CN112526766A - 具有可变折光力的渐变眼镜片及其设计与生产方法 - Google Patents
具有可变折光力的渐变眼镜片及其设计与生产方法 Download PDFInfo
- Publication number
- CN112526766A CN112526766A CN202011434200.XA CN202011434200A CN112526766A CN 112526766 A CN112526766 A CN 112526766A CN 202011434200 A CN202011434200 A CN 202011434200A CN 112526766 A CN112526766 A CN 112526766A
- Authority
- CN
- China
- Prior art keywords
- ophthalmic lens
- progressive power
- progressive
- power ophthalmic
- dpt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000750 progressive effect Effects 0.000 title claims abstract description 889
- 238000000034 method Methods 0.000 title claims abstract description 80
- 238000004519 manufacturing process Methods 0.000 claims abstract description 25
- 201000009310 astigmatism Diseases 0.000 claims description 190
- 238000009826 distribution Methods 0.000 claims description 134
- 230000003287 optical effect Effects 0.000 claims description 95
- 238000011156 evaluation Methods 0.000 claims description 66
- 230000000052 comparative effect Effects 0.000 claims description 44
- 208000001491 myopia Diseases 0.000 claims description 25
- 238000012937 correction Methods 0.000 claims description 21
- 238000000576 coating method Methods 0.000 claims description 20
- 239000011248 coating agent Substances 0.000 claims description 19
- 230000006870 function Effects 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 14
- 230000004048 modification Effects 0.000 claims description 13
- 238000012986 modification Methods 0.000 claims description 13
- 238000004590 computer program Methods 0.000 claims description 11
- 239000000654 additive Substances 0.000 claims description 8
- 230000000996 additive effect Effects 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 8
- 239000002356 single layer Substances 0.000 claims description 3
- 238000013461 design Methods 0.000 abstract description 19
- 239000000463 material Substances 0.000 description 25
- 230000004075 alteration Effects 0.000 description 23
- 238000003384 imaging method Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- 238000005498 polishing Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000005457 optimization Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 208000014733 refractive error Diseases 0.000 description 5
- 208000029091 Refraction disease Diseases 0.000 description 4
- 230000002350 accommodative effect Effects 0.000 description 4
- 230000004430 ametropia Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000002346 layers by function Substances 0.000 description 4
- 238000012821 model calculation Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000010421 standard material Substances 0.000 description 3
- 238000010146 3D printing Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 238000000110 selective laser sintering Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/022—Ophthalmic lenses having special refractive features achieved by special materials or material structures
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/024—Methods of designing ophthalmic lenses
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/024—Methods of designing ophthalmic lenses
- G02C7/027—Methods of designing ophthalmic lenses considering wearer's parameters
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/024—Methods of designing ophthalmic lenses
- G02C7/028—Special mathematical design techniques
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/06—Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
- G02C7/061—Spectacle lenses with progressively varying focal power
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/06—Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
- G02C7/061—Spectacle lenses with progressively varying focal power
- G02C7/063—Shape of the progressive surface
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/06—Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
- G02C7/061—Spectacle lenses with progressively varying focal power
- G02C7/063—Shape of the progressive surface
- G02C7/065—Properties on the principal line
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/06—Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
- G02C7/061—Spectacle lenses with progressively varying focal power
- G02C7/068—Special properties achieved by the combination of the front and back surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C2202/00—Generic optical aspects applicable to one or more of the subgroups of G02C7/00
- G02C2202/12—Locally varying refractive index, gradient index lenses
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C2202/00—Generic optical aspects applicable to one or more of the subgroups of G02C7/00
- G02C2202/16—Laminated or compound lenses
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C2202/00—Generic optical aspects applicable to one or more of the subgroups of G02C7/00
- G02C2202/20—Diffractive and Fresnel lenses or lens portions
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Eyeglasses (AREA)
- Liquid Crystal (AREA)
Abstract
具有可变折光力的渐变眼镜片及其设计与生产方法。本发明涉及一种渐变焦度眼镜片,其中该渐变焦度眼镜片具有:前表面和后表面,以及空间上变化的折光力,其中,该前表面被实施为渐变表面,和/或该后表面被实施为渐变表面。该产品的特征在于,被实施为自由形式表面的该前表面的形成方式为使得该前表面的平均曲率的绝对值的最大值位于中间走廊内,和/或该被实施为自由形式表面的后表面的形成方式为使得该后表面的平均曲率的绝对值的最小值位于该中间走廊内。本发明进一步涉及一种用于规划渐变焦度眼镜片的计算机实施方法。
Description
本申请是申请日为2018年1月19日、申请号为201880019733.6、国际申请号为PCT/EP2018/000026、发明名称为“具有可变折光力的渐变眼镜片及其设计与生产方法”的专利申请的分案申请。
技术领域
本发明涉及:一种产品,该产品包括渐变焦度眼镜片、或渐变焦度眼镜片在数据介质上的表示;一种用于规划渐变焦度眼镜片的计算机实施方法,和一种用于制造渐变焦度眼镜片的方法;以及一种计算机程序和一种计算机可读介质。
背景技术
在眼镜片光学系统中,渐变焦度眼镜片是已知的且流行数十年。像多焦点眼镜片(通常是双焦点和三焦点眼镜片)一样,这些渐变焦度眼镜片在镜片下部分中为老花眼使用者提供附加光焦度,以便观察近距离物体,例如在阅读时。这种附加光焦度是必需的,因为随着年龄的增长,眼睛的晶状体越来越多地失去能够聚焦在近处物体上的特性。与这些多焦点镜片相比,渐变焦度镜片提供的优点是:从视远部分到视近部分提供光焦度的连续增大,使得不仅在视远和视近时、而且在所有中等距离时都确保清晰视觉。
根据DIN EN ISO 13666:2013-10的第14.1.1节,视远部分是多焦点或渐变焦度眼镜片的具有视远屈光力的那部分。因此,根据这个标准的第14.1.3节,视近部分是多焦点或渐变焦度眼镜片的具有视近屈光力的那部分。
到现在,渐变焦度眼镜片通常由具有均匀恒定折光力的材料制成。这意味着眼镜片的屈光力仅是通过将眼镜片的与空气相邻的两个表面(根据DIN EN ISO 13666:2013-10的第5.8和5.9节中提供的定义,为前侧或物体侧表面和后侧或眼睛侧表面)进行适当成形来设定。根据DIN EN ISO 13666:2013-10的第9.3节的定义,屈光力是眼镜片的聚焦能力和棱镜度的统称。
为了在由具有均匀恒定折光力的材料制成的渐变焦度眼镜片中产生聚焦能力的连续增大,必须在两个眼镜片表面中的至少一个眼镜片表面上存在对应的表面曲率连续变化,如在DIN EN ISO 13666:2013-10标准的第8.3.5节中也反映出,这个标准将术语“渐变焦度眼镜片”定义为“具有至少一个渐变表面的在配戴者向下看时提供递增(正)下加光的镜片”。根据第7.7节,渐变表面是非旋转对称的表面,在部分或整个表面上具有连续曲率变化,通常旨在提供递增的下加光或递减的焦度。
WO 89/04986 A1最初从开篇所阐述类型的渐变焦度眼镜片(该文献使用了表述“渐变眼镜片”)开始。从该文献的第1页的第2部分和第3部分可知,渐变焦度眼镜片的渐变表面由于其表面形式“非常严重地偏离球面形式”而使得“制造过程、更具体地抛光”是“困难的”,并且所制成的表面严重偏离所计算出的预期形式。“此外,至少对于一个渐变表面不能保持整个镜片上的成像像差、更具体地散光和畸变小”。
在第2页,WO 89/04986 A1进一步解释了,虽然已知了具有变化折光力的眼镜片,但是通过用变化的折光力来代替渐变表面的复杂表面形式来实现渐变眼镜片在过去已经失败,可能是由于其预期的同样复杂的折光力函数。
WO 89/04986 A1主张要实现“在相当的成像特性的情况下,如果[…]镜片材料的折光力至少在中间部分中沿主视线改变将部分地有助于光焦度增大,则简化制造”。然而,这是在以下目标的前提下实现的:“减小视远部分与视近部分之间的曲率半径之差,使得首先减少为了制造渐变表面而对具有边界球面表面的毛坯的处理”以及“其次简化抛光程序,这基本上对应于根据现有技术的渐变眼镜片中的球面镜片的抛光程序,并且改善抛光过程的结果”。这是因为在WO 89/04986 A1的提交日时,使用抛光表面大致具有待抛光渐变表面的大小的大面积抛光工具是常见的。
此外,在第5页第15ff.行,该文献解释道:如果由于折光力变化而另外也沿着主子午线减小了散光,这意味着免除了在形成眼镜片时表面散光必须沿着主子午线或主视线很小这个限制,并且使得眼镜片[...]不遵循明克维茨(Minkwitz)定理,并且可以在其他方面显著更具成本效益地形成眼镜片。
该文献所申明的目的是通过具有相应复杂形式的折光力变化、以简单的方式来获得可抛光的表面。第6页倒数第二段明确解释了:“在极端情况下,渐变眼镜片的两个表面在此甚至均可以是球面表面。然而,当然也可以使用旋转对称的非球面表面”。另一方面,该文献没有提及关于折光力函数的复杂性的限制,根据第6页的最后一句,折光力函数可以“例如通过样条函数来描述”。
该文献披露了两个示例性实施例。在第二示例性实施例中,“前表面和眼睛侧表面两者均是球面表面”(参见同上,第11页最后一句)。在第一示例性实施例中,前表面具有呈圆形形式(见同上,第12页,第6-13行)且与之垂直的主子午线,该前表面具有圆锥形截面的形式(见同上,第11页,第6-14行)。在第一示例性实施例中,后侧是球面的。
关于第一示例性实施例,该文献明确提到[...]“在优化过程中没有考虑成像像差的矫正,然而,在侧面区域具有非常好的成像特性的镜片已经出现。通过进一步优化折光力函数,来获得在主子午线旁边的区域的成像特性的进一步改进。”
WO 99/13361 A1描述了一种所谓的“MIV”镜片物体,其旨在具有渐变焦度镜片的所有功能特征,确切地视远部分、视近部分和渐变区,但其边缘区域应没有散光像差。该文献描述了,这样的镜片物体可以包括球面前表面和球面后表面。该镜片物体应包括折光力从视远部分到视近部分连续增大的渐变区。然而,按惯例,在这样的实施例中不可能实现所有的期望下加光。因此,该文献解释:“如果期望,可以桥接多个下加光范围,以免通过以下方式是不可能的:通过仅有的可变折光力、还以及通过如上所述的通过用可变折光力材料粗块来制造所述镜片并且如同传统渐变镜片那样形成可变几何曲线从而由此获得与传统渐变镜片相比具有更高性能这个结果,因为在不同区域具有不同折光力的镜片将允许通过在远视线与近视线之间使用差异小得多的曲线来达到期望的下加光,同时减小像差区域并增大有用视线区域”。
US 2010/238400 A1描述了各自由多个层组成的渐变焦度眼镜片。其中的至少一个层可以具有变化的折光力,相对于彼此正交延伸的两条子午线对其进行描述。此外,其中一个层的至少一个表面可以具有渐变表面形式。该文献描述了,可以使用水平方向上的折光力曲线来通过表面的几何形状实现完全矫正。
Yuki Shitanoki等人: “Application of Graded-Index for AstigmatismReduction in Progressive Addition Lens[在渐变下加光镜片中应用渐变折光力来实现散光减小]”, 应用物理快报, 第2卷, 2009年3月1日第032401页描述了,通过将借助于相同模具铸造的两个渐变焦度眼镜片进行比较,相对于没有折光力梯度的渐变焦度眼镜片可以如何减小具有折光力梯度的渐变焦度眼镜片中的散光。
鉴于本专利申请的主题与US 2010/238400 A1中描述的多层眼镜片的可区分性,在此提供了陈述:眼镜片规律地经受一个或多个精加工过程。具体地,向一侧或两侧施加功能层。这种功能层是为眼镜片提供预先确定的特性的层,这些特性对于眼镜配戴者是有利的并且眼镜片仅基于基础材料或载体材料的特性将不会具有所述特性,在需要时在所述基础材料或载体材料上施加并成形功能层。除了光学特性(比如减反射涂层、镀银、光偏振、着色、自着色等)之外,这样的有利特性还包括机械特性(比如硬化、降低灰尘粘附性或减少起水汽等)和/或电气特性(比如屏蔽电磁辐射、传导电流等)和/或其他物理或化学特性。功能性涂层的实例例如从文献WO 10/109154 A1、WO 01/55752 A1和DE 10 2008 041 869 A1中获得。这些功能层对本专利申请范围内所讨论的眼镜片的屈光特性没有影响或影响可忽略不计。相比之下,US 2010/238400 A1中描述的层对渐变焦度眼镜片的屈光力没有可忽略不计的影响。
EP 2 177 943 A1描述了一种借助于成本函数来优化光学系统、比如眼科镜片的方法。眼科镜片由其所有表面、眼镜片的折光力和每个表面相对于彼此的位置(偏移、旋转和倾斜)的等式的系数限定。在一个实施例中,至少修改起作用的光学系统的两个光学表面的等式的系数来获得光学系统。
从文件中可以得出,一般来说,如果仅认为一个表面的等式是可变的,则难以考虑不同性质的多种准则来优化镜片。这个实施例允许光学构建器在优化过程中考虑更多的准则,并且为光学系统的几何焦度增加和对眼镜配戴者的生理要求的更好响应开辟了道路。如果同时优化光学系统的多个表面,则配戴者的使用得到改善。在待优化的光学系统包括至少两个光学表面的一个实施例中,执行起作用的光学系统的修改,使得以至少修改该起作用的光学系统的折光力。可以用非均质材料来制造镜片,该材料中存在折光力梯度(这被称为GRIN镜片)。举例而言,优化的折光力的分布可以是轴向的或径向的和/或取决于波长。
EP 0 347 917 A1描述了具有前侧和眼睛侧界定表面以及变化的折光力的眼镜片,其有助于矫正成像像差。该眼镜片的突出之处在于至少一系列具有恒定折光力的平整表面,这些表面沿其表面法线方向分别在所有点具有相同距离,并且这些表面或其延伸部与将前表面和眼睛侧表面的镜片顶点相连的轴线相交。
该文献解释了,折光力的变化经常用于在专门选择的表面形式的情况下减少单光眼镜的图像像差、和/或减小中心厚度。然而,还可以使用这个梯度来产生散光焦度和/或渐变焦度,其中表面形式对散光焦度和/或渐变焦度没有贡献或仅有部分贡献。
发明内容
可以从WO 2011/093929 A1获得具有两个渐变表面的渐变焦度眼镜片,其中,后表面被形成为使得平均曲率的绝对值的最小值位于中间走廊内。现在,考虑本发明的目的是提供一种渐变焦度眼镜片,该渐变焦度镜片相对于从现有技术已知的渐变焦度眼镜片对眼镜配戴者提供进一步改善的光学特性,并且提供一种可以用于规划并制造具有进一步改善的光学成像特性的渐变焦度眼镜片的方法。
这个目的是通过根据本发明的渐变焦度眼镜片以及根据本发明的用于规划渐变焦度眼镜片的计算机实施方法来实现的。
虽然WO 89/04986 A1提出通过引入复杂的、但与早期的假设相反是技术上可实现的折光力分布来降低所需表面几何形状的复杂性,以简化其制造(参见同上,第2页第四段最后一行;第4页第一段最后一句;第5页第一段;第5页第二段;第5页最后一段最后一句;第6页倒数第二段),并且因此减少所制成的表面与计算出的表面的、会影响光学特性的大偏差(参见同上,第1页第3段),但是发明人已经认识到,这个程序不一定获得具有对眼镜配戴者而言改善的光学特性的渐变焦度眼镜片。发明人已经认识到,渐变表面的几何形状的复杂程度与折光力分布的复杂程度的相互影响是决定性的。因此,与WO 89/04986 A1中描述的解决方案不同,发明人提出了一种产品,该产品包括渐变焦度眼镜片、或渐变焦度眼镜片在数据介质上的表示。该渐变焦度眼镜片包括前表面和后表面、以及空间上变化的折光力。前表面或后表面、或前表面和后表面被实施为渐变表面。根据本发明的渐变焦度眼镜片的突出之处在于:被实施为渐变表面的前表面被实施为自由形式表面,或者被实施为渐变表面的后表面被实施为自由形式表面。因此,还包括以下情况:这两个表面中仅一个表面仅被呈现为自由形式表面。
在本发明的范围内,表达“渐变焦度眼镜片在数据介质上的表示”应理解为是指例如存储在计算机的存储器中的渐变焦度眼镜片的表示。
渐变焦度眼镜片的表示尤其包括渐变焦度眼镜片的几何形式和介质的描述。举例而言,这样的表示可以包括对以下内容的数学描述:前表面;后表面;这些表面相对于彼此的布置(包括厚度)以及渐变焦度眼镜片的边缘的布置;以及组成渐变焦度眼镜片的介质的折光力分布。该表示可以以编码形式或甚至以加密形式存在。在此,介质是指用于制造渐变焦度眼镜片的一种/多种材料或物质。渐变焦度眼镜片还可以由多个层组成、例如还由厚度在10 µm与500 µm之间的薄玻璃和被施加在其上的塑料组成。
根据DIN EN ISO 13666:2013-10的第5.8节,眼镜片的“前表面”或“物体侧表面”是眼镜片在眼镜中时旨在背离眼睛的那个表面。因此,根据这个标准的第5.9节,“后表面”是眼睛侧表面,即眼镜片在眼镜中时旨在面向眼睛的这个表面。
根据DIN EN ISO 13666:2013-10的第7.7节,渐变表面是非旋转对称的表面,在部分或整个表面上具有连续变化的曲率,通常旨在提供递增的下加光或递减的焦度。连续变化排除了跳跃状的变化。特别是在本发明的范围内,这通常意味着,可以提供下加光或递减焦度,但是情况不需要如此。特别地,在本发明的范围内,空间上变化的折光力可以至少部分地承担这个任务。根据这个定义,任何自由形式表面均是渐变表面,但是反过来却不成立。
在广义上,自由形式表面应理解为是指复杂表面,其尤其仅能通过(特别是分段的)多项式函数(特别是多项式样条,比如双三次样条、四阶或更高阶的高阶样条、泽尼克多项式、福布斯(Forbes)表面、切比雪夫多项式、傅里叶级数、非均匀有理多项式B样条(NURBS))表示。这些应区别于简单的表面(比如球面表面、非球面表面、柱面表面、复曲面表面或WO 89/04986 A1中描述的表面,所述表面被描述为至少沿主子午线为圆形(参见同上,第12页第6-13行)。换句话说,自由形式表面不能以常规规则体比如球面表面、非球面表面、柱面表面、复曲面表面或WO 89/04986 A1中描述的表面的形式表示(例如参见 https://www.computerwoche.de/a/die-natur-kennt-auch-nur-freiformflaechen,1176029,于2018年1月18日检索到;http://www.megacad.de/kennenlernen/megacad-schulungen/ schulungsinhalte/schulung-freiformflaechen.html,于2018年1月18日检索到),而是例如仅能通过(特别是分段的)多项式函数(特别是多项式样条,比如双三次样条、四阶或更高阶的高阶样条、泽尼克多项式、福布斯表面、切比雪夫多项式、傅里叶级数、非均匀有理多项式B样条(NURBS))来表示。因此,自由形式表面是与常规几何形状不对应的表面(例如参见https://www.infograph.de/de/nurbs,于2018年1月18日检索到;
开篇描述的目的通过渐变焦度眼镜片的在下文被标记为变体的实施例完全实现。
在本发明的另一构型中,将自由形式表面设置为更窄意义上的自由形式表面,其对应于2015年12月的DIN SPEC 58194的第2.1.2节,确切地是使用自由形式技术制造的眼镜片表面,该眼镜片表面在数学上在微分几何的范围内描述并且既不是点对称的也不是轴对称的。
进一步具体地,自由形式表面可以没有点对称性、没有轴对称性、没有旋转对称性、并且没有关于对称平面的对称性。尽管取消对表面几何形状的所有限制是有利的,但鉴于目前对渐变焦度眼镜片的光学特性的通常要求,仅容许具有高复杂度的自由形式表面作为渐变表面就足够了。此外,如果对渐变焦度眼镜片上的折光力分布容许相同的复杂度,确切地是在至少两个或优选三个空间维度上,这些渐变焦度眼镜片在其光学特性方面将在最大可能的程度上满足眼镜配戴者的要求。
在根据本发明的具有中间通道的渐变焦度眼镜片的情况下,本发明的第一变体包括被实施为自由形式表面的前表面,该前表面被形成为使得平均曲率在中间走廊内具有最大值、并且向周边和/或沿向下方向减小。作为替代方案或除此之外,被实施为自由形式表面的后表面也可以被形成为使得平均曲率在中间走廊内具有最小值并且向周边和/或沿向上方向增大。换句话说,被实施为自由形式表面的前表面被形成为使得该前表面的平均曲率的绝对值的最大值位于中间走廊内,和/或被实施为自由形式表面的后表面被形成为使得该后表面的平均曲率的绝对值的最小值位于中间走廊内。
在此,根据DIN EN ISO 13666:2013-10的第14.1.25节,中间走廊是渐变焦度眼镜片的为视远与视近之间的视中范围提供清晰视觉的区域。
可以使用当前可获得的生产工艺以非常高的准确度来制造这样的表面。特别是当为前表面选择此表面几何形状时,制造期间出现优点。由于使用当前常规抛光工具(其至少大致球面的抛光表面对应于待抛光的眼镜片表面的大致三分之一)进行抛光导致的磨损可以在待抛光的眼镜片表面上保持足够均匀,使得与计算出的眼镜片几何形状的偏差相对小。因此,眼镜片的实际光学特性与计算出的光学特性的偏差非常小。
本发明的进一步变体的特征在于,根据本发明的渐变焦度眼镜片被形成为相对于没有空间折光力变化、但是具有相同等效球镜度分布的对比渐变焦度眼镜片而言具有以下描述的、对渐变焦度眼镜配戴者更有利的光学特性。
提供了以下陈述来进行解释:针对在眼镜片配戴者的眼睛前方的预定布置并且针对眼镜片配戴者感知到物体处于焦点时所处的一个或多个预定物距来设计眼镜片。在偏离了位于眼镜配戴者眼睛前方布置的布置的情况下并且针对其他物距,眼镜片对眼镜配戴者毫无价值,或者光学品质非常受限。这甚至对渐变焦度眼镜片更适用。因此,渐变焦度眼镜片仅通过对在眼镜配戴者眼睛前方的预定布置的知识来表征。换句话说,对眼镜片相对于眼睛在位置和空间对齐方面的布置的知识是必要的,但也足以以一对一的方式在眼镜片针对眼镜配戴者的光学能力方面表征所述眼镜片。此外,仅在配镜师了解眼镜片相对于眼镜配戴者眼睛在位置和对齐方面的布置的情况下配镜师才能够将眼镜片以正确定位插入眼镜架中。因此,渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置的表示是“渐变焦度眼镜片”的产品或商品的不可分割的部分。
为了确保使配镜师将渐变焦度眼镜片以正确位置和取向进行布置,制造商贴附了永久存在的标记。根据DIN EN ISO 13666:2013-10的第14.1.24节,可以得知这些标记被称为对齐标记、或永久标记,并且这些标记由制造商贴附以建立镜片的水平对齐[...]或重新建立其他参考点。根据DIN EN ISO 14889:2009的第6.1节,未切割的成品眼镜片的制造商必须通过在单个包装上或随附文件中进行说明来利于标识。特别地,应存在针对使用情形的矫正值、视近下加光、型号名称或品牌名称、以及衡量下加光的必要信息。渐变焦度眼镜片的制造商使用的基础物距模型来自型号名称或品牌名称。根据该标准的3.1,制造商应理解为商业销售未切割的成品眼镜片的自然人或法人实体。
在根据本发明的这个变体中,产品进一步包括预定地布置在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的该渐变焦度眼镜片在数据介质上的表示。如已经解释的,(不仅)这个变体中的根据本发明实施的渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布。此外,根据本发明实施的渐变焦度眼镜片包括具有一定宽度的中间走廊。根据这个变体设计的根据本发明的渐变焦度眼镜片具有的折光力在空间上的变化方式为使得,该渐变焦度眼镜片的中间走廊至少在该中间走廊的某个区段中或在其整个长度上的宽度大于相同处方的对比渐变焦度眼镜片的中间走廊的宽度,其中该对比渐变焦度眼镜片在该对比渐变焦度眼镜片相同地布置在该渐变焦度眼镜配戴者的眼睛前方的情况下具有相同的等效球镜度分布、但是具有空间上不可变的折光力。
在此,术语“等效球镜度”被定义为聚焦能力的算术平均值、例如出自Albert J.Augustin: Augenheilkunde. 第3完全改写和扩展版 斯普林格 柏林等 2007, ISBN 978-3-540-30454-8, p. 1272或Heinz Diepes, Ralf Blendowske: Optik und Technik derBrille. 第1版, Optische Fachveröffentlichung GmbH, 海德堡 2002, ISBN 3-922269-34-6,第482页:
根据DIN EN ISO 13666:2013-10的第9.2节,焦度是眼镜片的聚焦能力和棱镜度的统称。在该等式中,球镜度在等式中缩写为“球镜”;散光焦度用“柱镜”表示。对术语“等效球镜度”也使用术语“平均球镜度”。
在此,根据DIN EN ISO 13666:2013-10的第14.1.25节,如上文已经解释的,中间走廊是渐变焦度眼镜片的为视远与视近之间的视中提供清晰视觉的区域。主视线(表示在眼睛对位于眼镜配戴者笔直前方的物体点从视远到视近进行注视运动期间,穿过渐变表面的所有视点的整体)延伸经过中间走廊的中心。通常在前表面上假设主视线。换句话说,主视线表示眼镜片前表面上将进行视远和视近时穿过渐变焦度镜片的主要视点互连的线,并且在主视线上,视中时视线的交叉点位于“笔直向前”的方向上(注意:将后表面用作主视线所在的参考表面是相当不寻常的)。通常,主视线是大致垂直于视远部分和视近部分延伸的线和在中间走廊中以扭曲方式延伸的线,即渐变焦度眼镜片的具有允许以视远与视近之间的范围观察的屈光力的这部分。举例而言,中间走廊的长度可以从视远设计参考点和视近设计参考点的位置或从视远参考点和视近参考点的位置获得。根据DIN EN ISO 13666:2013-10的5.13,视远设计参考点是制造商规定的在成品镜片的前表面上或镜片毛坯的精加工表面上的、应用了视远部分的设计规格的点。因此,根据该标准的5.14,视近设计参考点是制造商规定的在成品镜片的前表面上或镜片毛坯的精加工表面上、应用了视近部分的设计规格的点。根据5.15,视远参考点或主要参考点是镜片前表面上应用了视远部分的屈光力的点,并且根据5.17,视近点是镜片上的视点的用于在给定条件下进行视近的假定位置。
原则上,可以基于上文提供的规格与对比渐变焦度眼镜片一对一地设定并且确定该渐变焦度眼镜片的特性。如果假设该至少一个区段是下组的变体,则会出现简单的准则:
- 水平区段,
- 一半下加光处的区段(更尤其在主视线上),
- 一半下加光处的水平区段(更尤其在主视线上),
- 一半下加光处的水平区段(更尤其在主视线上)、和25%下加光处的水平区段(更尤其在主视线上),
- 一半下加光处的水平区段(更尤其在主视线上)、和75%下加光处的水平区段(更尤其在主视线上),
- 一半下加光处的水平区段(更尤其在主视线上)、和25%下加光处的水平区段(更尤其在主视线上)、以及75%下加光处的水平区段(更尤其在主视线上)。
在第14.2.1节中,DIN EN ISO 13666:2013-10将下加光定义为在特定条件下测得的视近部分的顶焦度与视远部分的顶焦度之间的差值。该标准规定了对应的测量方法被包含在眼镜片的决定性标准中。作为决定性标准,DIN EN ISO 13666:2013-10参考了DIN ENISO 8598-1:2012:“光学和光学仪器—焦度计—-第1部分:通用仪器”。在DIN EN ISO13666:2013-10的第9.7节中,顶焦度的定义如下。将后顶焦度(被定义为以米为单位测得的近轴后顶焦距的倒数)与前焦度(被定义为以米为单位测得的近轴前顶焦距的倒数)进行区分。应注意的是,根据眼科惯例,后顶焦度被指定为眼镜片的“焦度”,但是,前顶焦度是某些目的所需的,例如在测量一些多焦点和渐变焦度眼镜片中的下加光时。
通过与一对一具有预定特性的对比渐变镜片眼镜片(即,基于相同的物距模型,在眼镜片在同一渐变焦度眼镜配戴者的眼睛前方的相同位置时,镜片上的相同等效球镜度分布)进行比较来定义渐变焦度眼镜片的特性的另外变体由以下产品组成,该产品进一步包括:
(i) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置而言残余散光分布在数据介质上的表示,和/或
(ii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,为了获得完全矫正所需的散光焦度分布在数据介质上的表示,和/或
(iii) 针对渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,处方和物距模型在数据介质上的表示,和/或
(iv) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,等效球镜度分布在数据介质上的表示。
在根据本发明的包括视远部分和视近部分的渐变眼镜片的这个变体中,该中间走廊的宽度是由横向于该中间走廊的纵向方向、在该视远部分与视近部分之间延伸的某个尺寸限定的,在该尺寸内,残余散光的绝对值低于预定极限值,该预定极限值选自以下指明的组中的范围内:
(a) 该极限值在0.25 dpt与1.5 dpt之间的范围内,
(b) 该极限值在0.25 dpt与1.0 dpt之间的范围内,
(c) 该极限值在0.25 dpt与0.75 dpt之间的范围内,
(d) 该极限值在0.25 dpt与0.6 dpt之间的范围内,
(e) 该极限值在0.25 dpt与0.5 dpt之间的范围内,
(f) 该极限值为0.5 dpt。
残余散光应理解为以下散光(根据绝对值和轴位方向):渐变焦度眼镜片的散光或散光焦度与在当渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者按照预期戴着该渐变焦度眼镜片(使得它以预定的方式布置在渐变焦度眼镜配戴者的眼睛前方)时为了在渐变焦度眼镜片表面上的相应位置处针对与渐变焦度眼镜片在这个位置处相交的光线而对渐变焦度眼镜配戴者实现完全矫正所需要的散光焦度的偏差。术语“分布”阐明了这种残余散光可以在眼镜片上局部地不同,并且按惯例通常也将是不同的。
换句话说,残余散光应理解为是指渐变焦度眼镜片的散光焦度(实际散光焦度)与“处方”散光焦度在绝对值和轴位位置方面的偏差。换句话说,残余散光是对于处于使用位置的渐变焦度眼镜片的配戴者而言实际散光焦度与预期散光焦度之间的、取决于观察方向的差异。在使用位置时,考虑眼镜片在按预期使用时相对于眼睛的位置和取向。散光焦度的观察方向依赖性尤其可能由物距的观察方向依赖性和眼睛的散光焦度的观察方向依赖性得到。因此,术语“处方焦度”应在最广意义上理解为针对相应的观察方向和眼镜配戴者针对这个观察方向看到物体在焦点处而应处的距离,眼镜片由于其相对于眼睛的基本位置和取向而应具有的预期焦度。
为了具体计算残余散光分布(或其他像差分布,比如EP 2 115 527 B1中描述的球面像差分布或更高阶的其他像差分布,或实际焦度分布,比如实际散光焦度、实际球镜度或实际棱镜度),规律地考虑了顶点距离、瞳距、眼镜片的前倾角、眼镜片的面部形廓角以及眼镜片大小(尤其还包括例如厚度和/或边缘(边缘轮廓))。另外,这规律地基于物距模型,该物距模型描述了眼镜配戴者的视野中的物点相对于配戴者眼睛的转动中心的位置。
残余散光分布已经可以作为计算出的数学描述(如同情况 (i))呈现,或者可以根据处方和物距模型(如同情况 (iii))、或根据已经计算出的实现完全矫正的散光焦度分布(如同情况 (ii))来确定。
除了常规的折光值之外,处方还可以包括眼镜配戴者固有的另外的生理参数(即,通常是眼镜配戴者固有的那些参数)和使用条件(即,通常是可指配给眼镜配戴者的周围环境的参数),应以所述使用条件来配戴处方渐变焦度眼镜片。固有的生理参数尤其包括眼镜配戴者的屈光不正、调节能力和(可能是单眼的)瞳距。使用条件包括关于镜片眼睛前方的信息、还以及表征物距模型的数据,比如,这些是否应是用于在屏幕前工作的眼镜,这基于针对物体(确切地屏幕)的观察方向与无限远处偏离的距离。对于逐个测量或确定的处方不包含某些使用条件(例如,9°的标准前倾角)的情况,假设某些标准值。
物距模型应理解为是指对于眼镜配戴者应该看到物体位于焦点而所处的空间距离的假设。物体位置通常与物距模型中眼睛的转动中心有关,如上文解释的。
模型计算可以考虑在不同的物体差异和观察方向的情况下眼睛的焦度和轴位位置改变的事实。特别地,模型计算可以考虑利斯廷氏定律。举例而言,模型计算还可以考虑眼睛在视近和视远时散光焦度的变化,例如以DE 10 2015 205 721 A1中描述的方式。
在本发明的范围内,完全矫正描述了通过按照预期配戴渐变焦度眼镜而获得的矫正,该矫正(考虑了由处方表示的其眼睛的视觉特性)允许渐变焦度眼镜配戴者看到被布置在物距模型所基于的距离处的物体位于焦点。
为了完整起见,参考了以下事实:所述预定表示所位于的数据介质还可以是例如纸张而不是计算机的存储器。这尤其涉及上述情况 (iii),其中也可以在纸上注明处方。
根据本发明的产品的另外的实施例包括以下组成部分:
- 预定地布置在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的该渐变焦度眼镜片在数据介质上的表示,并且,
- 数据介质上的以下表示中的一个或多个:
(i) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置而言残余散光分布在数据介质上的表示,和/或
(ii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,为了获得完全矫正所需的散光焦度分布在数据介质上的表示,和/或
(iii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,处方和物距模型在数据介质上的表示,和/或
(iv) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,等效球镜度分布在数据介质上的表示。
根据这个实施例的渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布。在这个实施例中,该渐变焦度眼镜片的折光力在空间上的变化方式为使得,该渐变焦度眼镜片的残余散光的最大值小于对比渐变焦度眼镜片的残余散光的最大值,该对比渐变焦度眼镜片是用于相同处方、在该对比渐变焦度眼镜片相同地布置在该渐变焦度眼镜配戴者的眼睛前方的情况下具有相同的等效球镜度分布、但是具有空间上不可变的折光力。
根据本发明的这个实施例,眼镜配戴者可感知的渐变焦度眼镜片的光学特性比所有常规渐变焦度眼镜片都有所改善。
根据本发明的产品的另一个变体包括以下指明的组成部分:
- 预定地布置在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的该渐变焦度眼镜片在数据介质上的表示,
- 数据介质上的以下表示中的至少一个:
(i) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置而言残余散光分布在数据介质上的表示,和/或
(ii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,为了获得完全矫正所需的散光焦度分布在数据介质上的表示,和/或
(iii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,处方和物距模型在数据介质上的表示,和/或
(iv) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,等效球镜度分布在数据介质上的表示。
根据这个实施例变体的渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布。该渐变焦度眼镜片包括中间走廊。渐变焦度眼镜片的折光力在空间上的变化方式为使得,对于在该中间走廊的最窄点处的某个水平区段上(例如,在对应于1 dpt的等散光线彼此具有最小距离的情况下)的、或者在经过主视线上的实现一半下加光的点的水平区段上的选自下组中的预定残余散光值,
在主视线两侧为10 mm的水平距离的区域内适用以下关系:
其中,grad W描述该渐变焦度眼镜片在该主视线上的在该中间走廊的最窄点处的点处、或者在该主视线上的实现一半下加光的点处的等效球镜度焦度梯度,B描述了该渐变焦度眼镜片中使得残余散光为的区域的宽度,其中c是选自下组的常量:
(a) 1.0 < c
(b) 1.1 < c
(c) 1.2 < c
(d) 1.3 < c
根据本发明的这个实施例,眼镜配戴者可感知的渐变焦度眼镜片的光学特性比所有常规渐变焦度眼镜片都有所改善。
根据本发明的产品的另外的变体包括渐变焦度眼镜片、或该渐变焦度眼镜片在数据介质上的表示,其中,该渐变焦度眼镜片具有前表面和后表面以及空间上变化的折光力。该前表面或后表面、或这两个表面被实施为渐变表面。被实施为渐变表面的前表面根据本发明被实施为自由形式表面,和/或被实施为渐变表面的后表面根据本发明被实施为自由形式表面。
该渐变焦度眼镜片由以下组成:基材,该基材不含单个层;以及位于该基材的前表面上的包括一个或多个单个层的前表面涂层,和/或位于该基材的后表面上的包括一个或多个单个层的后表面涂层。仅该基材具有空间上变化的折光力。
根据本发明,在具有该前表面涂层和/或该后表面涂层的渐变焦度眼镜片的前表面上的每个点处测得的等效球镜度与在没有前表面涂层且没有后表面涂层但是具有相同基材(具有相同几何形状和相同折光力)的对比渐变焦度眼镜片的前表面上的每个对应点处测得的等效球镜度之差小于以下指明的组中的值:
(a) 该差值小于0.001 dpt
(b) 该差值小于0.002 dpt
(c) 该差值小于0.003 dpt
(d) 该差值小于0.004 dpt。
当然,这个变体还可以具有上文描述的特征中的一个或多个特征。
以上是对发明人认识到的问题的效果的陈述,效果为:渐变表面的几何形状的复杂程度与折光力分布的复杂程度的相互影响是决定性的。因此,与WO 89/04986 A1中描述的解决方案不同的是,提供了一种用于规划渐变焦度眼镜片的、为光线追踪法的形式的计算机实施方法,该渐变焦度眼镜片具有前表面和后表面以及空间上变化的折光力,其中,该前表面或后表面、或这两个表面被实施为渐变表面。通过光线追踪法计算在视线穿过该渐变焦度眼镜片时所经过的多个评估点处该渐变焦度眼镜片的光学特性。在该光线追踪法中,在相应的评估点处设定该渐变焦度眼镜片的至少一个预期光学特性。初始地,设定该渐变焦度眼镜片的计划,其中,该计划包括该渐变焦度眼镜片的渐变表面的局部几何形状的表示以及在经过这些评估点的相应视觉光路上的局部折光力的表示。根据该渐变焦度眼镜片的该至少一个预期光学特性的近似值来修改该渐变焦度眼镜片的计划。根据本发明,该修改包括不仅修改渐变表面的局部几何形状的表示,还修改该渐变焦度眼镜片的在经过这些评估点的相应视觉光路上的局部折光力的表示,其中,该至少一个预期光学特性包括该渐变焦度眼镜片的预期残余散光。
通常,与被修改的渐变表面相反的表面是固定地规定的。总体上,前者包括简单的表面几何形状,例如球面、旋转对称的非球面、或复曲面几何形状。在复曲面表面的情况下,通常将表面几何形状和轴位位置选择称使得(除了不希望的残余散光外)它们补偿渐变焦度眼镜配戴者的眼睛的散光屈光不足。与被修改的渐变表面相反的表面也可以是渐变表面、可选地也是自由形式表面,其具有固定地规定的表面几何形状。前者的表面可以有助于增大提供下加光所需的焦度。被修改的渐变表面也可以有助于增加提供下加光所需的焦度。还可以将这两个表面、确切地前表面和后表面与折光力分布一起修改以实现近似所述预期残余散光分布。在规划渐变焦度眼镜片时使用的光线追踪法是已知的。具体地,参考WernerKöppen:Konzeption und Entwicklung von Progressivgläsern,DeutscheOptiker Zeitung DOZ 10/95, 第42-46页,并且考虑了EP 2 115 527 B1和其中指明的文件。通过光学计算程序(例如,Zemax, LLC公司的计算程序ZEMAX)来计算优化的空间依赖性折光力分布同样是已知的。举例而言,参考其在http://www.zemax.com/上的互联网信息。
为眼镜片设定预期特性涉及眼镜片的所谓设计。眼镜片的设计通常包括分布一个或多个成像像差的预期值,这些值优选地在眼镜片的优化中作为目标值被包含或者在确定目标值时被包含。具体地,通过屈光不正(即,在使用位置时渐变焦度眼镜片在光束路径中的等效球镜度与通过确定折光力所获得的等效球镜度之差)的分布、和/或残余散光(即,该眼镜片的散光与通过确定折光力所获得的散光之差)的分布来表征眼镜片设计。代替术语“残余散光分布”,文献中还使用了术语“散光像差分布”和“散光偏差”。另外,眼镜片设计同样可以包括放大、畸变或其他成像像差、更具体地更高阶成像像差(如EP 2 115 527 B1中描述的)的预期值的分布。在此,这些可以涉及表面值,或者优选地使用值,即眼镜片在使用位置时的值。
根据本发明,修改渐变焦度眼镜片的计划的目标是为了尽可能接近预定的预期残余散光。举例而言,可以将所有评估点处的预期残余散光均设定为零。因此,可以预先确定残余散光分布,该残余散光分布优选地具有远小于甚至通过具有空间上不变化的折光力、但是具有自由形式后表面(和/或前表面)的渐变焦度眼镜片可实现的值的值,或者具有远小于为了优化这样的渐变焦度眼镜片而预先确定的值的值。根据WernerKöppen:Konzeption und Entwicklung von Progressivgläsern,在Deutsche Optiker ZeitungDOZ 10/95, 第42-46页中,评估点的数量通常在1000个与1500个之间的范围内。EP 2 115527 B1提出,评估点数量超过8000个。
为了尽可能接近该目标,根据本发明,在评估点处局部地修改的不仅是(后续)渐变表面的表面几何形状,还有光束路径所穿过的渐变焦度眼镜片的介质在评估点处的局部折光力。介质应理解为是指构成渐变焦度眼镜片的一种或多种材料。
为了尽可能接近该目标,这个修改过程通常必须多次执行、即迭代地执行。在此,应再次阐明,局部表面几何形状和局部折光力都可以自由改变,并且在修改期间、尤其在迭代期间,局部表面几何形状和局部折光力都不是固定的。相比而言,WO 89/04986 A1教导了规定前表面和后表面的相对简单的几何形状并且寻找合适的折光力分布以便产生提供下加光所需的焦度增大,并且可选地以便整体或部分地纠正沿主视线的(残余)散光,并在必要时进一步矫正主子午线旁边的成像像差。
尽管通常折光力是波长相关的,但通常不考虑色散,并且针对所谓的设计波长来实施所述计算。然而,不排除考虑了不同设计波长的优化过程,例如在EP 2 383 603 B1中描述的。
由于进行修改的目标是为了尽可能接近预期光学特性,因此本领域技术人员还谈到了优化。修改进行到直到满足终止准则为止。在理想情况下,终止准则包括具有预定的预期光学特性的所规划的渐变焦度眼镜片。在所有评估点处的残余散光都设定为零的情况下,该理想情况是在所有评估点处,所计算出的眼镜片的残余散光实际上为零。然而,由于情况通常不是如此,尤其在所描述的情况下,因此存在计算的终止,例如在达到一个(多个)预期特性周围的一个或多个极限值之后或者在达到预定迭代次数之后。
通常,预期特性的确定和实际特性的计算是基于考虑了使用条件(确切地例如,眼镜片位于眼睛前方)和物距模型、以及眼镜配戴者的生理参数(确切地例如,屈光不正、调节能力和瞳距)的模型计算。上文已经描述了细节。
通常,通过修改局部折光力和局部表面几何形状来近似所述渐变焦度眼镜片的该至少一个预期光学特性(多种特性)的结果是,被实施为渐变表面的前表面被实施为自由形式表面,和/或被实施为渐变表面的后表面被实施为自由形式表面。
开篇阐述的目的通过根据本发明的方法全部实现。
根据本发明的这种方法的实施例变体的特征在于,修改该渐变焦度眼镜片的计划是根据对目标函数求极小值来进行的。这样的目标函数在德语文献中还被称为“Kostenfunktion”,并且在英语文献中被称为优值函数。在规划渐变焦度眼镜片时,非常常用的是最小二乘法,这是对目标函数求极小值的方法,例如在EP 0 857 993 B2,EP 2 115527 B1或erner Köppen: Konzeption und Entwicklung von Progressivgläsern, inDeutsche Optiker Zeitung DOZ 10/95, 第42-46页中所实践的。根据本发明的实施例变体对该方法应用下面再现的目标函数:
该方法的应用已经证明其对于规划常规类型渐变焦度眼镜片的价值。本发明还提出了使用该方法来规划根据本发明的梯度折光力(GRIN)渐变焦度眼镜片。
根据本发明的方法的特别有利的实施例变体的特征在于,预先确定至少一个评估点的预期残余散光,所述预期残余散光小于在用于相同处方的具有相同的等效球镜度分布但具有空间上不可变的折光力的对比渐变焦度眼镜片上并且在该对比渐变焦度眼镜片相同地布置在渐变焦度眼镜配戴者的眼睛前方的情况下在该至少一个对应评估点处的理论上可实现的残余散光,并且仅在针对所规划的渐变焦度眼镜片实现的在该至少一个评估点处的残余散光小于该对比渐变焦度眼镜片上的该至少一个对应评估点处的理论上可实现的残余散光时,终止修改该渐变焦度眼镜片的渐变表面的局部几何形状的表示以及在经过这些评估点的相应视觉光路上的局部折光力的表示。
如上文已经解释的,可以将所有评估点处的预期残余散光设定为零。为了规划在整个表面上具有比常规对比渐变焦度眼镜片更好的光学特性的渐变焦度眼镜片,将所有评估点处的预期残余散光选择成比在规划对比渐变焦度眼镜片时通常设定的值至少小某个显著百分比、例如10-50%。总体上,至少在评估点处将预期残余散光预先确定为小于对比渐变焦度眼镜片中至少对应的评估点(应位于随后中间走廊内的)处的理论上可实现的残余散光。这是因为,扩大中间走廊始终是希望的。
替代或附加于上述有利实施例变体,一种方法变体在于:修改该渐变焦度眼镜片的渐变表面的局部几何形状的表示以及在经过这些评估点的相应视觉光路上的局部折光力的表示,其前提是,该渐变焦度眼镜片的残余散光的最大值小于用于相同处方的具有相同的等效球镜度分布但具有空间上不可变的折光力的对比渐变焦度眼镜片的并且在该对比渐变焦度眼镜片相同地布置在渐变焦度眼镜配戴者的眼睛前方的情况下的残余散光的最大值。原则上,根据本发明所规划的渐变焦度眼镜片中的残余散光的最大值不需要被置于与对比渐变焦度眼镜片中的残余散光的最大值“相同”的位置或“相同”的评估点处。然而,这也可以被认为是实施该方法时的约束。由于这些规定,根据本发明的渐变焦度眼镜片的光学特性相对于以常规方式制造的对比渐变焦度眼镜片得到进一步改善。
在一个实施例变体中,根据本发明的方法可以实施成使得,当规划渐变焦度眼镜片时,产生与上述类型的产品相对应的渐变焦度眼镜片。上文已经详细描述了这些产品的优点。
在根据本发明的另外的方法变体中,甚至提供了,精确地规划的渐变焦度眼镜片,其前提是产生根据上述任一种类型的产品的渐变焦度眼镜片。在这个另外的变体中,预期特性和终止条件被选择成使得,在进行规划时,具有上述光学特性的对应渐变焦度眼镜片必需如所述表示所预先确定的那样布置在未来眼镜配戴者的眼睛前方。
另外,本发明提供了一种具有程序代码的计算机程序,该程序代码用于当该计算机程序被加载到计算机上和/或在计算机上运行时实施根据上述方法中任一个的所有这些工艺步骤。该计算机程序可以保存在任何计算机可读介质上,尤其保存在计算机的硬盘驱动器上、USB记忆棒上或云上。因此,本发明还要求保护具有上述类型的计算机程序的计算机可读介质。
本发明还涉及一种用于通过增材方法来制造根据上述任一种产品的渐变焦度眼镜片、或使用上述变体的方法所规划的渐变焦度眼镜片的方法。
增材方法是按顺序构造渐变焦度眼镜片的方法。在这样的背景下尤其已知的是,所谓的数字制造器尤其为几乎任何结构提供了制造选择,所述结构用常规研磨方法是无法实现的或只能困难地实现。在数字制造器机器类别中,3D打印机代表增材(即,累积)构建制造器的最重要子类别。最重要的3D打印技术对于金属是选择性激光熔化(SLM)和电子束熔化,对于聚合物、陶瓷和金属是选择性激光烧结(SLS),对于液体人造树脂是立体光刻(SLA)和数字光加工,并且对于塑料、部分地人造树脂是多喷射或聚喷射造型(例如,喷墨打印机)和熔融沉积造型(FDM)。此外,还已知了借助于纳米层进行构造,例如在2017年1月12日检索到的http://peaknano.com/wp-content/uploads/PEAK-1510-GRINOptics-Overview.pdf中所描述的。
通过3D打印进行制造的源材料和3D制造方法本身的选择可以从例如欧洲专利申请号16195139.7中获得。
本发明的发展在于:一种用于制造渐变焦度眼镜片的方法,该方法包括如上所述的用于规划渐变焦度眼镜片的方法以及根据该计划对渐变焦度眼镜片的制造。
根据本发明,根据计划来制造渐变焦度眼镜片再次可以通过增材方法来实施。
本发明的另一个发展在于:具有处理器的计算机,该处理器被配置用于实施根据上述任一种类型或变体的用于规划渐变焦度眼镜片的方法。
附图说明
下面参照附图来更详细地描述本发明。在图中:
图1示出了常规构造的由折光力为n = 1.600的材料制成的对比渐变焦度眼镜片与根据本发明的第一示例性实施例的具有竖直对称平面的GRIN渐变焦度眼镜片的光学特性
a:对比渐变焦度眼镜片的平均球镜度
b:对比渐变焦度眼镜片的物体侧自由形式表面的平均表面光焦度
c:图1a的对比渐变焦度眼镜片的n = 1.600物体侧自由形式表面的平均表面散光
图2示出了根据第一示例性实施例的GRIN渐变焦度眼镜片的光学特性
a:平均球镜度
b:针对物体侧自由形式表面的恒定折光力n = 1.600计算的平均表面光焦度
c:图2a的GRIN渐变焦度眼镜片的n = 1.600物体侧自由形式表面的平均表面散光
图3示出了根据第一示例性实施例的GRIN渐变焦度眼镜片的折光力分布
图4示出了根据第一示例性实施例的GRIN渐变焦度眼镜片的残余散光分布与对比渐变焦度眼镜片的残余散光分布的比较
a:对比渐变焦度眼镜片的残余散光分布
b:根据本发明的第一示例性实施例的GRIN渐变焦度眼镜片的残余散光分布
图5示出了沿着根据图4的y = 0区段根据第一示例性实施例的GRIN渐变焦度眼镜片的残余散光曲线与对比渐变焦度眼镜片的残余散光曲线的比较
a:对比渐变焦度眼镜片的残余散光曲线
b:根据本发明的第一示例性实施例的GRIN渐变焦度眼镜片的残余散光曲线
图6示出了根据第一示例性实施例的GRIN渐变焦度眼镜片的前表面的形廓与对比渐变焦度眼镜片的前表面的形廓的比较
a:对比渐变焦度眼镜片的前表面的矢状高度
b:根据本发明的第一示例性实施例的GRIN渐变焦度眼镜片的前表面的矢状高度
图7示出了常规构造的由折光力为n = 1.600的材料制成的对比渐变焦度眼镜片与根据本发明的第二示例性实施例的具有竖直对称平面的GRIN渐变焦度眼镜片的光学特性
a:平均球镜度
b:物体侧自由形式表面的平均表面光焦度
c:图7a的对比渐变焦度眼镜片的n = 1.600物体侧自由形式表面的表面散光
图8示出了根据第二示例性实施例的GRIN渐变焦度眼镜片的光学特性
a:平均球镜度
b:针对物体侧表面的折光力n = 1.600计算的平均表面光焦度
c:根据本发明的第二示例性实施例的GRIN渐变焦度眼镜片的前表面的表面散光曲线
图9示出了根据第二示例性实施例的GRIN渐变焦度眼镜片的折光力分布
图10示出了根据第二示例性实施例的GRIN渐变焦度眼镜片的残余散光分布与对比渐变焦度眼镜片的残余散光分布的比较
a:对比渐变焦度眼镜片的残余散光分布
b:根据本发明的第二示例性实施例的GRIN渐变焦度眼镜片的残余散光分布
图11示出了沿着根据图10的y = -5 mm区段根据第二示例性实施例的GRIN渐变焦度眼镜片的残余散光曲线与对比渐变焦度眼镜片的残余散光曲线的比较
a:对比渐变焦度眼镜片的残余散光曲线
b:根据本发明的第一示例性实施例的GRIN渐变焦度眼镜片的残余散光曲线
图12示出了根据第二示例性实施例的GRIN渐变焦度眼镜片的前表面的形廓与对比渐变焦度眼镜片的前表面的形廓的比较;矢状高度是关于相对于水平轴线倾斜了-7.02°的平面指定的
a:根据本发明的第二示例性实施例的GRIN渐变焦度眼镜片的前表面的矢状高度
b:对比渐变焦度眼镜片的前表面的矢状高度
图13示出了常规构造的由折光力为n = 1.600的材料制成的对比渐变焦度眼镜片与根据本发明的第三示例性实施例的没有任何对称性的GRIN渐变焦度眼镜片的光学特性
a:对比渐变焦度眼镜片的平均球镜度
b:对比渐变焦度眼镜片的物体侧自由形式表面的平均表面光焦度
图14示出了根据第三示例性实施例的GRIN渐变焦度眼镜片的光学特性
a:平均球镜度
b:针对折光力n = 1.600计算的平均表面光焦度
图15示出了根据第三示例性实施例的GRIN渐变焦度眼镜片的折光力分布
图16示出了根据第三示例性实施例的GRIN渐变焦度眼镜片的残余散光分布与对比渐变焦度眼镜片的残余散光分布的比较
a:对比渐变焦度眼镜片的残余散光分布
b:根据本发明的第三示例性实施例的GRIN渐变焦度眼镜片的残余散光分布
图17示出了沿着根据图16的y = -5 mm区段根据第三示例性实施例的GRIN渐变焦度眼镜片的残余散光分布与对比渐变焦度眼镜片的残余散光分布的比较
a:对比渐变焦度眼镜片的残余散光分布
b:根据本发明的第三示例性实施例的GRIN渐变焦度眼镜片的残余散光分布
图18示出了根据第三示例性实施例的GRIN渐变焦度眼镜片的前表面的形廓与对比渐变焦度眼镜片的前表面的形廓的比较
a:对比渐变焦度眼镜片的前表面的矢状高度
b:根据本发明的第三示例性实施例的GRIN渐变焦度眼镜片的前表面的矢状高度。
具体实施方式
前三个示例性实施例涉及根据本发明的类型的产品的GRIN渐变焦度眼镜片、或其在计算机的存储器中的表示。第四个示例性实施以示例性的方式示出了根据本发明的用于规划GRIN渐变焦度眼镜片的方法。
第一示例性实施例
在第一实例中,选择具有特别简单的表面几何形状的渐变焦度眼镜片。它以关于垂直于附图平面的平面呈镜像对称的方式构成,并且基本上仅包括具有连续递增焦度的区,该区被布置在中心区域中并且从上到下部垂直地延伸。
图1a示出了对于渐变焦度眼镜片对于眼镜配戴者而言在光束路径中的平均球镜度分布,其通过所谓的双三次样条描述,该渐变焦度眼镜片的物体侧自由形式表面由标准材料(折光力n = 1.600)制成。这个渐变焦度眼镜片用作根据本发明实施的渐变焦度眼镜片的对比渐变焦度眼镜片,本发明的渐变焦度眼镜片由于其空间上变化的折光力而在下文中被称为GRIN渐变焦度眼镜片。
对比渐变焦度眼镜片的后侧是半径为120 mm的球面表面,并且眼睛的转动中心位于镜片的几何中心后方与后表面相距25.5 mm距离处。镜片的中心厚度为2.5 mm,并且几何中心处的棱镜度为0。后表面是未倾斜的,即,前表面和后表面在几何中心处的法线是沿水平笔直向前的观察方向的方向。
绘制的坐标轴x和y用于在这个表面上确定点。在镜片的垂直中心轴线上,在大致y= 20 mm的高度处,焦度超过0.00屈光度;在大致y = -25 mm处,焦度达到2.25 dpt(屈光度)。因此,镜片焦度沿50 mm的长度增大了2.25屈光度。因此,渐变焦度眼镜片在预期使用位置时对于眼镜配戴者在视远部分中没有球镜度(球镜= 0)并且没有散光焦度(柱镜= 0),并且具有2.25 dpt的下加光。根据DIN EN ISO 13666:2013-10的第11.1节,具有球镜度的眼镜片是将平行光的近轴束带到单个焦点的镜片。根据DIN EN ISO 13666:2013-10的第12.1节,具有散光焦度的眼镜片是将平行光的近轴束带到两个相互成直角的分开的线焦点、并且因此仅在两条主子午线上具有顶焦度的镜片。该标准的第14.2.1节将下加光定义为视近部分的顶焦度与视远部分的顶焦度之间的差值。
图1b示出了图1a的对比渐变焦度眼镜片的n = 1.600物体侧自由形式表面的平均表面光焦度。表面曲率从上到下连续增大;平均表面焦度值从y = 15 mm处的大致5.3 dpt增大到y = -25 mm处的大致7.0 dpt。
图1c示出了图1a的对比渐变焦度眼镜片的n = 1.600物体侧自由形式表面的平均表面散光。
图2a、图2b和图2c示出了使用GRIN材料对于对比渐变焦度眼镜片的再现。在这方面,图2a示出了平均球镜度的分布。从图1a和图2a的比较可以得出,这两个渐变焦度眼镜片的焦度分布是相同的。图2b展示了平均表面光焦度曲线,并且图2c展示了根据本发明实施的GRIN渐变焦度眼镜片的前表面的表面散光曲线。为了允许在平均曲率方面与图1b进行比较,并且在表面散光方面与图1c进行比较,在计算平均表面光焦度和表面散光时使用的不是GRIN材料,而是与之前一样使用折光力为n = 1.600的材料。
平均表面光焦度和表面散光是根据Heinz Diepes,Ralf Blendowske:Optik undTechnik der Brille; 第2版; 海德堡 2005年; 第256页定义的。
图2b和2c与图1b和1c的比较示出了,自由形式表面的形状发生了显著改变:平均表面光焦度(用n = 1.600计算)现在从上到下减小,即,表面的平均曲率从上到下减小。表面散光曲线不再展现出典型的中间走廊。
图3示出了根据本发明的GRIN渐变焦度眼镜片上的折光力分布。在此,折光力从上到下增大,从大致n = 1.48增大到下部区域中的大致n = 1.75。
图4a和图4b呈现与标准镜片相比,使用具有特定折光力分布的GRIN材料和这个GRIN渐变焦度眼镜片的自由形式表面的设计对中间走廊的宽度的影响。这些图中示出了对于眼镜配戴者、仅具有球镜处方的眼镜配戴者而言,光束路径中的残余散光像差分布。
在这个实例中,在此用1 dpt的等散光线限定的中间走廊从17 mm增大到22 mm,即,增大了大致百分之30。
图5a和图5b示出了图4a和图4b的残余散光分布的截面。在此,递增焦度与由此引起的散光像差的侧向增大之间的传统关系(类似于根据明克维茨定理的平均表面光焦度与表面散光的关系)变得特别清楚。即便存在与标准镜片中相同的焦度增加,GRIN镜片的中间走廊的中心周围(y = 0)的散光增大也显著较小。通过在渐变焦度镜片的光学理论中的明克维茨陈述来精确地解释这种增大。
图6借助于矢状高度表示将根据第一示例性实施例的GRIN渐变焦度眼镜片的前表面的形廓与对比渐变焦度眼镜片的前表面的形廓进行比较。图6b示出了根据本发明的第一示例性实施例的GRIN渐变焦度眼镜片的前表面的矢状高度,并且与之对比,图6a示出了对比渐变焦度眼镜片的前表面的矢状高度。
第二示例性实施例
所有以下附图在主题和顺序上对应于第一示例性实施例的附图。
图7a示出了对于对比渐变焦度眼镜片对于渐变焦度眼镜配戴者而言在光束路径中的平均球镜度分布,该对比渐变焦度眼镜片的物体侧自由形式表面由标准材料(折光力n= 1.600)制成。后侧同样是半径为120 mm的球面表面,并且眼睛的转动中心位于对比渐变焦度眼镜片的几何中心上方4 mm处、与后表面相距25.8 mm的水平距离。对比渐变焦度眼镜片的中心厚度为2.6 mm,棱镜度为1.0 cm/m,基位为270°、在几何中心下方2 mm。后表面关于水平轴线倾斜了-8°。
绘制的坐标轴用于在这个表面上确定点。在对比渐变焦度眼镜片的垂直中心轴线上,在大致y = 6 mm的高度处,焦度超过0.00屈光度线(即,当水平地笔直向前注视时,眼镜配戴者虚拟地获得0 dpt的焦度);在大致y = -14 mm处实现2.00屈光度的焦度。因此,镜片焦度沿20 mm的长度增大了2.00 dpt。
图7b示出了图7a的对比渐变焦度眼镜片的n = 1.600物体侧自由形式表面的平均表面光焦度。表面曲率从上到下连续增大;平均表面焦度值从y = 2 mm处的5.00 dpt增大到y = -18 mm处的6.75 dpt。
图7c示出了图7a的对比渐变焦度眼镜片的n = 1.600物体侧自由形式表面的表面散光。
图8a、图8b和图8c示出了使用GRIN材料对于对比渐变焦度眼镜片的再现(根据本发明的渐变焦度眼镜片)。在这方面,图8a示出了平均球镜度的分布。从图7a和图8a的比较可以得出,沿着这两个镜片的垂直中心线的焦度增大是相同的。图8b展示了平均表面光焦度曲线,并且图8c展示了根据本发明的GRIN渐变焦度眼镜片的前表面的表面散光曲线。为了允许在平均曲率方面与图7b进行比较,并且在表面散光方面与图7c进行比较,在计算期间使用的不是GRIN材料,而是与以前一样是折光力为n = 1.600的材料。
图8b和8c与图7b和7c的比较示出了,自由形式表面的形状发生了显著改变:平均表面光焦度(用n = 1.600计算)现在从镜片中心到边缘以不规则的方式减小。表面散光曲线不再展现出典型的中间走廊。
图9示出了眼镜片上的折光力分布。在此,折光力从镜片中心的大致1.60增大至下部区域的大致n = 1.70。
图10a和图10b呈现与对比渐变焦度眼镜片相比,使用具有特定折光力分布的GRIN材料和这个GRIN渐变焦度眼镜片的自由形式表面的设计对中间走廊的宽度的影响。这些图中示出了对于眼镜配戴者、仅具有球镜处方的眼镜配戴者而言,光束路径中的残余散光像差分布。
在这个实例中,在此用1 dpt的等散光线限定的中间走廊从8.5 mm增大到12 mm,即,增大了大致百分之41。
图11a和图11b示出了图10a和图10b的残余散光分布的截面。在此,递增焦度与由此引起的散光像差的侧向增大之间的传统关系(类似于根据明克维茨定理的平均表面光焦度与表面散光的关系)变得特别清楚。即便存在与对比渐变焦度眼镜片中相同的焦度增大,根据本发明的GRIN渐变焦度眼镜片的中间走廊的中心周围(y = -5 mm)的散光增大也显著较小。以类似于第一示例性实施例的方式,GRIN渐变焦度眼镜片的散光梯度与明克维茨预测的行为存在显著偏差:中间走廊变得显著更宽。
图12借助于矢状高度表示将根据第二示例性实施例的GRIN渐变焦度眼镜片的前表面的形廓与对比渐变焦度眼镜片的前表面的形廓进行比较。图12b示出了根据本发明的第二示例性实施例的GRIN渐变焦度眼镜片的前表面的矢状高度,并且与之对比,图12a示出了对比渐变焦度眼镜片的前表面的矢状高度,在各自情况下矢状高度是相对于关于水平轴线倾斜了-7.02的坐标系(即,这个坐标系的竖直Y轴关于空间竖直方向倾斜了-7.02°)而言。
第三示例性实施例
所有以下附图在主题和顺序上对应于第二示例性实施例的附图。
第三示例性实施例示出了两个渐变焦度镜片,其中考虑了眼睛在注视中等距离处的物体和近距离物体时的会聚运动,所述物体笔直向前地位于眼镜配戴者的眼睛前方。当注视穿过眼镜片的前表面的视点时,这种会聚运动致使这些视点不是位于完全垂直的直线片上,而是沿着朝向鼻子枢转的竖直线,所述线被称为主视线。
因此,在这些实例中,视近部分的中心沿鼻侧方向水平地移位。已经按以下方式来计算这些实例:使得主视线位于中间走廊内、在前表面上的使得散光残余像差为0.5 dpt的线之间居中(在这方面参见图16a和图16b)。
图13a示出了对于对比渐变焦度眼镜片对于渐变焦度眼镜配戴者而言在光束路径中的平均球镜度分布,该对比渐变焦度眼镜片的物体侧自由形式表面由标准材料(折光力n= 1.600)制成。后侧同样是半径为120 mm的球面表面,并且眼睛的转动中心位于对比渐变焦度眼镜片的几何中心上方4 mm处、与后表面相距25.5 mm的水平距离。对比渐变焦度眼镜片的中心厚度为2.5 mm,棱镜度为1.0 cm/m,基位为270°、在几何中心下方2 mm。后表面被倾斜成使得当水平地笔直向前注视时,眼睛侧光学垂直于后表面。
当水平地笔直向前注视时(即,使视点在几何中心上方4 mm处穿过镜片),眼镜配戴者收到0 dpt的平均焦度,并且,当注视几何中心下方13 mm处并且水平地沿鼻方向-2.5mm处的点时,所述眼镜配戴者收到2.00 dpt的平均焦度。即,镜片焦度沿17 mm的长度增大了大致2.00 dpt。
图13b示出了第三示例性实施例的对比渐变焦度眼镜片的折光力n = 1.600物体侧自由形式表面的平面表面光焦度分布,该眼镜片产生如图13a展示的平均焦度分布。表面曲率从上到下连续增大;平均表面焦度值从大致y = 2 mm处的5.00 dpt增大到y = -12 mm处的6.50 dpt。
图14a和图14b示出了使用GRIN材料对于对比渐变焦度眼镜片的再现(根据本发明的渐变焦度眼镜片)。在这方面,图14a示出了平均球镜度的分布。从图13a和图14a的比较可以得出,中间走廊内沿着主视线的焦度增大是相同的。图14b展示了根据本发明的GRIN渐变焦度眼镜片的前表面的平均表面光焦度曲线。为了允许在平均曲率方面与图13b进行比较,在计算期间使用的不是GRIN材料,而是与以前一样是折光力为n = 1.600的材料。
图13b与图14b的比较示出了,自由形式表面的形状发生了显著改变:平均表面光焦度(用n = 1.600计算)现在从镜片中心到边缘以不规则的方式减小,而在外围区域中再次增大。
图15示出了眼镜片上的折光力分布。在此,折光力从镜片上部区域的大致1.48增大至下部区域中y = -13的高度处的大致1.70。
图16a和图16b呈现了与对比渐变焦度眼镜片相比,使用具有特定折光力分布的GRIN材料和这个GRIN渐变焦度眼镜片的自由形式表面的设计对中间走廊的宽度的影响。这些图中示出了对于眼镜配戴者、仅具有球镜处方的眼镜配戴者而言,光束路径中的残余散光像差分布。
在该第三实例中,在此用1 dpt的等散光线限定的中间走廊从6 mm增大到9 mm,即,增大了大致百分之50。
图17a和图17b示出了图16a和图16b的残余散光分布的截面。这些附图再次阐明了递增焦度与由此引起的散光像差的侧向增大之间的传统关系(类似于根据明克维茨定理的平均表面光焦度与表面散光的关系)。即便存在与对比渐变焦度眼镜片中相同的焦度增加,根据本发明的GRIN渐变焦度眼镜片的中间走廊的中心周围(y = -5 mm)的散光残余像差增大也显著较小。
图18借助于矢状高度表示将根据第一示例性实施例的GRIN渐变焦度眼镜片的前表面的形廓与对比渐变焦度眼镜片的前表面的形廓进行比较。图18b示出了根据本发明的第三示例性实施例的GRIN渐变焦度眼镜片的前表面的矢状高度,并且与之对比,图18a示出了对比渐变焦度眼镜片的前表面的矢状高度,在各自情况下矢状高度是相对于垂直于水平笔直向前的观察方向的平面而言。
第四示例性实施例
下文概述了根据本发明的用于规划GRIN渐变焦度眼镜片的方法的基本步骤:
在第一步骤中,捕获眼镜配戴者的个体用户数据或应用数据。这包括捕获可指派给眼镜配戴者的(生理)数据并且捕获使用条件,眼镜配戴者将以该使用条件配戴待规划的渐变焦度眼镜。
举例而言,眼镜配戴者的生理数据包括屈光不正和调节能力,这些是通过折射测量来确定,并且以球镜、柱镜、轴位、棱镜、和基位以及下加光的形式规律地包含在处方中。另外,例如,在不同的光照条件下确定瞳距和瞳孔大小。举例而言,考虑了眼镜配戴者的年龄;这对期望的调节能力和瞳孔大小有影响。从不同观察方向和物距时的瞳距获得眼睛的会聚行为。
这些使用条件包括眼镜片位于眼睛前方(通常相对于眼睛的转动中心而言)和针对不同观察方向而言眼镜配戴者对焦地看见物体应处于的物距。可以例如通过捕捉顶点距离、前倾角和侧倾角来确定眼镜配戴者在眼睛前方的搁置。这些数据被包含在物距模型中,可以对该物距模型进行光线跟踪法。
在随后的步骤中,基于捕获的这些数据来设定具有多个评估点的眼镜片设计。该设计计划包括渐变焦度眼镜片在相应的评估点处的光学特性。举例而言,预期的特性包括考虑了下加光的处方球镜度和散光焦度允许偏差,确切地说是以分布在整个渐变焦度眼镜片上的方式、如通过将眼镜片布置在眼睛前方和通过基础距离模型而预先确定的。
另外,设定前表面和后表面的表面几何形状的计划以及在整个眼镜片上的折光力分布的计划。举例而言,可以将前表面选择为球面表面,并且可以将后表面选择为渐变表面。另外,可以初始地将这两个表面均选择为球面表面。总体上,第一计划的选择表面几何形状仅仅决定了下面所应用的优化方法的收敛(速度和成功)。举例而言,应假设前表面维持球面形式,而后表面接收渐变表面的形式。
在另外的步骤中确定穿过所述多个评估点的主光线的轮廓。可选地,可以在各条主光线的周围为每条主光线设定局部波前。
在随后的步骤中,通过确定眼镜片对主光线的光束路径的影响以及可选地在相应评估点周围的局部波前,来确定眼镜片在评估点处的上述光学特性。
在另外的步骤中,根据所确定的光学特性和个体用户数据来评估眼镜片计划。然后,根据对目标函数求极小值来修改眼镜片计划的后表面和折光力分布
换句话说,修改渐变焦度眼镜片的后表面的局部表面几何形状和在经过评估点的相应视觉光束路径中的局部折光力,直到满足终止准则。
接着可以根据该计划来制造以本创新方式规划的GRIN渐变焦度眼镜片。
下文在欧洲专利局法律上诉委员会第J15/88号决定的含义内以条款形式概述了本发明的主题:
1. 一种产品,包括渐变焦度眼镜片、或渐变焦度眼镜片在数据介质上的表示,其中,该渐变焦度眼镜片包括:
- 前表面和后表面,以及
- 空间上变化的折光力,其中,
- 该前表面被实施为渐变表面,和/或该后表面被实施为渐变表面,
其特征在于,
- 该被实施为渐变表面的前表面被实施为自由形式表面,和/或该被实施为渐变表面的后表面被实施为自由形式表面。
2. 根据条款1所述的产品,其特征在于,这些自由形式表面中的至少一个表面没有点对称性且没有轴对称性,或者这些自由形式表面中的至少一个表面没有点对称性且没有轴对称性、且没有旋转对称性、并且没有关于对称平面的对称性。
3. 根据条款1和2中任一项所述的产品,其特征在于,该渐变焦度眼镜片包括中间走廊,并且
- 该被实施为自由形式表面的前表面被形成为使得该平均曲率在该中间走廊内具有最大值,和/或
- 该被实施为自由形式表面的后表面被形成为使得该平均曲率在该中间走廊内具有最小值。
4. 根据以上条款中任一项所述的产品,其特征在于,
- 该产品进一步包括预定地布置在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的该渐变焦度眼镜片在数据介质上的表示,
- 该渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布,
- 该渐变焦度眼镜片具有一定宽度的中间走廊,并且该渐变焦度眼镜片的折光力在空间上的变化方式为使得,该渐变焦度眼镜片的中间走廊至少在该中间走廊的某个区段中或在其整个长度上的宽度大于对比渐变焦度眼镜片的中间走廊的宽度,其中该对比渐变焦度眼镜片在该对比渐变焦度眼镜片相同地布置在该渐变焦度眼镜配戴者的眼睛前方的情况下具有相同的等效球镜度分布、但是具有空间上不可变的折光力。
5. 根据条款4所述的产品,其特征在于,对该至少一个区段选择下组的变体:
- 水平区段,
- 一半下加光处的区段,
- 一半下加光处的水平区段,
- 一半下加光处的水平区段、和25%下加光处的水平区段,
- 一半下加光处的水平区段、和75%下加光处的水平区段,
- 一半下加光处的水平区段、和25%下加光处的水平区段、以及75%下加光处的水平区段。
6. 根据条款4或5所述的产品,其特征在于,
- 该产品进一步包括:
(i) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置而言残余散光分布在数据介质上的表示,和/或
(ii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,为了获得完全矫正所需的散光焦度分布在数据介质上的表示,和/或
(iii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,处方和物距模型在数据介质上的表示,和/或
(iv) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置而言等效球镜度分布在数据介质上的表示,
- 该渐变焦度眼镜片具有视远部分和视近部分,并且
- 该中间走廊的宽度对应于横向于该中间走廊的纵向方向、在该视远部分与视近部分之间延伸的尺寸,在该尺寸内,残余散光的绝对值低于预定极限值,该预定极限值选自以下指明的组中的范围内:
(a) 该极限值在0.25 dpt与1.5 dpt之间的范围内,
(b) 该极限值在0.25 dpt与1.0 dpt之间的范围内,
(c) 该极限值在0.25 dpt与0.75 dpt之间的范围内,
(d) 该极限值在0.25 dpt与0.6 dpt之间的范围内,
(e) 该极限值在0.25 dpt与0.5 dpt之间的范围内,
(f) 该极限值为0.5 dpt。
7. 根据以上条款中任一项所述的产品,其特征在于,
- 该产品进一步包括预定地布置在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的该渐变焦度眼镜片在数据介质上的表示,
- 该渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布,
- 该产品进一步包括:
(i) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置而言残余散光分布在数据介质上的表示,和/或
(ii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,为了获得完全矫正所需的散光焦度分布在数据介质上的表示,和/或
(iii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,处方和物距模型在数据介质上的表示,和/或
(iv) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,等效球镜度分布在数据介质上的表示,并且
- 该渐变焦度眼镜片的折光力在空间上的变化方式为使得,该渐变焦度眼镜片的残余散光的最大值小于对比渐变焦度眼镜片的残余散光的最大值,该对比渐变焦度眼镜片在该对比渐变焦度眼镜片相同地布置在该渐变焦度眼镜配戴者的眼睛前方的情况下具有相同的等效球镜度分布、但是具有空间上不可变的折光力。
8. 根据以上条款中任一项所述的产品,其特征在于,
- 该产品进一步包括预定地布置在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的该渐变焦度眼镜片在数据介质上的表示,
- 该渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布(W),
- 该产品进一步包括:
(i) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置而言残余散光分布在数据介质上的表示,和/或
(ii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,为了获得完全矫正所需的散光焦度分布在数据介质上的表示,和/或
(iii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,处方和物距模型在数据介质上的表示,和/或
(iv) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,等效球镜度分布在数据介质上的表示,并且
- 该渐变焦度眼镜片包括中间走廊和主视线,并且该渐变焦度眼镜片的折光力在空间上的变化方式为使得对于在该中间走廊的最窄点处的某个水平区段上的预定残余散光值,或者对于经过该主视线上的实现一半下加光的点的水平区段,在该主视线两侧为10mm的水平距离的区域内适用以下关系
其中,grad W描述该渐变焦度眼镜片在该主视线上在该中间走廊的最窄点处、或者在该主视线上的实现一半下加光的点处的等效球镜度焦度梯度,B描述了该渐变焦度眼镜片中使得残余散光为的区域的宽度,其中c是选自下组的常量:
(a) 1.0 < c
(b) 1.1 < c
(c) 1.2 < c
(d) 1.3 < c。
9. 一种用于规划渐变焦度眼镜片的计算机实施方法,该渐变焦度眼镜片具有前表面和后表面、空间上变化的折光力,其中,
该前表面被实施为渐变表面,和/或该后表面被实施为渐变表面,
其特征在于,
- 通过光线追踪法计算在视线穿过该渐变焦度眼镜片时所经过的多个评估点处该渐变焦度眼镜片的光学特性,其中,
- 在相应的评估点处设定该渐变焦度眼镜片的至少一个预期光学特性,
- 设定该渐变焦度眼镜片的计划,其中,该计划包括该渐变焦度眼镜片的渐变表面的局部几何形状的表示以及在经过这些评估点的相应视觉光路上的局部折光力的表示,
- 根据该渐变焦度眼镜片的该至少一个预期光学特性的近似值来修改该渐变焦度眼镜片的计划,其中,该修改包括修改该渐变焦度眼镜片的渐变表面的局部几何形状的表示以及在经过这些评估点的相应视觉光路上的局部折光力的表示,其中,该至少一个预期光学特性包括该渐变焦度眼镜片的预期残余散光。
10. 根据条款9所述的方法,其特征在于,所述修改该渐变焦度眼镜片的计划是根据对目标函数求极小值来进行的:
11. 根据条款9和10中任一项所述的方法,其特征在于,预先确定至少一个评估点的预期残余散光,所述预期残余散光小于在具有相同的等效球镜度分布但具有空间上不可变的折光力的对比渐变焦度眼镜片上并且在该对比渐变焦度眼镜片相同地布置在渐变焦度眼镜配戴者的眼睛前方的情况下在该至少一个对应评估点处的理论上可实现的残余散光,并且仅在针对所规划的渐变焦度眼镜片实现的在该至少一个评估点处的残余散光小于该对比渐变焦度眼镜片上的该至少一个对应评估点处的理论上可实现的残余散光时,终止修改该渐变焦度眼镜片的渐变表面的局部几何形状的表示以及在经过这些评估点的相应视觉光路上的局部折光力的表示。
12. 根据条款9至11中任一项所述的方法,其特征在于,实施修改该渐变焦度眼镜片的渐变表面的局部几何形状的表示以及在经过这些评估点的相应视觉光路上的局部折光力的表示的前提是,该渐变焦度眼镜片的残余散光的最大值小于具有相同的等效球镜度分布但具有空间上不可变的折光力的对比渐变焦度眼镜片的并且在该对比渐变焦度眼镜片相同地布置在渐变焦度眼镜配戴者的眼睛前方的情况下的残余散光的最大值。
13. 根据条款9至12中任一项所述的方法,其特征在于,规划该渐变焦度眼镜片得到了与根据条款1至8中任一项所述的产品相对应的渐变焦度眼镜片,或者规划该渐变焦度眼镜片的前提是,应产生与根据条款1至8中任一项所述的产品相对应的渐变焦度眼镜片。
14. 一种具有计算机代码的计算机程序,该计算机代码用于在该计算机程序被加载到计算机中和/或在计算机中执行时实施如条款9至13中任一项所述的所有方法步骤。
15. 一种计算机可读介质,包括根据条款14所述的计算机程序。
16. 一种用于通过增材方法来制造如以上条款1至8中任一项所述的渐变焦度眼镜片、或使用如条款9至13中任一项所述的方法规划的渐变焦度眼镜片的方法。
17. 一种用于制造渐变焦度眼镜片的方法,该方法包括根据条款9至12中任一项所述的方法以及根据该计划对该渐变焦度眼镜片的制造。
18. 根据条款16所述的方法,其特征在于,该渐变焦度眼镜片是使用增材方法来制造的。
19. 一种计算机,包括处理器,该计算机被配置用于执行根据条款9至13中任一项所述的方法。
Claims (41)
1.一种渐变焦度眼镜片,其中,该渐变焦度眼镜片包括:
(a) 被实施为渐变表面的具有前表面几何形状的前表面、和具有后表面几何形状的后表面,或者
(b) 被实施为渐变表面的具有后表面几何形状的后表面、和具有前表面几何形状的前表面,以及
- 空间上变化的折光力,
其特征在于,
- 该渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布,
该渐变焦度眼镜片的折光力在空间上的变化方式为使得,该渐变焦度眼镜片的残余散光的最大值小于对比渐变焦度眼镜片的残余散光的最大值,该对比渐变焦度眼镜片在该对比渐变焦度眼镜片相同地布置在该渐变焦度眼镜配戴者的眼睛前方的情况下具有空间上不可变的折光力、但是具有相同的等效球镜度分布,其中,该对比渐变焦度眼镜片的残余散光的最大值与该渐变焦度眼镜片的残余散光的最大值位于相同的位置,其中,
- 在情况(a)中,该渐变焦度眼镜片的被实施为渐变表面的前表面的前表面几何形状相对于该对比渐变焦度眼镜片的被实施为渐变表面的前表面的前表面几何形状具有经修改的实施例,并且该渐变焦度眼镜片的后表面的后表面几何形状具有与该对比渐变焦度眼镜片的后表面的后表面几何形状相同的实施例,并且
- 在情况(b)中,该渐变焦度眼镜片的被实施为渐变表面的后表面的后表面几何形状相对于该对比渐变焦度眼镜片的被实施为渐变表面的后表面的后表面几何形状具有经修改的实施例,并且该渐变焦度眼镜片的前表面的前表面几何形状具有与该对比渐变焦度眼镜片的前表面的前表面几何形状相同的实施例。
2.如权利要求1所述的渐变焦度眼镜片,其特征在于,这些自由形式表面中的至少一个表面没有点对称性且没有轴对称性,或者这些自由形式表面中的至少一个表面没有点对称性且没有轴对称性、且没有旋转对称性、并且没有关于对称平面的对称性。
3.如权利要求1和2中任一项所述的渐变焦度眼镜片,其特征在于,该渐变焦度眼镜片包括中间走廊,并且
- 该被实施为自由形式表面的前表面被形成为使得该前表面的平均曲率在该中间走廊内具有最大值,和/或
- 该被实施为自由形式表面的后表面被形成为使得该后表面的平均曲率在该中间走廊内具有最小值。
4.如权利要求1和2中任一项所述的渐变焦度眼镜片,其特征在于,
- 该渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布,
- 该渐变焦度眼镜片具有一定宽度的中间走廊,并且该渐变焦度眼镜片的折光力在空间上的变化方式为使得,该渐变焦度眼镜片的中间走廊至少在该中间走廊的某个区段中或在其整个长度上的宽度大于对比渐变焦度眼镜片的中间走廊的宽度,其中该对比渐变焦度眼镜片在该对比渐变焦度眼镜片相同地布置在该渐变焦度眼镜配戴者的眼睛前方的情况下具有相同的等效球镜度分布、但是具有空间上不可变的折光力。
5.如权利要求4所述的渐变焦度眼镜片,其特征在于,针对该至少一个区段从包括如下区段的组中选择变体:
- 水平区段,
- 一半下加光处的区段,
- 一半下加光处的水平区段,
- 一半下加光处的水平区段、和25%下加光处的水平区段,
- 一半下加光处的水平区段、和75%下加光处的水平区段,以及
- 一半下加光处的水平区段、和25%下加光处的水平区段、以及75%下加光处的水平区段。
6.如权利要求4所述的渐变焦度眼镜片,其特征在于,
- 该渐变焦度眼镜片具有视远部分和视近部分,并且
- 该中间走廊的宽度对应于横向于该中间走廊的纵向方向、在该视远部分与该视近部分之间延伸的某个尺寸,在该尺寸内,该残余散光的绝对值低于预定极限值,
(a) 该极限值在0.25 dpt与1.5 dpt之间的范围内,或者
(b) 该极限值在0.25 dpt与1.0 dpt之间的范围内,或者
(c) 该极限值在0.25 dpt与0.75 dpt之间的范围内,或者
(d) 该极限值在0.25 dpt与0.6 dpt之间的范围内,或者
(e) 该极限值在0.25 dpt与0.5 dpt之间的范围内,或者
(f) 该极限值为0.5 dpt。
7.如权利要求1和2中任一项所述的渐变焦度眼镜片,其特征在于,
- 该渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布,
或者对于经过该主视线上的实现一半下加光的点的水平区段,在该主视线两侧为10mm的水平距离的区域内适用以下关系:
其中,grad W描述该渐变焦度眼镜片在该主视线上在该中间走廊的最窄点处、或者在该主视线上的实现一半下加光的点处的等效球镜度焦度梯度,B描述了该渐变焦度眼镜片中使得该残余散光为的区域的宽度,其中c是选自包括如下项的组的常量:
(a) 1.0 < c
(b) 1.1 < c
(c) 1.2 < c
(d) 1.3 < c。
8.一种渐变焦度眼镜片,其中,该渐变焦度眼镜片包括:
- 前表面和后表面,以及
- 空间上变化的折光力,其中,
- 该前表面被实施为渐变表面,和/或该后表面被实施为渐变表面,
其中,
- 该被实施为渐变表面的前表面被实施为自由形式表面,和/或该被实施为渐变表面的后表面被实施为自由形式表面,
其特征在于,
- 该渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布,
或者对于经过该主视线上的实现一半下加光的点的水平区段,在该主视线两侧为10mm的水平距离的区域内适用以下关系:
其中,grad W描述该渐变焦度眼镜片在该主视线上在该中间走廊的最窄点处、或者在该主视线上的实现一半下加光的点处的等效球镜度焦度梯度,B描述了该渐变焦度眼镜片中使得该残余散光为的区域的宽度,其中c是选自包括如下项的组的常量:
(a) 1.0 < c
(b) 1.1 < c
(c) 1.2 < c以及
(d) 1.3 < c。
9.如权利要求8所述的渐变焦度眼镜片,其特征在于,这些自由形式表面中的至少一个表面没有点对称性且没有轴对称性,或者这些自由形式表面中的至少一个表面没有点对称性且没有轴对称性、且没有旋转对称性、并且没有关于对称平面的对称性。
10.如权利要求8和9中任一项所述的渐变焦度眼镜片,其特征在于,该渐变焦度眼镜片包括中间走廊,并且
- 该被实施为自由形式表面的前表面被形成为使得该前表面的平均曲率在该中间走廊内具有最大值,和/或
- 该被实施为自由形式表面的后表面被形成为使得该后表面的平均曲率在该中间走廊内具有最小值。
11.如权利要求8和9中任一项所述的渐变焦度眼镜片,其特征在于,
- 该渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布,
- 该渐变焦度眼镜片具有一定宽度的中间走廊,并且该渐变焦度眼镜片的折光力在空间上的变化方式为使得,该渐变焦度眼镜片的中间走廊至少在该中间走廊的某个区段中或在其整个长度上的宽度大于对比渐变焦度眼镜片的中间走廊的宽度,其中该对比渐变焦度眼镜片在该对比渐变焦度眼镜片相同地布置在该渐变焦度眼镜配戴者的眼睛前方的情况下具有相同的等效球镜度分布、但是具有空间上不可变的折光力。
12.如权利要求11所述的渐变焦度眼镜片,其特征在于,针对该至少一个区段从包括如下区段的组中选择变体:
- 水平区段,
- 一半下加光处的区段,
- 一半下加光处的水平区段,
- 一半下加光处的水平区段、和25%下加光处的水平区段,
- 一半下加光处的水平区段、和75%下加光处的水平区段,以及
- 一半下加光处的水平区段、和25%下加光处的水平区段、以及75%下加光处的水平区段。
13.如权利要求11所述的渐变焦度眼镜片,其特征在于,
- 该渐变焦度眼镜片具有视远部分和视近部分,并且
- 该中间走廊的宽度对应于横向于该中间走廊的纵向方向、在该视远部分与该视近部分之间延伸的某个尺寸,在该尺寸内,该残余散光的绝对值低于预定极限值,(a) 该极限值在0.25 dpt与1.5 dpt之间的范围内,或者
(b) 该极限值在0.25 dpt与1.0 dpt之间的范围内,或者
(c) 该极限值在0.25 dpt与0.75 dpt之间的范围内,或者
(d) 该极限值在0.25 dpt与0.6 dpt之间的范围内,或者
(e) 该极限值在0.25 dpt与0.5 dpt之间的范围内,或者
(f) 该极限值为0.5 dpt。
14.如权利要求8和9中任一项所述的渐变焦度眼镜片,其特征在于,
- 该渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布,
- 该渐变焦度眼镜片的折光力在空间上的变化方式为使得,该渐变焦度眼镜片的残余散光的最大值小于对比渐变焦度眼镜片的残余散光的最大值,该对比渐变焦度眼镜片在该对比渐变焦度眼镜片相同地布置在该渐变焦度眼镜配戴者的眼睛前方的情况下具有相同的等效球镜度分布、但是具有空间上不可变的折光力。
15.如权利要求8和9中任一项所述的渐变焦度眼镜片,其特征在于,
- 该渐变焦度眼镜片由以下组成:基材,该基材不含单层并且具有前表面和后表面以及所述空间上变化的折光力;以及位于该基材的前表面上的包括一个或多个单层的前表面涂层,和/或位于该基材的后表面上的包括一个或多个单层的后表面涂层,并且
其特征在于,
- 在具有该前表面涂层和/或该后表面涂层的渐变焦度眼镜片的前表面上的每个点处测得的等效球镜度与在没有前表面涂层且没有后表面涂层但是具有相同基材的对比渐变焦度眼镜片的前表面上的每个对应点处测得的等效球镜度之差小于选自包括如下项的组的值:
(a) 该差小于0.001 dpt
(b) 该差小于0.002 dpt
(c) 该差小于0.003 dpt
(d) 该差小于0.004 dpt。
16.一种渐变焦度眼镜片,以计算机可读数据的形式表示在数据介质上,其中,该渐变焦度眼镜片包括:
(a) 被实施为渐变表面的具有前表面几何形状的前表面、和具有后表面几何形状的后表面,或者
(b) 被实施为渐变表面的具有后表面几何形状的后表面、和具有前表面几何形状的前表面,以及
- 空间上变化的折光力,
其特征在于,
- 该渐变焦度眼镜片进一步包括预定地布置在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的该渐变焦度眼镜片在数据介质上的表示,
- 该渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布,
- 该渐变焦度眼镜片进一步包括:
(i) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置而言残余散光分布在数据介质上的表示,和/或
(ii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,为了获得完全矫正所需的散光焦度分布在数据介质上的表示,和/或
(iii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,处方和物距模型在数据介质上的表示,和/或
(iv) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,等效球镜度分布在数据介质上的表示,并且
该渐变焦度眼镜片的折光力在空间上的变化方式为使得,该渐变焦度眼镜片的残余散光的最大值小于对比渐变焦度眼镜片的残余散光的最大值,该对比渐变焦度眼镜片在该对比渐变焦度眼镜片相同地布置在该渐变焦度眼镜配戴者的眼睛前方的情况下具有空间上不可变的折光力、但是具有相同的等效球镜度分布,其中,该对比渐变焦度眼镜片的残余散光的最大值与该渐变焦度眼镜片的残余散光的最大值位于相同的位置,其中,
- 在情况(a)中,该渐变焦度眼镜片的被实施为渐变表面的前表面的前表面几何形状相对于该对比渐变焦度眼镜片的被实施为渐变表面的前表面的前表面几何形状具有经修改的实施例,并且该渐变焦度眼镜片的后表面的后表面几何形状具有与该对比渐变焦度眼镜片的后表面的后表面几何形状相同的实施例,并且
- 在情况(b)中,该渐变焦度眼镜片的被实施为渐变表面的后表面的后表面几何形状相对于该对比渐变焦度眼镜片的被实施为渐变表面的后表面的后表面几何形状具有经修改的实施例,并且该渐变焦度眼镜片的前表面的前表面几何形状具有与该对比渐变焦度眼镜片的前表面的前表面几何形状相同的实施例。
17.如权利要求16所述的渐变焦度眼镜片,其特征在于,这些自由形式表面中的至少一个表面没有点对称性且没有轴对称性,或者这些自由形式表面中的至少一个表面没有点对称性且没有轴对称性、且没有旋转对称性、并且没有关于对称平面的对称性。
18.如权利要求16和17中任一项所述的渐变焦度眼镜片,其特征在于,该渐变焦度眼镜片包括中间走廊,并且
- 该被实施为自由形式表面的前表面被形成为使得该前表面的平均曲率在该中间走廊内具有最大值,和/或
- 该被实施为自由形式表面的后表面被形成为使得该后表面的平均曲率在该中间走廊内具有最小值。
19.如权利要求16和17中任一项所述的渐变焦度眼镜片,其特征在于,
- 该渐变焦度眼镜片进一步包括预定地布置在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的该渐变焦度眼镜片在数据介质上的表示,
- 该渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布,
- 该渐变焦度眼镜片具有一定宽度的中间走廊,并且该渐变焦度眼镜片的折光力在空间上的变化方式为使得,该渐变焦度眼镜片的中间走廊至少在该中间走廊的某个区段中或在其整个长度上的宽度大于对比渐变焦度眼镜片的中间走廊的宽度,其中该对比渐变焦度眼镜片在该对比渐变焦度眼镜片相同地布置在该渐变焦度眼镜配戴者的眼睛前方的情况下具有相同的等效球镜度分布、但是具有空间上不可变的折光力。
20.如权利要求19所述的渐变焦度眼镜片,其特征在于,针对该至少一个区段从包括如下区段的组中选择变体:
- 水平区段,
- 一半下加光处的区段,
- 一半下加光处的水平区段,
- 一半下加光处的水平区段、和25%下加光处的水平区段,
- 一半下加光处的水平区段、和75%下加光处的水平区段,以及
- 一半下加光处的水平区段、和25%下加光处的水平区段、以及75%下加光处的水平区段。
21.如权利要求19所述的渐变焦度眼镜片,其特征在于,
- 该渐变焦度眼镜片进一步包括:
(i) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置而言残余散光分布在数据介质上的表示,和/或
(ii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,为了获得完全矫正所需的散光焦度分布在数据介质上的表示,和/或
(iii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,处方和物距模型在数据介质上的表示,和/或
(iv) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置而言等效球镜度分布在数据介质上的表示,
- 该渐变焦度眼镜片具有视远部分和视近部分,并且
- 该中间走廊的宽度对应于横向于该中间走廊的纵向方向、在该视远部分与该视近部分之间延伸的某个尺寸,在该尺寸内,该残余散光的绝对值低于预定极限值,
(a) 该极限值在0.25 dpt与1.5 dpt之间的范围内,或者
(b) 该极限值在0.25 dpt与1.0 dpt之间的范围内,或者
(c) 该极限值在0.25 dpt与0.75 dpt之间的范围内,或者
(d) 该极限值在0.25 dpt与0.6 dpt之间的范围内,或者
(e) 该极限值在0.25 dpt与0.5 dpt之间的范围内,或者
(f) 该极限值为0.5 dpt。
22.如权利要求16和17中任一项所述的渐变焦度眼镜片,其特征在于,
- 该渐变焦度眼镜片进一步包括预定地布置在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的该渐变焦度眼镜片在数据介质上的表示,
- 该渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布,
- 该渐变焦度眼镜片进一步包括:
(i) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置而言残余散光分布在数据介质上的表示,和/或
(ii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,为了获得完全矫正所需的散光焦度分布在数据介质上的表示,和/或
(iii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,处方和物距模型在数据介质上的表示,和/或
(iv) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,等效球镜度分布在数据介质上的表示,并且
或者对于经过该主视线上的实现一半下加光的点的水平区段,在该主视线两侧为10mm的水平距离的区域内适用以下关系:
其中,grad W描述该渐变焦度眼镜片在该主视线上在该中间走廊的最窄点处、或者在该主视线上的实现一半下加光的点处的等效球镜度焦度梯度,B描述了该渐变焦度眼镜片中使得该残余散光为的区域的宽度,其中c是选自包括如下项的组的常量:
(a) 1.0 < c
(b) 1.1 < c
(c) 1.2 < c
(d) 1.3 < c。
23.一种渐变焦度眼镜片,以计算机可读数据的形式表示在数据介质上,其中,该渐变焦度眼镜片包括:
- 前表面和后表面,以及
- 空间上变化的折光力,其中,
- 该前表面被实施为渐变表面,和/或该后表面被实施为渐变表面,
其中,
- 该被实施为渐变表面的前表面被实施为自由形式表面,和/或该被实施为渐变表面的后表面被实施为自由形式表面,
其特征在于,
- 该渐变焦度眼镜片进一步包括预定地布置在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的该渐变焦度眼镜片在数据介质上的表示,
- 该渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布,
- 该渐变焦度眼镜片进一步包括:
(i) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置而言残余散光分布在数据介质上的表示,和/或
(ii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,为了获得完全矫正所需的散光焦度分布在数据介质上的表示,和/或
(iii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,处方和物距模型在数据介质上的表示,和/或
(iv) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,等效球镜度分布在数据介质上的表示,并且
或者对于经过该主视线上的实现一半下加光的点的水平区段,在该主视线两侧为10mm的水平距离的区域内适用以下关系:
其中,grad W描述该渐变焦度眼镜片在该主视线上在该中间走廊的最窄点处、或者在该主视线上的实现一半下加光的点处的等效球镜度焦度梯度,B描述了该渐变焦度眼镜片中使得该残余散光为的区域的宽度,其中c是选自包括如下项的组的常量:
(a) 1.0 < c
(b) 1.1 < c
(c) 1.2 < c以及
(d) 1.3 < c。
24.如权利要求23所述的渐变焦度眼镜片,其特征在于,这些自由形式表面中的至少一个表面没有点对称性且没有轴对称性,或者这些自由形式表面中的至少一个表面没有点对称性且没有轴对称性、且没有旋转对称性、并且没有关于对称平面的对称性。
25.如权利要求23和24中任一项所述的渐变焦度眼镜片,其特征在于,该渐变焦度眼镜片包括中间走廊,并且
- 该被实施为自由形式表面的前表面被形成为使得该前表面的平均曲率在该中间走廊内具有最大值,和/或
- 该被实施为自由形式表面的后表面被形成为使得该后表面的平均曲率在该中间走廊内具有最小值。
26.如权利要求23和24中任一项所述的渐变焦度眼镜片,其特征在于,
- 该渐变焦度眼镜片进一步包括预定地布置在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的该渐变焦度眼镜片在数据介质上的表示,
- 该渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布,
- 该渐变焦度眼镜片具有一定宽度的中间走廊,并且该渐变焦度眼镜片的折光力在空间上的变化方式为使得,该渐变焦度眼镜片的中间走廊至少在该中间走廊的某个区段中或在其整个长度上的宽度大于对比渐变焦度眼镜片的中间走廊的宽度,其中该对比渐变焦度眼镜片在该对比渐变焦度眼镜片相同地布置在该渐变焦度眼镜配戴者的眼睛前方的情况下具有相同的等效球镜度分布、但是具有空间上不可变的折光力。
27.如权利要求26所述的渐变焦度眼镜片,其特征在于,针对该至少一个区段从包括如下区段的组中选择变体:
- 水平区段,
- 一半下加光处的区段,
- 一半下加光处的水平区段,
- 一半下加光处的水平区段、和25%下加光处的水平区段,
- 一半下加光处的水平区段、和75%下加光处的水平区段,以及
- 一半下加光处的水平区段、和25%下加光处的水平区段、以及75%下加光处的水平区段。
28.如权利要求26所述的渐变焦度眼镜片,其特征在于,
- 该渐变焦度眼镜片进一步包括:
(i) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置而言残余散光分布在数据介质上的表示,和/或
(ii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,为了获得完全矫正所需的散光焦度分布在数据介质上的表示,和/或
(iii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,处方和物距模型在数据介质上的表示,和/或
(iv) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,等效球镜度分布在数据介质上的表示,
- 该渐变焦度眼镜片具有视远部分和视近部分,并且
- 该中间走廊的宽度对应于横向于该中间走廊的纵向方向、在该视远部分与该视近部分之间延伸的某个尺寸,在该尺寸内,该残余散光的绝对值低于预定极限值,
(a) 该极限值在0.25 dpt与1.5 dpt之间的范围内,或者
(b) 该极限值在0.25 dpt与1.0 dpt之间的范围内,或者
(c) 该极限值在0.25 dpt与0.75 dpt之间的范围内,或者
(d) 该极限值在0.25 dpt与0.6 dpt之间的范围内,或者
(e) 该极限值在0.25 dpt与0.5 dpt之间的范围内,或者
(f) 该极限值为0.5 dpt。
29.如权利要求23和24中任一项所述的渐变焦度眼镜片,其特征在于,
- 该渐变焦度眼镜片进一步包括预定地布置在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的该渐变焦度眼镜片在数据介质上的表示,
- 该渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布,
- 该渐变焦度眼镜片进一步包括:
(i) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置而言残余散光分布在数据介质上的表示,和/或
(ii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,为了获得完全矫正所需的散光焦度分布在数据介质上的表示,和/或
(iii) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,处方和物距模型在数据介质上的表示,和/或
(iv) 针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,等效球镜度分布在数据介质上的表示,并且
- 该渐变焦度眼镜片的折光力在空间上的变化方式为使得,该渐变焦度眼镜片的残余散光的最大值小于对比渐变焦度眼镜片的残余散光的最大值,该对比渐变焦度眼镜片在该对比渐变焦度眼镜片相同地布置在该渐变焦度眼镜配戴者的眼睛前方的情况下具有相同的等效球镜度分布、但是具有空间上不可变的折光力。
30.如权利要求23和24中任一项所述的渐变焦度眼镜片,其特征在于,
- 该渐变焦度眼镜片由以下组成:基材,该基材不含单层并且具有前表面和后表面以及所述空间上变化的折光力;以及位于该基材的前表面上的包括一个或多个单层的前表面涂层,和/或位于该基材的后表面上的包括一个或多个单层的后表面涂层,并且
其特征在于,
- 在具有该前表面涂层和/或该后表面涂层的渐变焦度眼镜片的前表面上的每个点处测得的等效球镜度与在没有前表面涂层且没有后表面涂层但是具有相同基材的对比渐变焦度眼镜片的前表面上的每个对应点处测得的等效球镜度之差小于选自包括如下项的组的值:
(a) 该差小于0.001 dpt
(b) 该差小于0.002 dpt
(c) 该差小于0.003 dpt
(d) 该差小于0.004 dpt。
31.一种用于规划渐变焦度眼镜片的计算机实施方法,该渐变焦度眼镜片具有下加光或递减焦度以及前表面和后表面、并且具有空间上变化的折光力,其中,
该前表面被实施为渐变表面,和/或该后表面被实施为渐变表面,其中,当该渐变焦度眼镜片具有一定宽度的中间走廊时,该渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布,其中,
- 通过光线追踪法计算在视线穿过该渐变焦度眼镜片时所经过的多个评估点处该渐变焦度眼镜片的光学特性,其中,
- 在相应的评估点处设定该渐变焦度眼镜片的至少一个预期光学特性,
- 设定该渐变焦度眼镜片的计划,其中,该计划包括该渐变焦度眼镜片的渐变表面的局部几何形状的表示以及在经过这些评估点的相应视觉光路中的局部折光力的表示,其中,
- 根据该渐变焦度眼镜片的该至少一个预期光学特性的近似来修改该渐变焦度眼镜片的计划,其中,该修改包括修改该渐变焦度眼镜片的渐变表面的局部几何形状的表示以及在经过这些评估点的相应视觉光路中的局部折光力的表示,其中,该至少一个预期光学特性包括该渐变焦度眼镜片的预期残余散光,其中,实施该渐变焦度眼镜片的计划的前提是,
- 该下加光或该递减焦度至少部分地由该空间上变化的折光力提供,
- 该渐变焦度眼镜片的折光力在空间上的变化方式为使得,该渐变焦度眼镜片的中间走廊至少在包括如下项的组的区段中:
(a) 一半下加光处的水平区段、和25%下加光处的水平区段,
(b) 一半下加光处的水平区段、和75%下加光处的水平区段,
(c) 一半下加光处的水平区段、和25%下加光处的水平区段、以及75%下加光处的水平区段,
(d) 该中间走廊的最窄点处的水平区段
或在其整个长度上的宽度大于对比渐变焦度眼镜片的中间走廊的宽度,该对比渐变焦度眼镜片在该对比渐变焦度眼镜片相同地布置在该渐变焦度眼镜配戴者的眼睛前方的情况下具有空间上不可变的折光力、但是具有相同的等效球镜度分布,其中,
该中间走廊的宽度对应于横向于该中间走廊的纵向方向、在视远部分与视近部分之间延伸的某个尺寸,在该尺寸内,残余散光的绝对值低于预定极限值,(a) 该极限值在0.25dpt与1.0 dpt之间的范围内,或者
(b) 该极限值在0.25 dpt与0.75 dpt之间的范围内,或者
(c) 该极限值在0.25 dpt与0.6 dpt之间的范围内,或者
(d) 该极限值在0.25 dpt与0.5 dpt之间的范围内,或者
(e) 该极限值为0.5 dpt。
32.一种用于规划渐变焦度眼镜片的计算机实施方法,该渐变焦度眼镜片具有下加光或递减焦度以及前表面和后表面,其中,该渐变焦度眼镜片包括:
(a) 被实施为渐变表面的具有前表面几何形状的前表面、和具有后表面几何形状的后表面,或者
(b) 被实施为渐变表面的具有后表面几何形状的后表面、和具有前表面几何形状的前表面,以及
- 空间上变化的折光力,其中,该渐变焦度眼镜片针对该渐变焦度眼镜片在该渐变焦度眼镜片旨在用于的渐变焦度眼镜配戴者的眼睛前方的预定布置,具有等效球镜度分布,其中,
- 通过光线追踪法计算在视线穿过该渐变焦度眼镜片时所经过的多个评估点处该渐变焦度眼镜片的光学特性,其中,
- 在相应的评估点处设定该渐变焦度眼镜片的至少一个预期光学特性,
- 设定该渐变焦度眼镜片的计划,其中,该计划包括该渐变焦度眼镜片的渐变表面的局部几何形状的表示以及在经过这些评估点的相应视觉光路中的局部折光力的表示,其中,
- 根据该渐变焦度眼镜片的该至少一个预期光学特性的近似来修改该渐变焦度眼镜片的计划,其中,该修改包括修改该渐变焦度眼镜片的渐变表面的局部几何形状的表示以及在经过这些评估点的相应视觉光路中的局部折光力的表示,其中,该至少一个预期光学特性包括该渐变焦度眼镜片的预期残余散光,其中,实施该渐变焦度眼镜片的计划的前提是,
- 该渐变焦度眼镜片的折光力在空间上的变化方式为使得,该渐变焦度眼镜片的残余散光的最大值小于对比渐变焦度眼镜片的残余散光的最大值,该对比渐变焦度眼镜片在该对比渐变焦度眼镜片相同地布置在该渐变焦度眼镜配戴者的眼睛前方的情况下具有空间上不可变的折光力、但是具有相同的等效球镜度分布,其中,
- 在情况(a)中,该渐变焦度眼镜片的被实施为渐变表面的前表面的前表面几何形状相对于该对比渐变焦度眼镜片的被实施为渐变表面的前表面的前表面几何形状被修改,并且该渐变焦度眼镜片的后表面的后表面几何形状与该对比渐变焦度眼镜片的后表面的后表面几何形状相同,并且
- 在情况(b)中,该渐变焦度眼镜片的被实施为渐变表面的后表面的后表面几何形状相对于该对比渐变焦度眼镜片的被实施为渐变表面的后表面的后表面几何形状被修改,并且该渐变焦度眼镜片的前表面的前表面几何形状与该对比渐变焦度眼镜片的前表面的前表面几何形状相同。
33.一种用于规划渐变焦度眼镜片的计算机实施方法,该渐变焦度眼镜片具有前表面和后表面、空间上变化的折光力,其中,
该前表面被实施为渐变表面,和/或该后表面被实施为渐变表面,其中,
- 通过光线追踪法计算在视线穿过该渐变焦度眼镜片时所经过的多个评估点处该渐变焦度眼镜片的光学特性,其中,
- 在相应的评估点处设定该渐变焦度眼镜片的至少一个预期光学特性,
- 设定该渐变焦度眼镜片的计划,其中,该计划包括该渐变焦度眼镜片的渐变表面的局部几何形状的表示以及在经过这些评估点的相应视觉光路上的局部折光力的表示,
- 根据该渐变焦度眼镜片的该至少一个预期光学特性的近似值来修改该渐变焦度眼镜片的计划,其中,该修改包括修改该渐变焦度眼镜片的渐变表面的局部几何形状的表示以及在经过这些评估点的相应视觉光路上的局部折光力的表示,其中,该至少一个预期光学特性包括该渐变焦度眼镜片的预期残余散光,其中,
或者对于经过该主视线上的实现一半下加光的点的水平区段,在该主视线两侧为10mm的水平距离的区域内适用以下关系:
其中,grad W描述该渐变焦度眼镜片在该主视线上在该中间走廊的最窄点处、或者在该主视线上的实现一半下加光的点处的等效球镜度焦度梯度,B描述了该渐变焦度眼镜片中使得该残余散光为的区域的宽度,其中c是选自包括如下项的组的常量:
(a) 1.0 < c
(b) 1.1 < c
(c) 1.2 < c
(d) 1.3 < c。
35.如权利要求31至33中任一项所述的方法,其特征在于,预先确定至少一个评估点的预期残余散光,所述预期残余散光小于在具有相同的等效球镜度分布但具有空间上不可变的折光力的对比渐变焦度眼镜片上并且在该对比渐变焦度眼镜片相同地布置在渐变焦度眼镜配戴者的眼睛前方的情况下在该至少一个对应评估点处的理论上可实现的残余散光,并且仅在针对所规划的渐变焦度眼镜片实现的在该至少一个评估点处的残余散光小于该对比渐变焦度眼镜片上的该至少一个对应评估点处的理论上可实现的残余散光时,终止修改该渐变焦度眼镜片的渐变表面的局部几何形状的表示以及在经过这些评估点的相应视觉光路上的局部折光力的表示。
36.如权利要求31至33中任一项所述的方法,其特征在于,规划该渐变焦度眼镜片得到了与如权利要求1至30中任一项所述的产品相对应的渐变焦度眼镜片,或者规划该渐变焦度眼镜片的前提是,应产生与如权利要求1至30中任一项所述的产品相对应的渐变焦度眼镜片。
37.一种计算机可读介质,包括计算机程序,该计算机程序具有计算机代码,该计算机代码用于在该计算机程序被加载到计算机中和/或在计算机中执行时实施所有如权利要求31至36中任一项所述的方法步骤。
38.一种用于通过增材方法来制造如权利要求1至30中任一项所述的渐变焦度眼镜片、或使用如权利要求31至36中任一项所述的方法规划的渐变焦度眼镜片的方法。
39.一种用于制造渐变焦度眼镜片的方法,该方法包括如权利要求31至36中任一项所述的方法以及根据该计划对该渐变焦度眼镜片的制造。
40.如权利要求39所述的方法,其特征在于,该渐变焦度眼镜片是使用增材方法来制造的。
41.一种计算机,包括处理器并且包括存储器,该存储器中存储了计算机程序,所述计算机被配置用于执行如权利要求31至36中任一项所述的方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17152384.8 | 2017-01-20 | ||
EP17152384.8A EP3352001B1 (de) | 2017-01-20 | 2017-01-20 | Gleitsicht-brillenglas mit variablem brechungsindex und verfahren zu dessen entwurf und herstellung |
PCT/EP2018/000026 WO2018134037A2 (de) | 2017-01-20 | 2018-01-19 | Gleitsicht-brillenglas mit variablem brechungsindex und verfahren zu dessen entwurf und herstellung |
CN201880019733.6A CN110431474B (zh) | 2017-01-20 | 2018-01-19 | 具有可变折光力的渐变眼镜片及其设计与生产方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880019733.6A Division CN110431474B (zh) | 2017-01-20 | 2018-01-19 | 具有可变折光力的渐变眼镜片及其设计与生产方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112526766A true CN112526766A (zh) | 2021-03-19 |
CN112526766B CN112526766B (zh) | 2022-11-11 |
Family
ID=57860753
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910992591.8A Active CN110673357B (zh) | 2017-01-20 | 2018-01-19 | 用于规划渐变眼镜片的方法及其制造方法 |
CN202011434200.XA Active CN112526766B (zh) | 2017-01-20 | 2018-01-19 | 具有可变折光力的渐变眼镜片及其设计与生产方法 |
CN201880019733.6A Active CN110431474B (zh) | 2017-01-20 | 2018-01-19 | 具有可变折光力的渐变眼镜片及其设计与生产方法 |
CN201880091457.4A Active CN111886535B (zh) | 2017-01-20 | 2018-07-20 | 具有可变折射率的渐变眼镜片以及用于其设计和制造的方法 |
CN202210898908.3A Pending CN115167001A (zh) | 2017-01-20 | 2018-07-20 | 具有可变折射率的渐变眼镜片和用于其设计和制造的方法 |
CN201980061664.XA Active CN113196144B (zh) | 2017-01-20 | 2019-07-19 | 具有可变折射率的渐变焦度眼镜片及其设计与制造方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910992591.8A Active CN110673357B (zh) | 2017-01-20 | 2018-01-19 | 用于规划渐变眼镜片的方法及其制造方法 |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880019733.6A Active CN110431474B (zh) | 2017-01-20 | 2018-01-19 | 具有可变折光力的渐变眼镜片及其设计与生产方法 |
CN201880091457.4A Active CN111886535B (zh) | 2017-01-20 | 2018-07-20 | 具有可变折射率的渐变眼镜片以及用于其设计和制造的方法 |
CN202210898908.3A Pending CN115167001A (zh) | 2017-01-20 | 2018-07-20 | 具有可变折射率的渐变眼镜片和用于其设计和制造的方法 |
CN201980061664.XA Active CN113196144B (zh) | 2017-01-20 | 2019-07-19 | 具有可变折射率的渐变焦度眼镜片及其设计与制造方法 |
Country Status (9)
Country | Link |
---|---|
US (5) | US10838231B2 (zh) |
EP (5) | EP3352001B1 (zh) |
JP (2) | JP7252311B2 (zh) |
KR (4) | KR102167061B1 (zh) |
CN (6) | CN110673357B (zh) |
CA (4) | CA3074615C (zh) |
ES (3) | ES2946964T3 (zh) |
PT (2) | PT3352001T (zh) |
WO (2) | WO2018134037A2 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113655634A (zh) * | 2021-08-27 | 2021-11-16 | 苏州明世光学科技有限公司 | 一种减少旁中心离焦眼镜片及其设计方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108349059B (zh) * | 2015-10-21 | 2020-10-20 | 依视路国际公司 | 对具有功能层的复合镜片毛坯进行表面加工的系统和方法 |
PT3352001T (pt) * | 2017-01-20 | 2023-06-16 | Zeiss Carl Vision Int Gmbh | Lente de óculos progressiva com índice de refração variável e método para a sua conceção e produção |
EP3561581A1 (de) | 2018-04-24 | 2019-10-30 | Carl Zeiss Vision International GmbH | Brillenglas mit photochromer beschichtung und verfahren zur herstellung desselben |
EP3598213A1 (de) * | 2018-07-20 | 2020-01-22 | Carl Zeiss Vision International GmbH | Gleitsicht-brillenglas mit räumlich variierendem brechungsindex |
US11156854B2 (en) * | 2019-08-02 | 2021-10-26 | Horizons Optical, S.L.U. | Progressive ophthalmic lens |
EP3812142A1 (de) | 2019-10-23 | 2021-04-28 | Carl Zeiss Vision International GmbH | Verfahren zur herstellung eines brillenglases sowie ein erzeugnis umfassend ein brillenglas |
TWI748538B (zh) * | 2020-06-30 | 2021-12-01 | 華美光學科技股份有限公司 | 漸進多焦點鏡片 |
US11126012B1 (en) * | 2020-10-01 | 2021-09-21 | Michael Walach | Broadview natural addition lens |
CN113419358B (zh) * | 2021-07-12 | 2022-11-08 | 苏州明世光学科技有限公司 | 一种优化设计的非球面近视眼镜片及其制备模具 |
EP4124902A1 (en) * | 2021-07-30 | 2023-02-01 | Carl Zeiss Vision International GmbH | Spectacle lens design for a progressive power lens, determining such a spectacle lens design and manufacturing a spectacle lens |
US11860453B2 (en) | 2021-07-30 | 2024-01-02 | Coopervision International Limited | Methods of manufacturing an ophthalmic lens |
EP4390515A1 (en) | 2022-12-22 | 2024-06-26 | Carl Zeiss Vision International GmbH | Spectacle lens and method for generating design data for a spectacle lens |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4762408A (en) * | 1985-07-09 | 1988-08-09 | Seiko Epson Corporation | Progressive multifocal lens and spectacles using same |
EP0318035A1 (de) * | 1987-11-25 | 1989-05-31 | Optische Werke G. Rodenstock | Progressives Brillenglas |
EP0347917A1 (de) * | 1988-06-22 | 1989-12-27 | Optische Werke G. Rodenstock | Brillenglas mit einem sich änderndem Brechungsindex |
WO1999013361A1 (en) * | 1997-09-09 | 1999-03-18 | Graziano Bianco | Progressive, multifocal ophthalmic lens having constant geometry and variable refraction index |
WO2002088828A1 (fr) * | 2001-04-26 | 2002-11-07 | Hoya Corporation | Procede de conception de verres de lunettes et verres de lunettes |
EP2177943A1 (en) * | 2008-10-16 | 2010-04-21 | Essilor International (Compagnie Générale D'Optique) | Optical system determination according to advanced criteria |
US20100238400A1 (en) * | 2006-10-25 | 2010-09-23 | Volk Donald A | Multi-layered gradient index progressive lens |
EP2878989A1 (en) * | 2013-11-29 | 2015-06-03 | Carl Zeiss Vision International GmbH | Method for manufacturing a spectacle lens and spectacle lens |
CN105765446A (zh) * | 2013-11-25 | 2016-07-13 | 依视路国际集团(光学总公司) | 一种用于向佩戴者提供定制的渐进式眼镜眼科镜片的方法 |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2726374B1 (fr) * | 1994-10-28 | 1996-12-27 | Essilor Int | Lentille ophtalmique multifocale progressive |
DE19701312A1 (de) | 1997-01-16 | 1998-07-23 | Zeiss Carl Fa | Brillenglas mit sphärischer Vorderseite und multifokaler Rückseite, sowie Verfahren zu seiner Herstellung |
MXPA02007162A (es) | 2000-01-26 | 2003-09-22 | Sola Int Holdings | Revestimiento antiestatica, antirreflejante. |
CN100510845C (zh) | 2002-05-31 | 2009-07-08 | 克劳斯鲍斯光学有限公司 | 渐进递增光焦度的镜片 |
US7420743B2 (en) | 2002-07-11 | 2008-09-02 | Ophthonix, Inc. | Optical elements and methods for making thereof |
US6836371B2 (en) * | 2002-07-11 | 2004-12-28 | Ophthonix, Inc. | Optical elements and methods for making thereof |
KR20040069095A (ko) | 2003-01-28 | 2004-08-04 | 학교법인 울산공업학원 | 누진 다초점 렌즈 |
JP3582527B1 (ja) * | 2003-04-10 | 2004-10-27 | セイコーエプソン株式会社 | 累進屈折力レンズ及び製造方法 |
US7188950B2 (en) * | 2003-11-14 | 2007-03-13 | Ophthonix, Inc. | Eyeglass dispensing method |
JP4774370B2 (ja) | 2003-11-14 | 2011-09-14 | オフソニックス・インコーポレーテッド | 眼鏡レンズ製造のためのシステム |
FR2884622B1 (fr) * | 2005-04-19 | 2007-08-10 | Essilor Int | Verre ophtalmique comprenant une couche d'indice de refraction variable |
FR2884665A1 (fr) | 2005-04-19 | 2006-10-20 | France Telecom | Procede d'alerte lors d'une modification de contenu et systeme pour la mise en oeuvre du procede |
FR2894038B1 (fr) * | 2005-11-29 | 2008-03-07 | Essilor Int | Lentille ophtalmique. |
EP2089755A2 (en) | 2006-10-25 | 2009-08-19 | Donald A. Volk | Multi-layered gradient index progressive lens |
DE112008000078A5 (de) | 2007-01-25 | 2009-12-24 | Rodenstock Gmbh | Verfahren zur Optimierung eines Brillenglases |
FR2924825B1 (fr) * | 2007-12-11 | 2010-08-20 | Essilor Int | Lentille ophtalmique progressive. |
US8992013B2 (en) * | 2008-04-30 | 2015-03-31 | Essilor International (Compagnie Generale D'optique) | Method of designing progressive addition lenses |
DE102008041869A1 (de) | 2008-09-08 | 2010-03-25 | Carl Zeiss Vision Gmbh | Brillenlinse mit farbneutraler Antireflexbeschichtung und Verfahren zu deren Herstellung |
JP2010218442A (ja) | 2009-03-18 | 2010-09-30 | Canon Inc | 情報処理装置及びその制御方法、コンピュータプログラム |
FR2943798B1 (fr) | 2009-03-27 | 2011-05-27 | Essilor Int | Article d'optique revetu d'un revetement antireflet ou reflechissant comprenant une couche electriquement conductrice a base d'oxyde d'etain et procede de fabrication |
CA2776967C (en) | 2009-10-07 | 2018-09-18 | Essilor International(Compagnie Generale D'optique) | An optical function determining method |
US8042941B2 (en) * | 2010-01-29 | 2011-10-25 | Indizen Optical Technologies, S.I. | Lens with continuous power gradation |
DE102010018710B4 (de) | 2010-04-29 | 2018-06-28 | Carl Zeiss Vision International Gmbh | Computerimplementiertes Verfahren zum Berechnen des optischen Designs einer Brillenlinse sowie Computerprogramm, Datenträger mit Computerprogramm und Computer zur Durchführung des Verfahrens |
US9057886B2 (en) * | 2011-04-14 | 2015-06-16 | Fssilor International (Compagnie Generale D'optique) | Methods of designing progressive addition lenses |
CN103123420B (zh) * | 2013-01-25 | 2014-05-07 | 苏州大学 | 一种双面自由曲面镜片的评价、设计加工方法 |
FR3006622B1 (fr) | 2013-06-07 | 2015-07-17 | Essilor Int | Procede de fabrication d'une lentille ophtalmique |
US20160167299A1 (en) * | 2013-07-31 | 2016-06-16 | Essilor International(Compagnie Generale D'optique) | Additive manufacturing for transparent ophthalmic lens |
CN105517491A (zh) | 2014-10-22 | 2016-04-20 | 深圳市光聚通讯技术开发有限公司 | 动态血糖监测系统及监测终端 |
DE102015205721B4 (de) | 2015-03-30 | 2017-01-19 | Rodenstock Gmbh | Verfahren zum Erstellen eines Designs einer Rezeptfläche einer Multifokallinse und Multifokallinse mit einer solchen Rezeptfläche |
US9726907B2 (en) * | 2015-06-23 | 2017-08-08 | Indizen Optical Technologies, S.L. | Rewritable lens and method of manufacturing |
EP3273292A1 (de) | 2016-07-19 | 2018-01-24 | Carl Zeiss Vision International GmbH | Brillenglas und verfahren zu dessen herstellung |
WO2018022042A1 (en) | 2016-07-27 | 2018-02-01 | Carl Zeiss Vision International Gmbh | Method for determining an improved design for a progressive lens taking into account higher order aberrations of the eye |
EP3311993B1 (de) * | 2016-10-20 | 2019-03-27 | Carl Zeiss Vision International GmbH | Brillenglas und verfahren zu dessen herstellung |
EP3312661B2 (de) | 2016-10-21 | 2023-01-25 | Carl Zeiss Vision International GmbH | Brillenglas und 3d-druckverfahren zu dessen herstellung |
PT3352001T (pt) | 2017-01-20 | 2023-06-16 | Zeiss Carl Vision Int Gmbh | Lente de óculos progressiva com índice de refração variável e método para a sua conceção e produção |
-
2017
- 2017-01-20 PT PT171523848T patent/PT3352001T/pt unknown
- 2017-01-20 EP EP17152384.8A patent/EP3352001B1/de active Active
- 2017-01-20 ES ES17152384T patent/ES2946964T3/es active Active
-
2018
- 2018-01-19 CN CN201910992591.8A patent/CN110673357B/zh active Active
- 2018-01-19 CA CA3074615A patent/CA3074615C/en active Active
- 2018-01-19 ES ES19189829T patent/ES2914628T3/es active Active
- 2018-01-19 CN CN202011434200.XA patent/CN112526766B/zh active Active
- 2018-01-19 KR KR1020197024333A patent/KR102167061B1/ko active IP Right Grant
- 2018-01-19 PT PT191898295T patent/PT3591458T/pt unknown
- 2018-01-19 CN CN201880019733.6A patent/CN110431474B/zh active Active
- 2018-01-19 EP EP19189829.5A patent/EP3591458B1/de active Active
- 2018-01-19 WO PCT/EP2018/000026 patent/WO2018134037A2/de unknown
- 2018-01-19 CA CA3054482A patent/CA3054482C/en active Active
- 2018-01-19 EP EP18708326.6A patent/EP3555695B1/de active Active
- 2018-01-19 KR KR1020197028883A patent/KR102167033B1/ko active IP Right Grant
- 2018-01-19 EP EP19187068.2A patent/EP3598214A1/de active Pending
- 2018-07-20 CA CA3088829A patent/CA3088829C/en active Active
- 2018-07-20 CN CN201880091457.4A patent/CN111886535B/zh active Active
- 2018-07-20 ES ES18745881T patent/ES2978455T3/es active Active
- 2018-07-20 CN CN202210898908.3A patent/CN115167001A/zh active Pending
-
2019
- 2019-07-18 US US16/515,496 patent/US10838231B2/en active Active
- 2019-07-19 JP JP2021502931A patent/JP7252311B2/ja active Active
- 2019-07-19 CN CN201980061664.XA patent/CN113196144B/zh active Active
- 2019-07-19 WO PCT/EP2019/069557 patent/WO2020016431A2/de active Search and Examination
- 2019-07-19 KR KR1020237008091A patent/KR102596802B1/ko active IP Right Grant
- 2019-07-19 KR KR1020217005186A patent/KR102509318B1/ko active IP Right Grant
- 2019-07-19 CA CA3107224A patent/CA3107224C/en active Active
- 2019-07-19 EP EP19740030.2A patent/EP3824342A2/de active Pending
- 2019-11-22 US US16/692,096 patent/US10989932B2/en active Active
-
2020
- 2020-07-19 US US16/932,814 patent/US11372264B2/en active Active
-
2021
- 2021-01-20 US US17/153,595 patent/US11740488B2/en active Active
- 2021-11-10 US US17/523,582 patent/US11892712B2/en active Active
-
2022
- 2022-08-30 JP JP2022136512A patent/JP7474813B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4762408A (en) * | 1985-07-09 | 1988-08-09 | Seiko Epson Corporation | Progressive multifocal lens and spectacles using same |
EP0318035A1 (de) * | 1987-11-25 | 1989-05-31 | Optische Werke G. Rodenstock | Progressives Brillenglas |
EP0347917A1 (de) * | 1988-06-22 | 1989-12-27 | Optische Werke G. Rodenstock | Brillenglas mit einem sich änderndem Brechungsindex |
WO1999013361A1 (en) * | 1997-09-09 | 1999-03-18 | Graziano Bianco | Progressive, multifocal ophthalmic lens having constant geometry and variable refraction index |
WO2002088828A1 (fr) * | 2001-04-26 | 2002-11-07 | Hoya Corporation | Procede de conception de verres de lunettes et verres de lunettes |
US20100238400A1 (en) * | 2006-10-25 | 2010-09-23 | Volk Donald A | Multi-layered gradient index progressive lens |
EP2177943A1 (en) * | 2008-10-16 | 2010-04-21 | Essilor International (Compagnie Générale D'Optique) | Optical system determination according to advanced criteria |
CN105765446A (zh) * | 2013-11-25 | 2016-07-13 | 依视路国际集团(光学总公司) | 一种用于向佩戴者提供定制的渐进式眼镜眼科镜片的方法 |
EP2878989A1 (en) * | 2013-11-29 | 2015-06-03 | Carl Zeiss Vision International GmbH | Method for manufacturing a spectacle lens and spectacle lens |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113655634A (zh) * | 2021-08-27 | 2021-11-16 | 苏州明世光学科技有限公司 | 一种减少旁中心离焦眼镜片及其设计方法 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110431474B (zh) | 具有可变折光力的渐变眼镜片及其设计与生产方法 | |
CN112805616B (zh) | 具有空间变化的折射率的渐变焦度眼镜片及其设计方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |