CN112516384A - 一种基于fdm打印的生物活性腰椎融合器及其制备方法 - Google Patents

一种基于fdm打印的生物活性腰椎融合器及其制备方法 Download PDF

Info

Publication number
CN112516384A
CN112516384A CN202011211662.5A CN202011211662A CN112516384A CN 112516384 A CN112516384 A CN 112516384A CN 202011211662 A CN202011211662 A CN 202011211662A CN 112516384 A CN112516384 A CN 112516384A
Authority
CN
China
Prior art keywords
fusion cage
printing
bioactive
polylactic acid
lumbar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011211662.5A
Other languages
English (en)
Inventor
方国芳
桑宏勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Hospital of Southern Medical University
Original Assignee
Shenzhen Hospital of Southern Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Hospital of Southern Medical University filed Critical Shenzhen Hospital of Southern Medical University
Priority to CN202011211662.5A priority Critical patent/CN112516384A/zh
Publication of CN112516384A publication Critical patent/CN112516384A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Abstract

本发明公开了一种基于FDM打印的生物活性腰椎融合器及其制备方法。本发明生物活性腰椎融合器的制备方法,通过制备不同配方n‑HA/PLLA线材,进而在计算机控制下利用熔融沉积3D打印技术制备力学优化的解剖型腰椎椎间融合器,实现该融合n‑HA/PLLA融合器具有力学性能最优化的多孔结构,孔径200‑500um,孔隙率达50‑70%,弹性摩量500‑700MPa,压缩强度可达35‑50MPa,完全符合腰椎融合的要求。

Description

一种基于FDM打印的生物活性腰椎融合器及其制备方法
技术领域
本发明涉及腰椎椎间融合器技术领域,尤其涉及一种基于FDM打印的生物活性腰椎融合器及其制备方法。
背景技术
腰椎的椎间融合技术包括后侧腰椎椎间融合术(PLIF)、经椎间孔腰椎椎间融合术(TLIF)、前路腰椎椎间融合术(ALIF)、直接外侧腰椎椎间融合术(DLIF)和侧前方腰椎椎间融合术(OLIF)。OLIF手术是2012年由法国Silvestre首先报道的一种微创技术。该手术经左下腹腹外斜肌、腹内斜肌、腹横肌的肌间隙进入腹膜外间隙,在左侧腰大肌和腹主动脉之间安放工作通道,进行椎间盘切除融合器植入手术。该技术可明显减少手术创伤、缩短手术时间、减少术中出血、缩短住院时间及患者康复时间。
临床上使用的零切迹内固定系统均为钛板结合PEEK材料的椎间融合器,二者的弹性模量不同。而且由于PEEK材料属于生物惰性材料,骨组织无法长入其内部以达到良好的融合,致使骨-材料界面的结合强度不足,而且为达到足够的支撑强度,PEEK材料多需要有一定的厚度,从而进一步减少了植骨融合的空间,容易导致融合失败。目前市面上各种3D打印多孔钛合金材料,孔径通常较大,直径约300-1500μm,对于细胞平均10-20μm的直径来说,显然过于空旷,细胞只能在其孔壁二维空间上攀附生长,不能实现在整个孔洞内三维层次的生长。
左旋聚乳酸/纳米羟基磷灰石(n-HA/PLLA)复合材料支架,其弹性模量为600-700MPa,接近人体松质骨,同时该复合材料具有体内可控降解和骨传导性能。通过材料组份比例优化和3D打印空间三维多孔设计,该支架可兼具良好的力学性能及孔隙率,是制备融合器的理想选择。
因此,设计一种腰椎椎间融合器,具有足够支撑强度以维持椎间隙高度及椎体稳定性,具有良好的弹性摩量,从而达到良好的椎间融合,是本领域技术人员急需解决的技术问题。
发明内容
本发明的目的是针对现有技术中的不足,提供一种基于FDM打印的生物活性腰椎融合器及其制备方法。
为实现上述目的,本发明采取的技术方案是:
本发明的第一方面是提供一种基于FDM打印的生物活性腰椎融合器的制备方法,包括如下步骤:
步骤一,使用高速混合机将重量比为1:5~1:20的纳米羟基磷灰石和左旋聚乳酸混合均匀,然后使用双螺杆挤出机熔融挤出聚乳酸/纳米羟基乙酸的混合物,从圆形模具出来后立即被水冷并卷绕在卷轴上,得到纳米羟基磷灰石/左旋聚乳酸线材;
步骤二,通过3D软件设计力学性能最优化的多孔结构融合器,并通过力学有限元软件进行验证;
步骤三,使用步骤一所得的纳米羟基磷灰石/左旋聚乳酸线材,在利用计算控制下采用熔融沉积3D打印技术打印,通过对3D打印的参数进行精准调控,得到孔径在200-500um,弹性摩量500-700Mpa,压缩强度30-55MPa的多孔融合器。
进一步地,通过3D软件设计及有限元分析,保证融合器具有解剖型多孔优化结构。
进一步地,步骤三中,熔融沉积3D打印技术温度170-200℃。
进一步地,所述多孔融合器的孔径在200-500um,弹性摩量500-700Mpa,压缩强度35-55MPa。
本发明的第二方面是提供上述制备方法制备的生物活性腰椎融合器。
本发明采用以上技术方案,与现有技术相比,具有如下技术效果:
本发明的基于FDM打印的生物活性腰椎融合器的制备方法,通过制备不同含量的可3D打印的nHA/PLA材线,进而在计算机控制下利用熔融沉积3D打印技术制备力学优化的解剖型腰椎椎间融合器基体,n-HA/PLLA基体支架具有良好的力学性能,孔径200-500um,孔隙率达50-70%,弹性摩量500-700MPa,压缩强度可达30-55MPa。
附图说明
图1本发明生物活性腰椎融合器的制备过程的示意图;
图2为本发明荧光示踪hBMSCs细胞在融合器网孔结构的黏附、增殖情况的电镜图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
实施例
本实施例提供了一种基于FDM打印的生物活性腰椎融合器的制备方法,包括如下步骤,如图1所示:
步骤一,使用高速混合机将重量比为1:5~1:20的纳米羟基磷灰石和左旋聚乳酸混合均匀,然后使用双螺杆挤出机熔融挤出聚乳酸/纳米羟基乙酸的混合物,从圆形模具出来后立即被水冷并卷绕在卷轴上,得到纳米羟基磷灰石/左旋聚乳酸线材;
步骤二,通过3D软件设计力学性能最优化的多孔结构融合器,并通过力学有限元软件进行验证;
步骤三,使用步骤一所得的纳米羟基磷灰石/左旋聚乳酸线材,在利用计算控制下采用熔融沉积3D打印技术打印,其中熔融沉积3D打印技术的温度为170-200℃,通过对3D打印的参数进行精准调控,得到孔径在200-500um,弹性摩量600-700Mpa,压缩强度30-55MPa的多孔融合器。
作为一个优选实施例,上述多孔融合器的孔径在300-400um,弹性摩量650-700Mpa,压缩强度35-55MPa。
验证例
1.细胞毒性实验
根据ISO 10993-5国际标准对上述FDM打印的生物活性腰椎融合器进行体外细胞毒性检测。将融合器用细胞培养基浸提后,用稀释后的浸提液培养小鼠成纤维细胞并进行MTT检测。阴性对照液为高密度聚乙烯片浸提液,阳性对照液为苯酚稀释液。
细胞毒性评价:根据MTT实验所测定的各组OD值,按照下列公式分别计算各实验组细胞相对增殖度。
VB=(试验组平均OD值/阴性对照组平均OD值)×100%
按照表1规定,将各组的VB转换成6级细胞毒性以评定材料的毒性程度。实验结果为0或1级反应为合格;实验结果为2级反应时应结合细胞形态分析综合评价;实验结果为3~5级反应为不合格。
表1细胞毒性作用评价表
Figure BDA0002759030140000041
本发明的生物活性腰椎融合器,细胞毒性实验实验结果为0或1级,表明本发明生物活性腰椎融合器合格。
2.hBMSCs在融合器上的增殖情况
将hBMSCs接种于实施例1制备的生物活性腰椎融合器,hBMSCs接种后第7天将附着在融合器上的细胞用胶原酶消化后MTT法检测细胞的增殖。通过绿色荧光蛋白(FITC)示踪细胞的黏附情况,在荧光显微镜和共聚焦显微镜下观察细胞的形态。结果如图2所示,可见hBMSCs在融合器上黏附、增殖情况良好。
上所述仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本发明说明书内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。

Claims (5)

1.一种基于FDM打印的生物活性腰椎融合器的制备方法,其特征在于,包括如下步骤:
步骤一,使用高速混合机将重量比为1:5~1:20的纳米羟基磷灰石和左旋聚乳酸混合均匀,然后使用双螺杆挤出机熔融挤出聚乳酸/纳米羟基乙酸的混合物,从圆形模具出来后立即被水冷并卷绕在卷轴上,得到纳米羟基磷灰石/左旋聚乳酸线材;
步骤二,通过3D软件设计力学性能最优化的多孔结构融合器,并通过力学有限元软件进行验证;
步骤三,使用步骤一所得的纳米羟基磷灰石/左旋聚乳酸线材,在利用计算控制下采用熔融沉积3D打印技术打印,通过对3D打印的参数进行精准调控,得到孔径在200-500um,弹性摩量500-700Mpa,压缩强度30-55MPa的多孔融合器。
2.根据权利要求1所述的制备方法,其特征在于,通过3D软件设计及有限元分析,保证融合器具有解剖型多孔优化结构。
3.根据权利要求1所述的制备方法,其特征在于,步骤三中,熔融沉积3D打印技术温度170-200℃。
4.根据权利要求1所述的制备方法,其特征在于,所述多孔融合器的孔径在200-500um,弹性摩量500-700Mpa,压缩强度30-55MPa。
5.一种如权利要求1-4任一项所述制备方法制备的生物活性腰椎融合器。
CN202011211662.5A 2020-11-03 2020-11-03 一种基于fdm打印的生物活性腰椎融合器及其制备方法 Pending CN112516384A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011211662.5A CN112516384A (zh) 2020-11-03 2020-11-03 一种基于fdm打印的生物活性腰椎融合器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011211662.5A CN112516384A (zh) 2020-11-03 2020-11-03 一种基于fdm打印的生物活性腰椎融合器及其制备方法

Publications (1)

Publication Number Publication Date
CN112516384A true CN112516384A (zh) 2021-03-19

Family

ID=74979515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011211662.5A Pending CN112516384A (zh) 2020-11-03 2020-11-03 一种基于fdm打印的生物活性腰椎融合器及其制备方法

Country Status (1)

Country Link
CN (1) CN112516384A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115957376A (zh) * 2023-02-07 2023-04-14 吉林大学 一种3d打印仿生复合多孔支架的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105013006A (zh) * 2015-06-24 2015-11-04 东莞天天向上医疗科技有限公司 一种生物可吸收骨修复材料及其应用与制作方法
CN109044571A (zh) * 2018-07-06 2018-12-21 上海纳米技术及应用国家工程研究中心有限公司 半月型3d打印plga/羟基磷灰石腰部椎间融合器的制备方法及产品和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105013006A (zh) * 2015-06-24 2015-11-04 东莞天天向上医疗科技有限公司 一种生物可吸收骨修复材料及其应用与制作方法
CN109044571A (zh) * 2018-07-06 2018-12-21 上海纳米技术及应用国家工程研究中心有限公司 半月型3d打印plga/羟基磷灰石腰部椎间融合器的制备方法及产品和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115957376A (zh) * 2023-02-07 2023-04-14 吉林大学 一种3d打印仿生复合多孔支架的制备方法

Similar Documents

Publication Publication Date Title
US20230248885A1 (en) Ceramic-containing bioactive inks and printing methods for tissue engineering applications
US10463770B2 (en) Bone tissue engineering by ex vivo stem cells ongrowth into three-dimensional trabecular metal
Zheng et al. Promotion of osseointegration between implant and bone interface by titanium alloy porous scaffolds prepared by 3D printing
Borden et al. Tissue engineered microsphere-based matrices for bone repair:: design and evaluation
Lee et al. In vitro evaluation of a poly (lactide-co-glycolide)–collagen composite scaffold for bone regeneration
US8435552B2 (en) Collagen/hydroxyapatite composite scaffold, and process for the production thereof
US7968026B1 (en) Three-dimensional bioresorbable scaffolds for tissue engineering applications
Wang et al. Biomimetic design strategy of complex porous structure based on 3D printing Ti-6Al-4V scaffolds for enhanced osseointegration
Scott et al. Advances in bionanomaterials for bone tissue engineering
CN209361000U (zh) 一种半月板支架
Walser et al. Direct electrospinning of 3D auricle-shaped scaffolds for tissue engineering applications
Sahu et al. Investigation on dimensional accuracy, compressive strength and measured porosity of additively manufactured calcium sulphate porous bone scaffolds
Lin et al. Advances in filament structure of 3D bioprinted biodegradable bone repair scaffolds
CN112516384A (zh) 一种基于fdm打印的生物活性腰椎融合器及其制备方法
Khandaker et al. In vitro and in vivo effect of polycaprolactone nanofiber coating on polyethylene glycol diacrylate scaffolds for intervertebral disc repair
Swanson et al. Textured and porous biomaterials
CN108578780B (zh) 一种载银离子具有力学梯度的人工骨支架的制备方法
CN208243822U (zh) 一种3d打印复合磁性金属支架
CN109248343A (zh) 一种自组装多肽水凝胶支架及其制备方法
US11045581B2 (en) Surgically-friendly tissue papers from organ-specific decellularized extracellular matrices
Top et al. Additive Manufacturing of Bio-Inspired Microstructures for Bone Tissue Engineering
CN108079369B (zh) 具有表面纳米结构的硅酸盐骨水泥支架及其制备方法和用途
Huang et al. Preparation and characterization of digital coral hydroxyapatite artificial bone scaffolds based on 3D printing
CN210408677U (zh) 一种节段性骨缺损修复装置
RU2665175C2 (ru) Биоактивный полимерный пористый каркас

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210319

WD01 Invention patent application deemed withdrawn after publication