CN112509297B - 一种输电线路防外破的智能监控方法及装置 - Google Patents

一种输电线路防外破的智能监控方法及装置 Download PDF

Info

Publication number
CN112509297B
CN112509297B CN202011038071.2A CN202011038071A CN112509297B CN 112509297 B CN112509297 B CN 112509297B CN 202011038071 A CN202011038071 A CN 202011038071A CN 112509297 B CN112509297 B CN 112509297B
Authority
CN
China
Prior art keywords
time
real
transmission line
construction vehicle
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011038071.2A
Other languages
English (en)
Other versions
CN112509297A (zh
Inventor
俞啸玲
邢海青
陈悦
冯姗姗
王春霞
李鹏程
陈琴芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Original Assignee
Hangzhou Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Power Supply Co of State Grid Zhejiang Electric Power Co Ltd filed Critical Hangzhou Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Priority to CN202011038071.2A priority Critical patent/CN112509297B/zh
Publication of CN112509297A publication Critical patent/CN112509297A/zh
Application granted granted Critical
Publication of CN112509297B publication Critical patent/CN112509297B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/08Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using communication transmission lines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/02Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for overhead lines or cables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Emergency Management (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Evolutionary Biology (AREA)
  • Algebra (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明提出了一种输电线路防外破的智能监控方法及装置,所述智能监控方法包括:获取施工车辆的实时坐标和实时速度,通过预先构建的线性回归模型根据实时速度得到施工车辆的误差距离;获取输电线路保护区的施工参数,基于实时坐标和施工参数计算出施工车辆与输电线路之间的直线距离;将直线距离和误差距离的相加结果与施工车辆的臂杆长度进行比较,若小于臂杆长度,发送告警消息。通过线性回归模型计算施工车辆的误差距离,相比于传统的施工车辆与输电线路之间距离的方法,消除了施工车辆在传输时间内的移动造成的误差,提高了防外破监控告警的响应速度。

Description

一种输电线路防外破的智能监控方法及装置
技术领域
本发明属于输电线路监控领域,尤其涉及一种输电线路防外破的智能监控方法及装置。
背景技术
在对输电线路进行施工作业过程中,施工车辆容易触碰到附近输电线路的杆塔、架空线、地下电缆等设施,使输电线路遭到破坏,造成安全隐患。输电线路的防外破是指通过图像识别、GPS定位等方式进行监控,防止输电线路受到外力破坏。随着城市规模的不断发展,输电线路的运行路线长、分布范围广的特点给输电线路的防外破监控造成很大困难。利用图像识别技术进行防外破监控存在易受天气影响、难以实现全天候监控的问题
为了解决上述的问题,通常利用GPS定位技术通过实时定位模块采集施工车辆的位置信息,通过无线传输协议将位置信息发送到应用服务器,通过应用服务器计算获得施工车辆与输电线路之间的距离,防止施工车辆距离输电线路过近。
上述方法虽然可以实现全天候监控,但由于施工车辆是移动的物体,在通过无线协议传输实时坐标与告警信息等数据时会产生传输时间,施工车辆在传输时间内移动就会产生误差距离,使计算出的施工车辆与输电线路之间的距离存在误差,影响防外破监控告警的响应速度。
发明内容
为了解决现有技术中存在的缺点和不足,本发明提出了一种输电线路防外破的智能监控方法,包括:
获取施工车辆的实时坐标和实时速度,通过预先构建的线性回归模型根据实时速度得到施工车辆的误差距离;
获取输电线路保护区的施工参数,基于实时坐标和施工参数计算出施工车辆与输电线路之间的直线距离;
将直线距离和误差距离的相加结果与施工车辆的臂杆长度进行比较,若小于臂杆长度,发送告警消息。
可选的,所述智能监控方法还包括线性回归模型的构建过程,所述构建过程包括:
获取施工车辆的历史速度以及历史传输时间,所述历史传输时间为在该历史速度下传输数据所需要的时间;
将历史速度划分为若干个级别,基于划分出的级别将历史速度组成线性回归模型的输入矩阵;
在每个级别中,计算历史速度对应的历史传输时间的平均值,将计算出的平均值组成线性回归模型的输出矩阵;
根据输入矩阵和输出矩阵,基于最小二乘法拟合出线性回归模型。
进一步的,所述通过预先构建的线性回归模型根据实时速度得到施工车辆的误差距离,包括:
将施工车辆的实时速度输入线性回归模型中,得到施工车辆在该实时速度下传输数据的预计传输时间;
将实时速度和预计传输时间的乘积作为施工车辆的误差距离。
可选的,所述输电线路保护区的施工参数包括输电线路保护区中杆塔的坐标、边相导线对输电线路中心的水平距离D1以及边相导线对地最短距离H1
D1、H1的取值范围均为正数。
进一步的,所述获取输电线路保护区的施工参数,基于实时坐标和施工参数计算出施工车辆与输电线路之间的直线距离,包括:
获取输电线路保护区中起点塔杆的第一坐标与终点杆塔的第二坐标,根据第一坐标和第二坐标确定起点塔杆和终点杆塔的中心连线方程f1(x);
根据施工车辆的实时坐标(LonA,LatA),LonA为实时坐标的经度,LatA为实时坐标的纬度,确定通过实时坐标且与中心连线方程f1(x)垂直的直线方程f2(x);
确定f1(x)和f2(x)的交点J的坐标(LonB,LatB),LonB为交点J的经度,LatB为交点J的纬度,基于公式一、公式二计算施工车辆对输电线路中心的水平距离D;
C=sin(LatA)×sin(LatB)+cos(LatA)×cos(LatB)×cos(LonA-LonB) 公式一;
D=R×arccos(C)×(π/180) 公式二;
其中,C为中间变量,R为地球半径,C、LatA、LatB、LonA、LonB的取值范围均为实数,D、R的取值范围为正数;
根据施工车辆对输电线路中心的水平距离D和边相导线对输电线路中心的水平距离D1,计算出施工车辆对边相导线的水平距离HD,HD的取值范围均为正数;
根据勾股定理,由HD和H1计算出施工车辆与输电线路的边相导线之间的直线距离。
可选的,所述将直线距离和误差距离的相加结果与施工车辆的臂杆长度进行比较,若小于臂杆长度,发送告警消息,包括:
将直线距离和误差距离的相加结果与施工车辆的臂杆长度进行比较;
若小于臂杆长度,则将第一告警信息发送到施工车辆的车载终端;
在发出第一告警信息后,若经过预设时间后直线距离与误差距离的相加结果仍小于臂杆长度,则将第二告警信息发送给输电线路保护区的运维人员。
本发明还基于同样的发明思路提出了一种输电线路防外破的智能监控装置,包括:
实时单元:用于获取施工车辆的实时坐标和实时速度,通过预先构建的线性回归模型根据实时速度得到施工车辆的误差距离;
计算单元:用于获取输电线路保护区的施工参数,基于实时坐标和施工参数计算出施工车辆与输电线路之间的直线距离;
告警单元:用于将直线距离和误差距离的相加结果与施工车辆的臂杆长度进行比较,若小于臂杆长度,发送告警消息。
可选的,所述智能监控装置还包括回归单元,用于构建线性回归模型,具体用于:
获取施工车辆的历史速度以及历史传输时间,所述历史传输时间为在该历史速度下传输数据所需要的时间;
将历史速度分为若干个级别,在每个级别中,将历史速度作为输入,将历史传输时间作为输出,基于最小二乘法拟合出各个级别的线性回归模型。
进一步的,所述实时单元具体用于:
将施工车辆的实时速度输入拟合出的线性回归模型中,得到施工车辆在该实时速度下传输数据的预计传输时间;
将实时速度和预计传输时间的乘积作为施工车辆的误差距离。
可选的,所述告警单元具体用于:
将直线距离和误差距离的相加结果与施工车辆的臂杆长度进行比较;
若小于臂杆长度,则将第一告警信息发送到施工车辆的车载终端;
在发出第一告警信息后,若经过预设时间后直线距离与误差距离的相加结果仍小于臂杆长度,则将第二告警信息发送给输电线路保护区的运维人员。
本发明提供的技术方案带来的有益效果是:
通过预先构建的线性回归模型,得到施工车辆在实时速度下传输数据的预计传输时间,再通过预计传输时间计算施工车辆的误差距离,相比于传统的施工车辆与输电线路之间距离的方法,消除了施工车辆在传输时间内的移动造成的误差,提高了防外破监控告警的响应速度。另外,在构建的线性回归模型中将历史速度进行分级别拟合,降低了线性回归模型的拟合误差,使得到的误差距离更准确。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提出的一种输电线路防外破的智能监控方法的流程示意图;
图2为本发明提出的一种输电线路防外破的智能监控装置的结构框图。
具体实施方式
为使本发明的结构和优点更加清楚,下面将结合附图对本发明的结构作进一步地描述。
实施例一
如图1所示,本发明提出了一种输电线路防外破的智能监控方法,包括:
S1:获取施工车辆的实时坐标和实时速度,通过预先构建的线性回归模型根据实时速度得到施工车辆的误差距离。
所述线性回归模型的构建过程包括:
获取施工车辆的历史速度以及历史传输时间,所述历史传输时间为在该历史速度下传输数据所需要的时间;
将历史速度分为若干个级别,基于级别将历史速度组成线性回归模型的输入矩阵。在本实施例中,将历史速度分为三个级别。例如,第一个级别中的历史速度范围在0公里/小时至10公里/小时,第二个级别中的历史速度范围在10公里/小时至25公里/小时,第三个级别中的历史速度范围在25公里/小时至40公里/小时。将分好级别的历史速度组成线性回归模型的输入矩阵X,X的维度为m×n,m为级别的数量,n为每个级别中历史速度的数据个数。
在每个级别中,计算历史速度对应的历史传输时间的平均值,将计算出的平均值组成线性回归模型的输出矩阵。例如,在第一个级别中,所有历史速度对应的历史传输时间分别为10ms、8ms、7.5ms和9ms,则计算所有历史传输时间的平均值为(10+8+7.5+9)/4=8.625ms。其他级别以此类推,将计算出的平均值组成线性回归模型的输出矩阵Y,Y的维度为m×1,m为级别的数量,即每个级别对应一个历史传输时间的平均值。
根据输入矩阵和输出矩阵,基于最小二乘法拟合出线性回归模型。设线性回归模型y=h(θ)=Xθ,θ为一个n×1的拟合参数向量,h(θ)为一个m×1的向量。
定义损失函数
Figure BDA0002705728690000051
对损失函数J(θ)求导,令
Figure BDA0002705728690000052
整理得到XTXθ=XTY,两边同时左乘(XTX)-1得到θ=(XTX)-1XTY,求出θ的值,即得到线性回归模型中的拟合参数的值,使通过线性回归模型h(θ)求得y得值与历史速度x对应的历史传输时间的误差最小。
上述m、n的取值范围均为正整数。
以历史速度和历史传输时间作为观测量,通过最小二乘法拟合出线性回归模型,从而得到施工车辆的速度与传输时间之间的线性关系。同时,根据历史速度的大小分为若干个级别,实现分段拟合,使拟合出的线性回归模型更准确。
所述通过预先构建的线性回归模型根据实时速度得到施工车辆的误差距离,包括:将施工车辆的实时速度输入线性回归模型中,得到施工车辆在该实时速度下传输数据的预计传输时间;将实时速度和预计传输时间的乘积作为施工车辆的误差距离。
线性回归模型能够得到施工车辆在某一实时速度下传输数据的预计传输时间,通过计算施工车辆在所述预计传输时间内移动的距离,即误差距离,与传统方法相比,在判断施工车辆与输电线路的距离时,引入误差距离这一物理量,能够对施工车辆在传输数据的时间内移动产生的距离计算误差进行补偿,提高了距离计算的准确性,改善了防外破智能监控的效果。
S2:获取输电线路保护区的施工参数,基于实时坐标和施工参数计算出施工车辆与输电线路之间的直线距离。
所述输电线路保护区的施工参数包括输电线路保护区中杆塔的坐标、边相导线对输电线路中心的水平距离D1以及边相导线对地最短距离H1,D1、H1的取值范围均为正数。
获取输电线路保护区中起点塔杆的第一坐标与终点杆塔的第二坐标,根据第一坐标和第二坐标确定起点塔杆和终点杆塔的中心连线方程f1(x);
根据施工车辆的实时坐标(LonA,LatA),LonA为实时坐标的经度,LatA为实时坐标的纬度,确定通过实时坐标且与中心连线方程f1(x)垂直的直线方程f2(x);
确定f1(x)和f2(x)的交点J的坐标(LonB,LatB),LonB为交点J的经度,LatB为交点J的纬度,基于公式一、公式二计算施工车辆对输电线路中心的水平距离D;
C=sin(LatA)×sin(LatB)+cos(LatA)×cos(LatB)×cos(LonA-LonB) 公式一;
D=R×arccos(C)×(π/180) 公式二;
其中,C为中间变量,R为地球半径,C、LatA、LatB、LonA、LonB的取值范围均为实数,D、R的取值范围为正数;
根据施工车辆对输电线路中心的水平距离D和边相导线对输电线路中心的水平距离D1,计算出施工车辆对边相导线的水平距离HD,HD的取值范围均为正数;
根据勾股定理,由HD和H1计算出施工车辆与输电线路的边相导线之间的直线距离。
S3:将直线距离和误差距离的相加结果与施工车辆的臂杆长度进行比较,若小于臂杆长度,发送告警消息。
将直线距离和误差距离的相加结果与施工车辆的臂杆长度进行比较;
若小于臂杆长度,则将第一告警信息发送到施工车辆的车载终端;
在发出第一告警信息后,若经过预设时间后直线距离与误差距离的相加结果仍小于臂杆长度,则将第二告警信息发送给输电线路保护区的运维人员。
当施工车辆的行驶方向为进入输电线路保护区时,误差距离为负数,当施工车辆的行驶方向为驶离输电线路保护区时,误差距离为正数。
当第一告警信息发出后,施工车辆经过预设时间后与输电线路的距离仍然小于臂杆长度,说明第一告警信息因通讯故障等原因未通过车载终端传达给施工车辆上的司机,也可能是施工车辆上的司机仍未对第一告警信息做出响应。为了防止输电线路受到外力破坏,继续发出第二告警信息,由输电线路保护区的运维人员做出响应。通过设置第一告警信息和第二告警信息,对处理告警的情况进行监控,为智能监控告警提供了第二道保障措施,避免因某些不可控因素对告警消息的响应产生影响。
实施例二
如图2所示,本发明提出了一种输电线路防外破的智能监控装置4,包括:
实时单元41:用于获取施工车辆的实时坐标和实时速度,通过预先构建的线性回归模型根据实时速度得到施工车辆的误差距离。
所述智能监控装置4中还包括用于构建线性回归模型的构建单元,用于:
获取施工车辆的历史速度以及历史传输时间,所述历史传输时间为在该历史速度下传输数据所需要的时间;
将历史速度分为若干个级别,基于级别将历史速度组成线性回归模型的输入矩阵。在本实施例中,将历史速度分为m个级别,n的取值范围为正整数。例如,第一个级别中的历史速度范围在0公里/小时至10公里/小时,第二个级别中的历史速度范围在10公里/小时至25公里/小时,第三个级别中的历史速度范围在25公里/小时至40公里/小时。将分好级别的历史速度组成线性回归模型的输入矩阵X,X的维度为m×n,m为级别的数量,n为每个级别中历史速度的数据个数。
在每个级别中,计算历史速度对应的历史传输时间的平均值,将计算出的平均值组成线性回归模型的输出矩阵。例如,在第一个级别中,所有历史速度对应的历史传输时间分别为10ms、8ms、7.5ms和9ms,则计算所有历史传输时间的平均值为(10+8+7.5+9)/4=8.625ms。其他级别以此类推,将计算出的平均值组成线性回归模型的输出矩阵Y,Y的维度为m×1,m为级别的数量,即每个级别对应一个历史传输时间的平均值。
根据输入矩阵和输出矩阵,基于最小二乘法拟合出线性回归模型。设线性回归模型y=h(θ)=Xθ,θ为一个n×1的拟合参数向量,h(θ)为一个m×1的向量。
定义损失函数
Figure BDA0002705728690000071
对损失函数J(θ)求导,令
Figure BDA0002705728690000072
整理得到XTXθ=XTY,两边同时左乘(XTX)-1得到θ=(XTX)-1XTY,求出θ的值,即得到线性回归模型中的拟合参数的值,使通过线性回归模型h(θ)求得y得值与历史速度x对应的历史传输时间的误差最小。
上述m、n的取值范围均为正整数。
以历史速度和历史传输时间作为观测量,通过最小二乘法拟合出线性回归模型,从而得到施工车辆的速度与传输时间之间的线性关系。同时,根据历史速度的大小分为若干个级别,实现分段拟合,使拟合出的线性回归模型更准确。
所述实时单元41用于:将施工车辆的实时速度输入线性回归模型中,得到施工车辆在该实时速度下传输数据的预计传输时间;将实时速度和预计传输时间的乘积作为施工车辆的误差距离。
线性回归模型能够得到施工车辆在某一实时速度下传输数据的预计传输时间,通过计算施工车辆在所述预计传输时间内移动的距离,即误差距离,与传统方法相比,在判断施工车辆与输电线路的距离时,引入误差距离这一物理量,能够对施工车辆在传输数据的时间内移动产生的距离计算误差进行补偿,提高了距离计算的准确性,改善了防外破智能监控的效果。
计算单元42:用于获取输电线路保护区的施工参数,基于实时坐标和施工参数计算出施工车辆与输电线路之间的直线距离。
所述输电线路保护区的施工参数包括输电线路保护区中杆塔的坐标、边相导线对输电线路中心的水平距离D1以及边相导线对地最短距离H1,D1、H1的取值范围均为正数。
计算单元42具体用于:
获取输电线路保护区中起点塔杆的第一坐标与终点杆塔的第二坐标,根据第一坐标和第二坐标确定起点塔杆和终点杆塔的中心连线方程f1(x);
根据施工车辆的实时坐标(LonA,LatA),LonA为实时坐标的经度,LatA为实时坐标的纬度,确定通过实时坐标且与中心连线方程f1(x)垂直的直线方程f2(x);
确定f1(x)和f2(x)的交点J的坐标(LonB,LatB),LonB为交点J的经度,LatB为交点J的纬度,基于公式一、公式二计算施工车辆对输电线路中心的水平距离D;
C=sin(LatA)×sin(LatB)+cos(LatA)×cos(LatB)×cos(LonA-LonB) 公式一;
D=R×arccos(C)×(π/180) 公式二;
其中,C为中间变量,R为地球半径,C、LatA、LatB、LonA、LonB的取值范围均为实数,D、R的取值范围为正数;
根据施工车辆对输电线路中心的水平距离D和边相导线对输电线路中心的水平距离D1,计算出施工车辆对边相导线的水平距离HD,HD的取值范围均为正数;
根据勾股定理,由HD和H1计算出施工车辆与输电线路的边相导线之间的直线距离。
告警单元43:用于将直线距离和误差距离的相加结果与施工车辆的臂杆长度进行比较,若小于臂杆长度,发送告警消息。具体用于:
将直线距离和误差距离的相加结果与施工车辆的臂杆长度进行比较;
若小于臂杆长度,则将第一告警信息发送到施工车辆的车载终端;
在发出第一告警信息后,若经过预设时间后直线距离与误差距离的相加结果仍小于臂杆长度,则将第二告警信息发送给输电线路保护区的运维人员。
当施工车辆的行驶方向为进入输电线路保护区时,误差距离为负数,当施工车辆的行驶方向为驶离输电线路保护区时,误差距离为正数。
当第一告警信息发出后,施工车辆经过预设时间后与输电线路的距离仍然小于臂杆长度,说明第一告警信息因通讯故障等原因未通过车载终端传达给施工车辆上的司机,也可能是施工车辆上的司机仍未对第一告警信息做出响应。为了防止输电线路受到外力破坏,继续发出第二告警信息,由输电线路保护区的运维人员做出响应。通过设置第一告警信息和第二告警信息,对处理告警的情况进行监控,为智能监控告警提供了第二道保障措施,避免因某些不可控因素对告警消息的响应产生影响。
上述实施例中的各个序号仅仅为了描述,不代表各部件的组装或使用过程中的先后顺序。
以上所述仅为本发明的实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种输电线路防外破的智能监控方法,其特征在于,所述智能监控方法包括:
获取施工车辆的实时坐标和实时速度,通过预先构建的线性回归模型根据实时速度得到施工车辆的误差距离;
获取输电线路保护区的施工参数,基于实时坐标和施工参数计算出施工车辆与输电线路之间的直线距离;
将直线距离和误差距离的相加结果与施工车辆的臂杆长度进行比较,若小于臂杆长度,发送告警消息;
所述智能监控方法还包括线性回归模型的构建过程,所述构建过程包括:
获取施工车辆的历史速度以及历史传输时间,所述历史传输时间为在该历史速度下传输数据所需要的时间;
将历史速度划分为若干个级别,基于划分出的级别将历史速度组成线性回归模型的输入矩阵;
在每个级别中,计算历史速度对应的历史传输时间的平均值,将计算出的平均值组成线性回归模型的输出矩阵;
根据输入矩阵和输出矩阵,基于最小二乘法拟合出线性回归模型。
2.根据权利要求1所述的一种输电线路防外破的智能监控方法,其特征在于,所述通过预先构建的线性回归模型根据实时速度得到施工车辆的误差距离,包括:
将施工车辆的实时速度输入线性回归模型中,得到施工车辆在该实时速度下传输数据的预计传输时间;
将实时速度和预计传输时间的乘积作为施工车辆的误差距离。
3.根据权利要求1所述的一种输电线路防外破的智能监控方法,其特征在于,所述输电线路保护区的施工参数包括输电线路保护区中杆塔的坐标、边相导线对输电线路中心的水平距离D1以及边相导线对地最短距离H1
D1、H1的取值范围均为正数。
4.根据权利要求3所述的一种输电线路防外破的智能监控方法,其特征在于,所述获取输电线路保护区的施工参数,基于实时坐标和施工参数计算出施工车辆与输电线路之间的直线距离,包括:
获取输电线路保护区中起点塔杆的第一坐标与终点杆塔的第二坐标,根据第一坐标和第二坐标确定起点塔杆和终点杆塔的中心连线方程f1(x);
根据施工车辆的实时坐标(LonA,LatA),LonA为实时坐标的经度,LatA为实时坐标的纬度,确定通过实时坐标且与中心连线方程f1(x)垂直的直线方程f2(x);
确定f1(x)和f2(x)的交点J的坐标(LonB,LatB),LonB为交点J的经度,LatB为交点J的纬度,基于公式一、公式二计算施工车辆对输电线路中心的水平距离D;
C=sin(LatA)×sin(LatB)+cos(LatA)×cos(LatB)×cos(LonA-LonB) 公式一;
D=R×arccos(C)×(π/180) 公式二;
其中,C为中间变量,R为地球半径,C、LatA、LatB、LonA、LonB的取值范围均为实数,D、R的取值范围为正数;
根据施工车辆对输电线路中心的水平距离D和边相导线对输电线路中心的水平距离D1,计算出施工车辆对边相导线的水平距离HD,HD的取值范围均为正数;
根据勾股定理,由HD和H1计算出施工车辆与输电线路的边相导线之间的直线距离。
5.根据权利要求1所述的一种输电线路防外破的智能监控方法,其特征在于,所述将直线距离和误差距离的相加结果与施工车辆的臂杆长度进行比较,若小于臂杆长度,发送告警消息,包括:
将直线距离和误差距离的相加结果与施工车辆的臂杆长度进行比较;
若小于臂杆长度,则将第一告警信息发送到施工车辆的车载终端;
在发出第一告警信息后,若经过预设时间后直线距离与误差距离的相加结果仍小于臂杆长度,则将第二告警信息发送给输电线路保护区的运维人员。
6.一种输电线路防外破的智能监控装置,其特征在于,所述智能监控装置包括:
实时单元:用于获取施工车辆的实时坐标和实时速度,通过预先构建的线性回归模型根据实时速度得到施工车辆的误差距离;
计算单元:用于获取输电线路保护区的施工参数,基于实时坐标和施工参数计算出施工车辆与输电线路之间的直线距离;
告警单元:用于将直线距离和误差距离的相加结果与施工车辆的臂杆长度进行比较,若小于臂杆长度,发送告警消息;
所述智能监控装置还包括回归单元,用于构建线性回归模型,具体用于:
获取施工车辆的历史速度以及历史传输时间,所述历史传输时间为在该历史速度下传输数据所需要的时间;
将历史速度分为若干个级别,在每个级别中,将历史速度作为输入,将历史传输时间作为输出,基于最小二乘法拟合出各个级别的线性回归模型。
7.根据权利要求6所述的一种输电线路防外破的智能监控装置,其特征在于,所述实时单元具体用于:
将施工车辆的实时速度输入拟合出的线性回归模型中,得到施工车辆在该实时速度下传输数据的预计传输时间;
将实时速度和预计传输时间的乘积作为施工车辆的误差距离。
8.根据权利要求6所述的一种输电线路防外破的智能监控装置,其特征在于,所述告警单元具体用于:
将直线距离和误差距离的相加结果与施工车辆的臂杆长度进行比较;
若小于臂杆长度,则将第一告警信息发送到施工车辆的车载终端;
在发出第一告警信息后,若经过预设时间后直线距离与误差距离的相加结果仍小于臂杆长度,则将第二告警信息发送给输电线路保护区的运维人员。
CN202011038071.2A 2020-09-28 2020-09-28 一种输电线路防外破的智能监控方法及装置 Active CN112509297B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011038071.2A CN112509297B (zh) 2020-09-28 2020-09-28 一种输电线路防外破的智能监控方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011038071.2A CN112509297B (zh) 2020-09-28 2020-09-28 一种输电线路防外破的智能监控方法及装置

Publications (2)

Publication Number Publication Date
CN112509297A CN112509297A (zh) 2021-03-16
CN112509297B true CN112509297B (zh) 2022-07-26

Family

ID=74954094

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011038071.2A Active CN112509297B (zh) 2020-09-28 2020-09-28 一种输电线路防外破的智能监控方法及装置

Country Status (1)

Country Link
CN (1) CN112509297B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777643A (zh) * 2021-07-30 2021-12-10 国网浙江杭州市余杭区供电有限公司 一种用于输电线路防外破的故障预警方法及装置
CN116647032B (zh) * 2022-01-14 2023-12-01 北京中创恒益科技有限公司 一种目标施工车辆的输电线路实时防护系统和方法
CN116047499B (zh) * 2022-01-14 2024-03-26 北京中创恒益科技有限公司 一种目标施工车辆的输电线路高精度实时防护系统和方法
CN116027321B (zh) * 2022-01-14 2024-01-30 北京中创恒益科技有限公司 一种输电线路的高精度实时防护系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154860A (zh) * 2014-08-05 2014-11-19 合肥工业大学 一种用于激光测距多边法定位的多面体合作目标及其距离获取方法
CN104360351A (zh) * 2014-12-04 2015-02-18 中国科学院南京地理与湖泊研究所 一种基于遥感数据的农业区地表温度高精度反演方法
CN106792866A (zh) * 2016-11-24 2017-05-31 西安电子科技大学 基于分段线性eh模型的wpc系统功率和时间的分配方法
CN109728878A (zh) * 2019-01-07 2019-05-07 重庆邮电大学 Lte通信系统中基于信道估计与分段线性回归的天线端口数快速检测方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095848A (ja) * 2009-10-27 2011-05-12 Chugoku Electric Power Co Inc:The 事故防止監視制御システム
JP2011191239A (ja) * 2010-03-16 2011-09-29 Mazda Motor Corp 移動体位置検出装置
CN102607399A (zh) * 2012-03-14 2012-07-25 安徽省电力公司巢湖供电公司 一种准确判断施工机械与高压带电体距离的方法
KR102263185B1 (ko) * 2013-11-05 2021-06-10 현대모비스 주식회사 차량의 위치 결정 방법
CN205563966U (zh) * 2016-04-26 2016-09-07 山东智洋电气股份有限公司 输电线路防外破探测报警装置
CN106297106B (zh) * 2016-10-18 2018-02-23 国网山东省电力公司烟台供电公司 基于gps+gprs的输电线路防外破管理系统及方法
CN207764945U (zh) * 2018-02-24 2018-08-24 国网新疆电力有限公司阿克苏供电公司 一种用于保护电力设施的防外力破坏报警装置
CN110455300B (zh) * 2019-09-03 2021-02-19 广州小鹏汽车科技有限公司 导航方法、导航显示方法、装置、车辆及机器可读介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154860A (zh) * 2014-08-05 2014-11-19 合肥工业大学 一种用于激光测距多边法定位的多面体合作目标及其距离获取方法
CN104360351A (zh) * 2014-12-04 2015-02-18 中国科学院南京地理与湖泊研究所 一种基于遥感数据的农业区地表温度高精度反演方法
CN106792866A (zh) * 2016-11-24 2017-05-31 西安电子科技大学 基于分段线性eh模型的wpc系统功率和时间的分配方法
CN109728878A (zh) * 2019-01-07 2019-05-07 重庆邮电大学 Lte通信系统中基于信道估计与分段线性回归的天线端口数快速检测方法

Also Published As

Publication number Publication date
CN112509297A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
CN112509297B (zh) 一种输电线路防外破的智能监控方法及装置
KR101803891B1 (ko) 셀영역별 교통인수와 객체추적 모듈로 이루어진 하이브리드형 셀영역 기반 교통상황 실시간 통보장치 및 방법
CN106679625A (zh) 基于北斗系统的广域范围电力铁塔高精度形变监测方法
CN109443360B (zh) 一种基于多边形的车辆行驶轨迹生成及拼接方法
CN103809537B (zh) 铁路铁塔安全监测方法、装置和系统
CN105702072A (zh) 一种基于物联网的交通运输系统
CN114170803B (zh) 路侧感知系统和交通控制方法
CN207301235U (zh) 一种接触网在线监测系统
CN111702763B (zh) 一种基于北斗系统的变电站巡检机器人重定位系统及方法
CN209729058U (zh) 一种高速公路施工区车辆信息预警和防追尾提示系统
CN110856137A (zh) 一种5g室外基站监测系统
CN116008989B (zh) 一种智慧交通用多拼接多维度全向扫描毫米波雷达
CN113777643A (zh) 一种用于输电线路防外破的故障预警方法及装置
CN111170184B (zh) 一种塔式起重机的实时监测预警系统及方法
CN109872505A (zh) 一种基于光纤微振动的高速公路护栏报警系统及方法
CN110856119A (zh) 一种基于几何向量的港口车辆轨迹纠偏方法
CN106803348A (zh) 一种基于卡口的高架道路车辆行程时间短时预测方法
CN113971885B (zh) 车速预测的方法、装置及系统
CN113487915A (zh) 一种基于无人机飞行服务监管系统及方法
CN117014473A (zh) 一种基于端云融合技术的智能网联汽车监控系统
CN105006153A (zh) 基于无线传感器技术的停车场车流量管理系统
CN209264025U (zh) 一种输电线路杆塔监测装置和系统
CN109509360A (zh) 应用高速公路道路环境智能交通引流系统引流的方法
CN213092137U (zh) 一种海绵城市大数据监控系统
CN214149424U (zh) 一种无线无源安全监测装置和系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant