CN112516471A - 基于扩展收缩理论的放疗计划仿真设计方法及系统 - Google Patents

基于扩展收缩理论的放疗计划仿真设计方法及系统 Download PDF

Info

Publication number
CN112516471A
CN112516471A CN202011383178.0A CN202011383178A CN112516471A CN 112516471 A CN112516471 A CN 112516471A CN 202011383178 A CN202011383178 A CN 202011383178A CN 112516471 A CN112516471 A CN 112516471A
Authority
CN
China
Prior art keywords
needle
sequence
expansion
radiation
dose distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011383178.0A
Other languages
English (en)
Other versions
CN112516471B (zh
Inventor
刘博�
肖卓
周付根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202011383178.0A priority Critical patent/CN112516471B/zh
Publication of CN112516471A publication Critical patent/CN112516471A/zh
Application granted granted Critical
Publication of CN112516471B publication Critical patent/CN112516471B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1031Treatment planning systems using a specific method of dose optimization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1039Treatment planning systems using functional images, e.g. PET or MRI

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

本发明公开了一种基于扩展收缩理论的放疗计划仿真设计方法及系统,包括:在医学影像中标记肿瘤目标,建立包含肿瘤目标TV区域和OAR区域的三维影像,对三维影像均匀采样,获取目标点云数据;设置包含放射治疗入针点的模板,随机生成针道序列P,在序列P中的针道设置若干放射粒子,计算若干放射粒子的剂量分布;对放射粒子的驻留点进行扩展收缩操作,调整放射粒子驻留时间,以优化放射粒子的剂量分布;打印三维影像的三维模型、针道序列P和放射粒子的驻留点。相比于现有技术,本发明提出的方案缓解了传统的放射治疗计划对物理师经验的高度依赖,利用基于扩展收缩理论的方法对针道中放射粒子的驻留位置进行迭代优化,提升了治疗计划制定的效能。

Description

基于扩展收缩理论的放疗计划仿真设计方法及系统
技术领域
本发明涉及虚拟手术技术领域,特别是涉及一种基于扩展收缩理论的放疗计划仿真设计方法及系统。
背景技术
放射治疗在肿瘤治疗中的作用和地位日益突出,已成为治疗恶性肿瘤的主要手段之一。据统计,大约70%的癌症患者在治疗癌症的过程中需要用放射治疗,约有40%的癌症可以用放疗根治。肿瘤放射治疗是利用高能量放射线照射癌变的肿瘤,杀死或破坏癌细胞,抑制它们的生长、繁殖和扩散。
放射治疗根据放射源距患者的距离远近可以分为近距离放射治疗和外照射。近距离放疗手段是通过施源器或密封放射源将放射性粒子通过介入穿刺的方法植入肿瘤内,利用从放射性粒子持续发出的射线对病变区持续杀伤照射。放射性粒子植入使用尺寸为毫米级别的小型放射源(如碘125等)。为了合理放置粒子源并便于计算,将每根穿刺针离散化为多个驻留点,放射源可以在驻留位置作用一定的驻留时间。
传统的放疗手术计划仿真是一个不断试错的过程,物理师凭借经验根据放疗剂量分布构建放疗计划,对放疗计划进行评估,如果不满足手术要求,医师将调整放疗剂量分布。不断重复此过程,直至放疗计划满足手术要求的剂量分布。这种方法对物理师经验依赖程度较高,且获得的放疗计划难以达到最优的剂量分布。
鉴于此,本发明提出一种基于扩展收缩理论的放疗计划仿真设计方法及系统,以缓解现有技术的不足。
发明内容
第一方面,本发明提供了一种基于扩展收缩理论的放疗计划仿真设计方法,包括:在医学影像中标记肿瘤目标,建立包含肿瘤目标TV区域和OAR区域的三维影像,对三维影像均匀采样,获取目标点云数据;设置包含放射治疗入针点的模板,任一入针点与目标点云数据中任一点组合为针道,随机生成针道序列P,序列P中的任意两个针道所在线段均无交点;在序列P中的针道设置若干放射粒子,计算若干放射粒子的剂量分布;对放射粒子的驻留点进行扩展收缩操作,调整放射粒子驻留时间,以优化放射粒子的剂量分布;利用3D打印技术,打印三维影像的三维模型、针道序列P和放射粒子的驻留点。
进一步地,对放射粒子驻留点进行扩展收缩操作,调整放射粒子驻留时间的步骤,包括:在针道序列P中未设置放射粒子的任一驻留点进行扩展操作,扩展操作包括在驻留点设置放射粒子,调整针道序列P中已放置的放射粒子的驻留时间,以优化放射粒子的剂量分布;在针道序列P中已设置放射粒子的任一驻留点进行收缩操作,收缩操作包括在驻留点撤销放射粒子,调整针道序列P中已放置的放射粒子的驻留时间,若收缩操作不能优化放射粒子的剂量分布,则不进行收缩操作;重复进行扩展和收缩操作若干次,或通过扩展操作不能优化放射粒子的剂量分布时,停止扩展和收缩操作。
进一步地,在对放射粒子驻留点进行扩展收缩操作,调整放射粒子驻留时间的之后,还包括:记录剂量分布的目标值为第一优化值;随机替换序列P中的任一针道,替换后序列P中的作意两个针道所在线段均无交点;对放射粒子驻留点进行扩展收缩操作,调整放射粒子驻留时间,以获取针道替换后剂量分布的目标值,若针道替换后剂量分布的目标值优于第一优化值,将针道替换后剂量分布的目标值赋予第一优化值;继续随机替换序列P中的任一针道,直至第一优化值不再变化或针道替换次数超过第一阈值。
第二方面,本发明提供了一种基于扩展收缩理论的放疗计划仿真设计系统,包括:计算设备和3D打印设备,计算设备包括影像处理模块,计划生成模块和计划优化模块;影像处理模块,在医学影像中标记肿瘤目标,建立包含肿瘤目标TV区域和OAR区域的三维影像,对三维影像均匀采样,获取目标点云数据;计划生成模块,设置包含放射治疗入针点的模板,任一入针点与目标点云数据中任一点组合为针道,随机生成针道序列P,序列P中的任意两个针道所在线段均无交点;在序列P中的针道设置若干放射粒子,计算若干放射粒子的剂量分布;计划优化模块,对放射粒子的驻留点进行扩展收缩操作,调整放射粒子驻留时间,以优化放射粒子的剂量分布;3D打印设备,利用3D打印技术,打印三维影像的三维模型、针道序列P和放射粒子的驻留点。
进一步地,计划优化模块对放射粒子驻留点进行扩展收缩操作,调整放射粒子驻留时间的步骤,包括:在针道序列P中未设置放射粒子的任一驻留点进行扩展操作,扩展操作包括在驻留点设置放射粒子,调整针道序列P中已放置的放射粒子的驻留时间,以优化放射粒子的剂量分布;在针道序列P中已设置放射粒子的任一驻留点进行收缩操作,收缩操作包括在驻留点撤销放射粒子,调整针道序列P中已放置的放射粒子的驻留时间,若收缩操作不能优化放射粒子的剂量分布,则不进行收缩操作;重复进行扩展和收缩操作若干次,或通过扩展操作不能优化放射粒子的剂量分布时,停止扩展和收缩操作。
进一步地,计划优化模块被进一步配置为:记录剂量分布的目标值为第一优化值;随机替换序列P中的任一针道,替换后序列P中的作意两个针道所在线段均无交点;对放射粒子驻留点进行扩展收缩操作,调整放射粒子驻留时间,以获取针道替换后剂量分布的目标值,若针道替换后剂量分布的目标值优于第一优化值,将针道替换后剂量分布的目标值赋予第一优化值;继续随机替换序列P中的任一针道,直至第一优化值不再变化或针道替换次数超过第一阈值。
本发明的有益效果如下:
本发明提供的技术方案可以包括以下有益效果:提出了一种基于扩展收缩理论的放疗计划仿真设计方法及系统,自动生成放射治疗手术实施计划,对放疗计划的剂量分布进行仿真优化,缓解了传统的放射治疗计划对物理师的经验高度依赖,提高了手术计划的制定效率。利用基于扩展收缩理论的优化方法对针道中放射粒子的驻留位置进行迭代优化,提升了治疗计划制定的效能。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一种实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明第一实施例一种基于扩展收缩理论的放疗计划仿真设计方法流程示意图;
图2为本发明第二实施例一种基于扩展收缩理论的放疗计划仿真设计系统结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述,所描述的实施例是本发明一部分实施例,而不是全部的实施例。
第一实施例:
图1为本发明第一实施例一种基于扩展收缩理论的放疗计划仿真设计方法流程示意图,如图1所示,该方法包括如下四个步骤。
步骤S11:在医学影像中标记肿瘤目标。具体地,在医学影像中标记肿瘤目标,建立包含肿瘤目标TV区域和OAR区域的三维影像,对三维影像均匀采样,获取目标点云数据。
需要进行说明的是,TV(Target Volume)治疗靶区为CTV(Clinical TargetVolume)临床靶区,包括已确定存在的肿瘤和潜在的受侵组织,GTV(Gross Tumor Volume)肿瘤区和周围的亚临床病灶构成CTV,放射治疗的目的在于杀灭TV区域的肿瘤细胞。OAR(Organ At Risk)危及器官区域是指放疗区域周边的正常器官,通常在放射治疗中会受到影响。
步骤S12:生成放射治疗手术计划。具体地,设置包含放射治疗入针点的模板,任一入针点与目标点云数据中任一点组合为针道,随机生成针道序列P,序列P中的任意两个针道所在线段均无交点;在序列P中的针道设置若干放射粒子,计算若干放射粒子的剂量分布。
步骤S13:优化放射治疗手术计划。具体地,对放射粒子的驻留点进行扩展收缩操作,调整放射粒子驻留时间,以优化放射粒子的剂量分布。
在一个具体的实施例中,对放射粒子驻留点进行扩展收缩操作,调整放射粒子驻留时间的步骤,包括:在针道序列P中未设置放射粒子的任一驻留点进行扩展操作,扩展操作包括在驻留点设置放射粒子,调整针道序列P中已放置的放射粒子的驻留时间,以优化放射粒子的剂量分布;在针道序列P中已设置放射粒子的任一驻留点进行收缩操作,收缩操作包括在驻留点撤销放射粒子,调整针道序列P中已放置的放射粒子的驻留时间,若收缩操作不能优化放射粒子的剂量分布,则不进行收缩操作;重复进行扩展和收缩操作若干次,或通过扩展操作不能优化放射粒子的剂量分布时,停止扩展和收缩操作。
在一个可选的实施例中,在对放射粒子驻留点进行扩展收缩操作,调整放射粒子驻留时间的之后,还包括:记录剂量分布的目标值为第一优化值;随机替换序列P中的任一针道,替换后序列P中的作意两个针道所在线段均无交点;对放射粒子驻留点进行扩展收缩操作,调整放射粒子驻留时间,以获取针道替换后剂量分布的目标值,若针道替换后剂量分布的目标值优于第一优化值,将针道替换后剂量分布的目标值赋予第一优化值;继续随机替换序列P中的任一针道,直至第一优化值不再变化或针道替换次数超过第一阈值。
步骤S14:打印三维模型和针道数据。具体地,利用3D打印技术,打印三维影像的三维模型、针道序列P和放射粒子的驻留点。
需要进行说明的是,打印实体的三维模型和针道数据,可以更直观地复现手术计划。
第二实施例:
图2是本发明实施例一种基于扩展收缩理论的放疗计划仿真设计系统结构示意图,如图2所示,系统包括:计算设备100和3D打印设备200,计算设备100包括影像处理模块101,计划生成模块102和计划优化模块103。
影像处理模块101,在医学影像中标记肿瘤目标,建立包含肿瘤目标TV区域和OAR区域的三维影像,对三维影像均匀采样,获取目标点云数据。
计划生成模块102,设置包含放射治疗入针点的模板,任一入针点与目标点云数据中任一点组合为针道,随机生成针道序列P,序列P中的任意两个针道所在线段均无交点;在序列P中的针道设置若干放射粒子,计算若干放射粒子的剂量分布。
计划优化模块103,对放射粒子的驻留点进行扩展收缩操作,调整放射粒子驻留时间,以优化放射粒子的剂量分布。
在一个具体的实施例中,对放射粒子驻留点进行扩展收缩操作,调整放射粒子驻留时间的步骤,包括:在针道序列P中未设置放射粒子的任一驻留点进行扩展操作,扩展操作包括在驻留点设置放射粒子,调整针道序列P中已放置的放射粒子的驻留时间,以优化放射粒子的剂量分布;在针道序列P中已设置放射粒子的任一驻留点进行收缩操作,收缩操作包括在驻留点撤销放射粒子,调整针道序列P中已放置的放射粒子的驻留时间,若收缩操作不能优化放射粒子的剂量分布,则不进行收缩操作;重复进行扩展和收缩操作若干次,或通过扩展操作不能优化放射粒子的剂量分布时,停止扩展和收缩操作。
在一个可选的实施例中,计划优化模块103被进一步配置为:记录剂量分布的目标值为第一优化值;随机替换序列P中的任一针道,替换后序列P中的作意两个针道所在线段均无交点;对放射粒子驻留点进行扩展收缩操作,调整放射粒子驻留时间,以获取针道替换后剂量分布的目标值,若针道替换后剂量分布的目标值优于第一优化值,将针道替换后剂量分布的目标值赋予第一优化值;继续随机替换序列P中的任一针道,直至第一优化值不再变化或针道替换次数超过第一阈值。
3D打印设备200,利用3D打印技术,打印三维影像的三维模型、针道序列P和放射粒子的驻留点。
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (6)

1.一种基于扩展收缩理论的放疗计划仿真设计方法,其特征在于,包括:
在医学影像中标记肿瘤目标,建立包含所述肿瘤目标TV区域和OAR区域的三维影像,对所述三维影像均匀采样,获取目标点云数据;
设置包含放射治疗入针点的模板,任一所述入针点与目标点云数据中任一点组合为针道,随机生成针道序列P,所述序列P中的任意两个针道所在线段均无交点;
在所述序列P中的针道设置若干放射粒子,计算所述若干放射粒子的剂量分布;
对所述放射粒子的驻留点进行扩展收缩操作,调整所述放射粒子驻留时间,以优化所述放射粒子的剂量分布;
利用3D打印技术,打印所述三维影像的三维模型、针道序列P和放射粒子的驻留点。
2.根据权利要求1所述的方法,其特征在于,所述对放射粒子驻留点进行扩展收缩操作,调整所述放射粒子驻留时间的步骤,包括:
在所述针道序列P中未设置放射粒子的任一驻留点进行扩展操作,所述扩展操作包括在驻留点设置放射粒子,调整所述针道序列P中已放置的放射粒子的驻留时间,以优化所述放射粒子的剂量分布;
在所述针道序列P中已设置放射粒子的任一驻留点进行收缩操作,所述收缩操作包括在驻留点撤销放射粒子,调整所述针道序列P中已放置的放射粒子的驻留时间,若所述收缩操作不能优化放射粒子的剂量分布,则不进行所述收缩操作;
重复进行所述扩展和收缩操作若干次,或通过所述扩展操作不能优化放射粒子的剂量分布时,停止所述扩展和收缩操作。
3.根据权利要求1所述的方法,其特征在于,在所述对放射粒子驻留点进行扩展收缩操作,调整所述放射粒子驻留时间的之后,还包括:
记录所述剂量分布的目标值为第一优化值;
随机替换所述序列P中的任一针道,替换后所述序列P中的作意两个针道所在线段均无交点;
对所述放射粒子驻留点进行扩展收缩操作,调整所述放射粒子驻留时间,以获取所述针道替换后剂量分布的目标值,若所述针道替换后剂量分布的目标值优于第一优化值,将所述针道替换后剂量分布的目标值赋予第一优化值;
继续随机替换所述序列P中的任一针道,直至所述第一优化值不再变化或针道替换次数超过第一阈值。
4.一种基于扩展收缩理论的放疗计划仿真设计系统,其特征在于,包括:计算设备和3D打印设备,所述计算设备包括影像处理模块,计划生成模块和计划优化模块;
影像处理模块,在医学影像中标记肿瘤目标,建立包含所述肿瘤目标TV区域和OAR区域的三维影像,对所述三维影像均匀采样,获取目标点云数据;
计划生成模块,设置包含放射治疗入针点的模板,任一所述入针点与目标点云数据中任一点组合为针道,随机生成针道序列P,所述序列P中的任意两个针道所在线段均无交点;在所述序列P中的针道设置若干放射粒子,计算所述若干放射粒子的剂量分布;
计划优化模块,对所述放射粒子的驻留点进行扩展收缩操作,调整所述放射粒子驻留时间,以优化所述放射粒子的剂量分布;
3D打印设备,利用3D打印技术,打印所述三维影像的三维模型、针道序列P和放射粒子的驻留点。
5.根据权利要求4所述的系统,其特征在于,所述计划优化模块对所述放射粒子的驻留点进行扩展收缩操作,调整所述放射粒子驻留时间的步骤,包括:
在所述针道序列P中未设置放射粒子的任一驻留点进行扩展操作,所述扩展操作包括在驻留点设置放射粒子,调整所述针道序列P中已放置的放射粒子的驻留时间,以优化所述放射粒子的剂量分布;
在所述针道序列P中已设置放射粒子的任一驻留点进行收缩操作,所述收缩操作包括在驻留点撤销放射粒子,调整所述针道序列P中已放置的放射粒子的驻留时间,若所述收缩操作不能优化放射粒子的剂量分布,则不进行所述收缩操作;
重复进行所述扩展和收缩操作若干次,或通过所述扩展操作不能优化放射粒子的剂量分布时,停止所述扩展和收缩操作。
6.根据权利要求4所述的系统,其特征在于,所述计划优化模块被进一步配置为:
记录所述剂量分布的目标值为第一优化值;
随机替换所述序列P中的任一针道,替换后所述序列P中的作意两个针道所在线段均无交点;
对所述放射粒子驻留点进行扩展收缩操作,调整所述放射粒子驻留时间,以获取所述针道替换后剂量分布的目标值,若所述针道替换后剂量分布的目标值优于第一优化值,将所述针道替换后剂量分布的目标值赋予第一优化值;
继续随机替换所述序列P中的任一针道,直至所述第一优化值不再变化或针道替换次数超过第一阈值。
CN202011383178.0A 2020-12-01 2020-12-01 基于扩展收缩理论的放疗计划仿真设计方法及系统 Active CN112516471B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011383178.0A CN112516471B (zh) 2020-12-01 2020-12-01 基于扩展收缩理论的放疗计划仿真设计方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011383178.0A CN112516471B (zh) 2020-12-01 2020-12-01 基于扩展收缩理论的放疗计划仿真设计方法及系统

Publications (2)

Publication Number Publication Date
CN112516471A true CN112516471A (zh) 2021-03-19
CN112516471B CN112516471B (zh) 2021-08-27

Family

ID=74995735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011383178.0A Active CN112516471B (zh) 2020-12-01 2020-12-01 基于扩展收缩理论的放疗计划仿真设计方法及系统

Country Status (1)

Country Link
CN (1) CN112516471B (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030233123A1 (en) * 2002-06-17 2003-12-18 Johann Kindlein Real time radiation treament planning system
CN102076378A (zh) * 2008-06-25 2011-05-25 皇家飞利浦电子股份有限公司 用于近距离放射治疗的方法和系统
CN103226837A (zh) * 2013-05-21 2013-07-31 南方医科大学 一种观察子宫肿瘤放疗总剂量的分布图像的生成方法
GB201402272D0 (en) * 2014-02-10 2014-03-26 Elekta Ab Image guided radiotherapy
CN105833434A (zh) * 2016-06-08 2016-08-10 浙江省肿瘤医院 一种近距离治疗施源器模板的制作方法
CN105963002A (zh) * 2016-08-01 2016-09-28 北京启麟科技有限公司 3d打印微创导向模板及其制造方法
CN107126619A (zh) * 2017-06-23 2017-09-05 于江平 一种基于3d打印个性化的颅脑粒子植入导向系统
WO2018108952A1 (en) * 2016-12-16 2018-06-21 Koninklijke Philips N.V. Positioning assistance device for focal radiation therapy
CN207822260U (zh) * 2017-09-14 2018-09-07 谭骅 一种精准植入放射粒子导航装置
CN109499014A (zh) * 2018-12-29 2019-03-22 王世广 一种妇科肿瘤后装手术辅助装置的制作方法
CN109801696A (zh) * 2017-11-17 2019-05-24 北京连心医疗科技有限公司 一种人工智能的云放疗计划方法、设备、存储介质和系统
CN109908494A (zh) * 2019-03-25 2019-06-21 天津大学 近距离粒子微创放疗三维手术导板设计系统
CN110170111A (zh) * 2018-02-21 2019-08-27 医科达有限公司 逆向计划方法
CN110709136A (zh) * 2017-06-08 2020-01-17 皇家飞利浦有限公司 用于放射治疗处置的处置计划生成
CN110882490A (zh) * 2019-11-20 2020-03-17 谢泽中 一种个体化补偿膜制备方法及其应用方法
CN111643166A (zh) * 2020-06-29 2020-09-11 福建省肿瘤医院(福建省肿瘤研究所、福建省癌症防治中心) 3d模板复位控制方法、系统、存储介质、程序、终端
CN111728679A (zh) * 2020-08-21 2020-10-02 真实维度科技控股(珠海)有限公司 一种3d打印带引流机构的非共面穿刺模板制造方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030233123A1 (en) * 2002-06-17 2003-12-18 Johann Kindlein Real time radiation treament planning system
CN102076378A (zh) * 2008-06-25 2011-05-25 皇家飞利浦电子股份有限公司 用于近距离放射治疗的方法和系统
CN103226837A (zh) * 2013-05-21 2013-07-31 南方医科大学 一种观察子宫肿瘤放疗总剂量的分布图像的生成方法
GB201402272D0 (en) * 2014-02-10 2014-03-26 Elekta Ab Image guided radiotherapy
CN105833434A (zh) * 2016-06-08 2016-08-10 浙江省肿瘤医院 一种近距离治疗施源器模板的制作方法
CN105963002A (zh) * 2016-08-01 2016-09-28 北京启麟科技有限公司 3d打印微创导向模板及其制造方法
WO2018108952A1 (en) * 2016-12-16 2018-06-21 Koninklijke Philips N.V. Positioning assistance device for focal radiation therapy
CN110709136A (zh) * 2017-06-08 2020-01-17 皇家飞利浦有限公司 用于放射治疗处置的处置计划生成
CN107126619A (zh) * 2017-06-23 2017-09-05 于江平 一种基于3d打印个性化的颅脑粒子植入导向系统
CN207822260U (zh) * 2017-09-14 2018-09-07 谭骅 一种精准植入放射粒子导航装置
CN109801696A (zh) * 2017-11-17 2019-05-24 北京连心医疗科技有限公司 一种人工智能的云放疗计划方法、设备、存储介质和系统
CN110170111A (zh) * 2018-02-21 2019-08-27 医科达有限公司 逆向计划方法
CN109499014A (zh) * 2018-12-29 2019-03-22 王世广 一种妇科肿瘤后装手术辅助装置的制作方法
CN109908494A (zh) * 2019-03-25 2019-06-21 天津大学 近距离粒子微创放疗三维手术导板设计系统
CN110882490A (zh) * 2019-11-20 2020-03-17 谢泽中 一种个体化补偿膜制备方法及其应用方法
CN111643166A (zh) * 2020-06-29 2020-09-11 福建省肿瘤医院(福建省肿瘤研究所、福建省癌症防治中心) 3d模板复位控制方法、系统、存储介质、程序、终端
CN111728679A (zh) * 2020-08-21 2020-10-02 真实维度科技控股(珠海)有限公司 一种3d打印带引流机构的非共面穿刺模板制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘博等: "立体定向粒子植入治疗计划系统的开发及其关键技术研究", 《生物医学工程与临床》 *

Also Published As

Publication number Publication date
CN112516471B (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
JP6377762B2 (ja) 画像誘導放射線治療
EP4154942A1 (en) Triggered treatment systems and methods
Wu et al. Development of accurate/advanced radiotherapy treatment planning and quality assurance system (ARTS)
CN105833434A (zh) 一种近距离治疗施源器模板的制作方法
CN107335153A (zh) 机器人低能光子近距离放射治疗系统
Yang et al. Dosimetric verification of IMRT treatment planning using Monte Carlo simulations for prostate cancer
US20190168025A1 (en) Image-guided radiation therapy
CN113181563B (zh) 粒子植入肿瘤内放疗剂量规划方法、系统及介质
CN112245815B (zh) 后装放疗计划及3d打印模板一体化仿真设计方法及系统
Trifiletti et al. Intraoperative breast radiation therapy with image guidance: findings from CT images obtained in a prospective trial of intraoperative high-dose-rate brachytherapy with CT on rails
Allison et al. Future radiation therapy: photons, protons and particles
Conte et al. Three-field isocentric technique for breast irradiation using individualized shielding blocks
CN112263788B (zh) 在放射治疗过程中形态变化的定量探测系统
CN112516471B (zh) 基于扩展收缩理论的放疗计划仿真设计方法及系统
Choong et al. Radiotherapy: basic principles and technical advances
KR102114426B1 (ko) 방사선 차폐부 제조장치 및 제조방법
Fjæra Development of a Monte Carlo based treatment planning verification tool for particle therapy
CN107754097A (zh) 调强放疗射野证实片的拍摄方法及验证
Shi et al. Template-assisted 192 Ir-based stereotactic ablative brachytherapy as a neoadjuvant treatment for operable peripheral non-small cell lung cancer: a phase I clinical trial
Melancon et al. Patient-specific and generic immobilization devices for prostate radiotherapy
CN113628209B (zh) 粒子植入布针仿真方法及装置
Middleton et al. Intraprostatic fiducials for image guidance: Workflow implications in a single linac department
Di Franco et al. Ultra-hypofractionated prostate cancer radiotherapy: Dosimetric impact of real-time intrafraction prostate motion and daily anatomical changes
WO2022009014A1 (en) System for planning and verifying treatment during iort procedures
Ting et al. Treatment Planning System in Radiotherapy: A Short Review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant