779031DEST_PATH_IMAGE005
其中,k为当前的全局寻优迭代次数。
基于上述任一实施例,参数优化代价函数为:
Figure 973252DEST_PATH_IMAGE006
其中,M为信道数,K为离散频域采样点数;N为原型滤波器长度;
Figure 30070DEST_PATH_IMAGE007
Figure 233518DEST_PATH_IMAGE008
Figure 528233DEST_PATH_IMAGE009
为角频率,d为系统理想群延迟;
Figure 627776DEST_PATH_IMAGE010
Figure 703048DEST_PATH_IMAGE011
Figure 179029DEST_PATH_IMAGE012
Figure 124988DEST_PATH_IMAGE013
为原型滤波器的滤波器参数;
Figure 604554DEST_PATH_IMAGE014
Figure 635964DEST_PATH_IMAGE015
Figure 181215DEST_PATH_IMAGE016
Figure 184943DEST_PATH_IMAGE017
Figure 891868DEST_PATH_IMAGE018
Figure 676153DEST_PATH_IMAGE019
Figure 493937DEST_PATH_IMAGE020
表示向量内积;
Figure 617750DEST_PATH_IMAGE021
Figure 495577DEST_PATH_IMAGE022
分别表示取括号中的实数和虚数部分。
基于上述任一实施例,局部寻优单元430具体用于:
采用如下公式更新最优解,直至达到预设终止条件或达到预设局部寻优迭代次数:
Figure 501579DEST_PATH_IMAGE023
其中,
Figure 123053DEST_PATH_IMAGE024
为更新前的最优解,
Figure 101373DEST_PATH_IMAGE025
为更新后的最优解,
Figure 167679DEST_PATH_IMAGE026
为quasi- Hessian矩阵,
Figure 660977DEST_PATH_IMAGE027
为Jacobian矩阵,
Figure 86142DEST_PATH_IMAGE028
为单位矩阵,
Figure 715707DEST_PATH_IMAGE029
为组合系数,
Figure 138598DEST_PATH_IMAGE030
为梯度向量。
下面对本发明提供的星载通信装置进行描述,下文描述的星载通信装置与上文描述的信道化方法可相互对应参照。
基于上述任一实施例,本发明实施例提供了一种星载通信装置,包括:
接收天线,用于接收星地、星间通信信号;
射频通道,用于对接收天线输出射频信号进行步进衰减、滤波、可变增益控制以及程控下变频,得到中频模拟信号;
模拟数字转换器,用于将所述中频模拟信号转换为数字信号;
信道化处理单元,用于基于余弦调制滤波器组对所述数字信号进行子带分解与柔性综合处理;
其中,余弦调制滤波器组的原型滤波器是基于上述任一实施例提供的原型滤波器生成方法生成的。
本发明实施例提供的装置,通过原型滤波器满足近似完美重构条件的余弦调制滤波器组对星地、星间通信信号进行信道化处理,可以达到接收波形内全部用户间频带泄露串扰近似完全抵消的效果,从而抑制了相邻子带以及非相邻子带间的带外泄露和频谱混叠失真。
图5示例了一种电子设备的实体结构示意图,如图5所示,该电子设备可以包括:处理器(processor)510、通信接口(CommunicationsInterface)520、存储器(memory)530和通信总线540,其中,处理器510,通信接口520,存储器530通过通信总线540完成相互间的通信。处理器510可以调用存储器530中的逻辑指令,以执行原型滤波器生成方法,该方法包括:基于任意通道数余弦调制滤波器组的混叠失真误差模型,确定所述余弦调制滤波器组的原型滤波器的参数优化代价函数;所述参数优化代价函数使得生成的原型滤波器满足近似完美重构条件;对所述参数优化代价函数进行全局迭代寻优,直至当前轮寻优得到的最优解的适应度达到预设阈值;以所述最优解为初值进行参数优化代价函数的局部寻优,得到所述原型滤波器的滤波器参数。
此外,上述的存储器530中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,RandomAccessMemory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本发明还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法所提供的原型滤波器生成方法,该方法包括:基于任意通道数余弦调制滤波器组的混叠失真误差模型,确定所述余弦调制滤波器组的原型滤波器的参数优化代价函数;所述参数优化代价函数使得生成的原型滤波器满足近似完美重构条件;对所述参数优化代价函数进行全局迭代寻优,直至当前轮寻优得到的最优解的适应度达到预设阈值;以所述最优解为初值进行参数优化代价函数的局部寻优,得到所述原型滤波器的滤波器参数。
又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各提供的原型滤波器生成方法,该方法包括:基于任意通道数余弦调制滤波器组的混叠失真误差模型,确定所述余弦调制滤波器组的原型滤波器的参数优化代价函数;所述参数优化代价函数使得生成的原型滤波器满足近似完美重构条件;对所述参数优化代价函数进行全局迭代寻优,直至当前轮寻优得到的最优解的适应度达到预设阈值;以所述最优解为初值进行参数优化代价函数的局部寻优,得到所述原型滤波器的滤波器参数。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种原型滤波器生成方法,其特征在于,包括:
基于任意通道数余弦调制滤波器组的混叠失真误差模型,确定所述余弦调制滤波器组的原型滤波器的参数优化代价函数;所述参数优化代价函数使得生成的原型滤波器满足近似完美重构条件;
对所述参数优化代价函数进行全局迭代寻优,直至当前轮寻优得到的最优解的适应度达到预设阈值;
以所述最优解为初值进行参数优化代价函数的局部寻优,得到所述原型滤波器的滤波器参数。
2.根据权利要求1所述的原型滤波器生成方法,其特征在于,所述当前轮寻优得到的最优解是针对种群中的各个生物体依次进行互利共生搜索、偏利共生搜索和寄生搜索后得到的;任一生物体对应所述参数规划目标的一个候选解;
其中,针对所述种群中的任一生物体进行互利共生搜索,具体包括:
随机选择所述种群中的另一生物体;
基于所述任一生物体、所述另一生物体、当前的最优解、个体获益权重,以及所述任一生物体与所述另一生物体之间的互利向量,分别生成所述任一生物体对应的更新生物体和所述另一生物体对应的更新生物体;所述个体获益权重使得生物体的获益程度随全局寻优迭代次数变化;
若任一更新生物体的适应度大于当前的最优解的适应度,则将所述任一更新生物体作为当前的最优解。
3.根据权利要求2所述的原型滤波器生成方法,其特征在于,所述任一生物体对应的更新生物体和所述另一生物体对应的更新生物体,是基于如下公式确定的:
Figure 68838DEST_PATH_IMAGE001
其中,
Figure 32115DEST_PATH_IMAGE002
为所述任一生物体或所述另一生物体,
Figure 985027DEST_PATH_IMAGE003
为所述任一生物体或所述 另一生物体对应的更新生物体,rand(0,1)表示[0,1]之间的随机缩放因子,
Figure 375557DEST_PATH_IMAGE004
为当前的最 优解,{1,2}表示随机取1或2的受益因子,w k 为所述个体获益权重,Mv为所述互利向量;
Figure 595447DEST_PATH_IMAGE005
其中,k为当前的全局寻优迭代次数。
4.根据权利要求1所述的原型滤波器生成方法,其特征在于,所述参数优化代价函数为:
Figure 362414DEST_PATH_IMAGE006
其中,M为信道数,K为离散频域采样点数;N为原型滤波器长度;
Figure 966571DEST_PATH_IMAGE007
Figure 731265DEST_PATH_IMAGE008
Figure 420872DEST_PATH_IMAGE009
为角频率,d为系统理想群延迟;
Figure 725951DEST_PATH_IMAGE010
Figure 715773DEST_PATH_IMAGE011
Figure 448106DEST_PATH_IMAGE012
Figure 562692DEST_PATH_IMAGE013
为原型滤波器的滤波器参数;
Figure 671463DEST_PATH_IMAGE014
Figure 250211DEST_PATH_IMAGE015
Figure 424884DEST_PATH_IMAGE016
Figure 823504DEST_PATH_IMAGE017
Figure 673649DEST_PATH_IMAGE018
Figure 106904DEST_PATH_IMAGE019
Figure 446618DEST_PATH_IMAGE020
表示向量内积;
Figure 598114DEST_PATH_IMAGE021
Figure 986370DEST_PATH_IMAGE022
分别表示取括号中的实数和虚数部分。
5.根据权利要求1所述的原型滤波器生成方法,其特征在于,所述以所述最优解为初值进行参数优化代价函数的局部寻优,具体包括:
采用如下公式更新最优解,直至达到预设终止条件或达到预设局部寻优迭代次数:
Figure 539711DEST_PATH_IMAGE023
其中,
Figure 784748DEST_PATH_IMAGE024
为更新前的最优解,
Figure 423539DEST_PATH_IMAGE025
为更新后的最优解,
Figure 412224DEST_PATH_IMAGE026
为quasi-Hessian 矩阵,
Figure 23334DEST_PATH_IMAGE027
为Jacobian矩阵,
Figure 433412DEST_PATH_IMAGE028
为单位矩阵,
Figure 559500DEST_PATH_IMAGE029
为组合系数,
Figure 351876DEST_PATH_IMAGE030
为梯度向量。
6.一种信道化方法,其特征在于,包括:
基于余弦调制滤波器组对多载波信号进行子带分解与柔性综合处理;
其中,所述余弦调制滤波器组的原型滤波器是基于权利要求1至5任一项所述原型滤波器生成方法生成的。
7.一种原型滤波器生成装置,其特征在于,包括:
参数规划目标转换单元,用于基于任意通道数余弦调制滤波器组的混叠失真误差模型,确定所述余弦调制滤波器组的原型滤波器的参数优化代价函数;所述参数优化代价函数使得生成的原型滤波器满足近似完美重构条件;
全局寻优单元,用于对所述参数优化代价函数进行全局迭代寻优,直至当前轮寻优得到的最优解的适应度达到预设阈值;
局部寻优单元,用于以所述最优解为初值进行参数优化代价函数的局部寻优,得到所述原型滤波器的滤波器参数。
8.一种星载通信装置,其特征在于,包括:
接收天线,用于接收星地、星间通信信号;
射频通道,用于对接收天线输出射频信号进行步进衰减、滤波、可变增益控制以及程控下变频,得到中频模拟信号;
模拟数字转换器,用于将所述中频模拟信号转换为数字信号;
信道化处理单元,用于基于余弦调制滤波器组对所述数字信号进行子带分解与柔性综合处理;
其中,所述余弦调制滤波器组的原型滤波器是基于权利要求1至5任一项所述原型滤波器生成方法生成的。
9.一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至5任一项所述原型滤波器生成方法或如权利要求6所述信道化方法的步骤。
10.一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至5任一项所述原型滤波器生成方法或如权利要求6所述信道化方法的步骤。
CN202110174610.3A 2021-02-07 2021-02-07 原型滤波器生成方法、装置、信道化方法和星载通信装置 Active CN112528582B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110174610.3A CN112528582B (zh) 2021-02-07 2021-02-07 原型滤波器生成方法、装置、信道化方法和星载通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110174610.3A CN112528582B (zh) 2021-02-07 2021-02-07 原型滤波器生成方法、装置、信道化方法和星载通信装置

Publications (2)

Publication Number Publication Date
CN112528582A true CN112528582A (zh) 2021-03-19
CN112528582B CN112528582B (zh) 2021-06-29

Family

ID=74975603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110174610.3A Active CN112528582B (zh) 2021-02-07 2021-02-07 原型滤波器生成方法、装置、信道化方法和星载通信装置

Country Status (1)

Country Link
CN (1) CN112528582B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115834307A (zh) * 2022-11-23 2023-03-21 宸芯科技有限公司 一种信号补偿方法、装置、电子设备及存储介质
CN116979931A (zh) * 2023-09-22 2023-10-31 中建八局第三建设有限公司 一种用于架桥机预警反馈的信号处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105677957A (zh) * 2015-12-31 2016-06-15 中国人民解放军空军装备研究院侦察情报装备研究所 一种近似精确重构余弦调制滤波器组的设计方法与装置
CN107241081A (zh) * 2017-06-09 2017-10-10 天津工业大学 余弦调制滤波器组的稀疏fir原型滤波器的设计方法
CN111431560A (zh) * 2020-03-25 2020-07-17 北京理工大学 一种基于iir滤波器的抗强干扰装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105677957A (zh) * 2015-12-31 2016-06-15 中国人民解放军空军装备研究院侦察情报装备研究所 一种近似精确重构余弦调制滤波器组的设计方法与装置
CN107241081A (zh) * 2017-06-09 2017-10-10 天津工业大学 余弦调制滤波器组的稀疏fir原型滤波器的设计方法
CN111431560A (zh) * 2020-03-25 2020-07-17 北京理工大学 一种基于iir滤波器的抗强干扰装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FANGQING TAN等: "Optimal Design of Cosine Modulated Filter Banks", 《2011 4TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING》 *
刘泳庆等: "基于内插型双边带滤波器的时域自适应滤波", 《北京理工大学学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115834307A (zh) * 2022-11-23 2023-03-21 宸芯科技有限公司 一种信号补偿方法、装置、电子设备及存储介质
CN116979931A (zh) * 2023-09-22 2023-10-31 中建八局第三建设有限公司 一种用于架桥机预警反馈的信号处理方法
CN116979931B (zh) * 2023-09-22 2024-01-12 中建八局第三建设有限公司 一种用于架桥机预警反馈的信号处理方法

Also Published As

Publication number Publication date
CN112528582B (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
CN112528582B (zh) 原型滤波器生成方法、装置、信道化方法和星载通信装置
Mateos et al. Distributed sparse linear regression
TW544622B (en) Adaptive filter and method for adaptive filtering
CN111953391A (zh) 智能反射面辅助的多用户mimo上行能效谱效联合优化方法
CN105991143B (zh) 用于在接收器发送降噪的方法和装置
CN109274456B (zh) 一种基于强化学习的不完全信息智能抗干扰方法
JPWO2004059876A1 (ja) 伝送路シミュレート方法及び伝送路シミュレータ
CN111224905B (zh) 一种大规模物联网中基于卷积残差网络的多用户检测方法
Brocker et al. Nonlinear noise reduction
US20150289154A1 (en) Dominant signal detection method and apparatus
CN107947881A (zh) 一种混合高斯噪声稀疏贝叶斯频谱感知方法
JP2021166362A (ja) 信号推定装置、信号推定方法、及び、コンピュータプログラム
CN112491442A (zh) 一种自干扰消除方法及装置
Guo et al. Deep learning for joint channel estimation and feedback in massive MIMO systems
Nithya et al. Pilot based channel estimation of OFDM systems using deep learning techniques
CN112929128B (zh) 一种基于置信度传播的mimo检测方法、装置
CN114938232B (zh) 基于lstm的同时同频全双工数字域自干扰抑制方法
Suresh et al. A fast learning fully complex-valued relaxation network (FCRN)
CN112672426B (zh) 一种基于在线学习的抗干扰频点分配方法
CN100438337C (zh) 一种基于Laguerre结构的自适应非线性滤波方法
Stoica et al. Sparsely-structured multiuser detection for large massively concurrent NOMA systems
Karttunen et al. Conjugate gradient based signal subspace mobile user tracking
Li et al. Non-stationary sources separation based on maximum likelihood criterion using source temporal–spatial model
Valadon et al. A fast adaptive multiuser detector for DS-CDMA communications based on an artificial neural network architecture
Quadri A Channel Ranking And Selection Scheme Based On Channel Occupancy And SNR For Cognitive Radio Systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant