CN112506250A - 氢能汽车燃料电池热管理温度控制系统及氢能汽车 - Google Patents

氢能汽车燃料电池热管理温度控制系统及氢能汽车 Download PDF

Info

Publication number
CN112506250A
CN112506250A CN202011491867.3A CN202011491867A CN112506250A CN 112506250 A CN112506250 A CN 112506250A CN 202011491867 A CN202011491867 A CN 202011491867A CN 112506250 A CN112506250 A CN 112506250A
Authority
CN
China
Prior art keywords
fuel cell
electronic
thermal management
road information
front road
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011491867.3A
Other languages
English (en)
Inventor
杨毅明
郝义国
陈帅
田杰安
汪江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Grove Hydrogen Automobile Co Ltd
Wuhan Grove Hydrogen Energy Automobile Co Ltd
Original Assignee
Wuhan Grove Hydrogen Energy Automobile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Grove Hydrogen Energy Automobile Co Ltd filed Critical Wuhan Grove Hydrogen Energy Automobile Co Ltd
Priority to CN202011491867.3A priority Critical patent/CN112506250A/zh
Publication of CN112506250A publication Critical patent/CN112506250A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1931Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of one space

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明提供一种氢能汽车燃料电池热管理温度控制系统及氢能汽车,前方道路信息获取模块用于获取前方道路信息;燃料电池系统控制器依据车辆性能参数,根据整车热管理控制原理建立热管理控制模型,燃料电池系统控制器与前方道路信息获取模块通讯连接,接收前方道路信息;电子水泵、电子节温器和电子风扇与燃料电池系统控制器电性连接,燃料电池系统控制器根据前方道路信息,依据热管理控制模型,计算出各部件的工作参数,燃料电池系统控制器根据各工作参数对电子水泵、电子节温器和电子风扇进行控制。本发明提出的技术方案的有益效果是:实现对燃料电池热管理温度的主动控制,使得燃料电池系统内水温波动更小,保证燃料电池效率。

Description

氢能汽车燃料电池热管理温度控制系统及氢能汽车
技术领域
本发明涉及氢能汽车技术领域,尤其涉及一种氢能汽车燃料电池热管理温度控制系统及氢能汽车。
背景技术
随着燃料电池技术的逐步成熟,燃料电池技术在汽车上的运用逐渐增多。但由于燃料电池本身特性原因,相对于传统汽车有更多的限制。其中,燃料电池对温度特别敏感。随着水温由低到高,燃料电池效率会逐步提升,但水温超过某一限制(一般80℃),又会影响催化剂,影响反应效率。因此,一般燃料电池工作温度范围要求70~80℃,相对于传统燃油车,温度范围更窄。
目前的传统发动机和燃料电池热管理控制,均是由功率变化,引起水温变化,从而调整水泵、节温器、风扇转速等冷却系统零部件的工作状态,保证水温在小范围波动,从而保证水温工作在合理的范围内,这属于一种被动调节。
虽然,随着水泵、节温器、风扇等零件的电器化发展,相对于传统车热管理系统零部件的机械传动控制,燃料电池使用的电器化零部件在反应速度和控制精度上已经有了很大提高,但被动调节造成的温度波动依然无法避免。温度波动不仅是一种能量浪费,加上燃料电池对温度的敏感性,燃料电池热管理的主动调节策略就显得至关重要。
发明内容
有鉴于此,为解决上述问题,本发明的实施例提供了一种氢能汽车燃料电池热管理温度控制系统及氢能汽车。
本发明的实施例提供一种氢能汽车燃料电池热管理温度控制系统,包括:
前方道路信息获取模块,用于获取前方道路信息;
燃料电池系统控制器,依据车辆性能参数,根据整车热管理控制原理建立热管理控制模型,所述燃料电池系统控制器与所述前方道路信息获取模块通讯连接,接收所述前方道路信息;
电子水泵、电子节温器和电子风扇,与所述燃料电池系统控制器电性连接,所述燃料电池系统控制器根据所述前方道路信息,依据所述热管理控制模型,计算出电子水泵、电子节温器、电子风扇的工作参数,所述燃料电池系统控制器根据各所述工作参数对所述电子水泵、电子节温器和电子风扇进行控制。
进一步地,所述车辆性能参数包括整车重量、风阻系数、滚阻系数、轮胎直径、电子水泵性能、电子风扇性能、电子节温器性能的一种或多种。
进一步地,所述整车热管理控制原理包括整车控制原理、热管理原理、热力学、传热学的一种或多种。
进一步地,所述前方道路信息包括道路通畅度、红绿灯数据、前方道路坡度及距离的一种或多种
本发明的实施例还提供一种氢能汽车,包括如上所述的氢能汽车燃料电池热管理温度控制系统。
本发明的实施例提供的技术方案带来的有益效果是:依据车辆性能参数,根据整车热管理控制原理建立热管理控制模型后,通过获取车辆前方道路信息,将前方道路信息作为输入值,以热管理控制模型作为运算模型,可计算出电子水泵、电子节温器和电子风扇所需的输出功率,燃料电池系统控制器根据所需的输出功率,对电子水泵、电子节温器和电子风扇进行控制,可免除传统的先调节水温,再通过水温调整电子水泵、电子节温器和电子风扇等冷却系统零部件的工作状态,进行主动控制,从而实现对燃料电池热管理温度的主动控制,使得燃料电池系统内水温波动更小,保证燃料电池效率,同时电子水泵、电子节温器和电子风扇等零件可更加精准的介入工作,达到节能的目的。
附图说明
图1是本发明提供的氢能汽车燃料电池热管理温度控制系统一实施例的结构示意图。
图中:前方道路信息获取模块1、燃料电池系统控制器2、电子水泵3、电子节温器4、电子风扇5。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。
本发明的实施例提供一种氢能汽车燃料电池热管理温度控制系统和氢能汽车,创新点在于氢能汽车燃料电池热管理温度控制系统,因此对氢能汽车燃料电池热管理温度控制系统进行具体说明。
请参见图1,本发明的实施例提供一种氢能汽车燃料电池热管理温度控制系统,包括前方道路信息获取模块1、燃料电池系统控制器2、电子水泵3、电子节温器4和电子风扇5。
前方道路信息获取模块1用于获取前方道路信息,前方道路信息获取模块1包括GPS导航定位模块、ADAS模块、图像采集模块等,获取的前方道路信息包括道路通畅度、红绿灯数据、前方道路坡度及距离等。燃料电池系统控制器2依据车辆性能参数,根据整车热管理控制原理建立热管理控制模型。所述车辆性能参数包括整车重量、风阻系数、滚阻系数、轮胎直径、电子水泵3性能、电子风扇5性能、电子节温器4性能等。所述整车热管理控制原理包括整车控制原理、热管理原理、热力学、传热学等。所述燃料电池系统控制器2与所述前方道路信息获取模块1通讯连接,接收所述前方道路信息。电子水泵3、电子节温器4和电子风扇5与所述燃料电池系统控制器2电性连接,所述燃料电池系统控制器2根据所述前方道路信息,依据所述热管理控制模型,计算出电子水泵3、电子节温器4、电子风扇5的工作参数,所述燃料电池系统控制器2根据各所述工作参数对所述电子水泵3、电子节温器4和电子风扇5进行控制。
依据车辆性能参数,根据整车热管理控制原理建立热管理控制模型后,通过获取车辆前方道路信息,将前方道路信息作为输入值,以热管理控制模型作为运算模型,可计算出电子水泵3、电子节温器4和电子风扇5所需的输出功率,燃料电池系统控制器2根据所需的输出功率,对电子水泵3、电子节温器4和电子风扇5进行控制,可免除传统的先调节水温,再通过水温调整电子水泵3、电子节温器4和电子风扇5等冷却系统零部件的工作状态,进行主动控制,从而实现对燃料电池热管理温度的主动控制,使得燃料电池系统内水温波动更小,保证燃料电池效率,同时电子水泵3、电子节温器4和电子风扇5等零件可更加精准的介入工作,达到节能的目的。
具体的,当前方道路为长距离的上坡时,燃料电池系统控制器2获取前方高速长距离的上坡信息,根据热管理控制模型,计算燃料电池的输出功率需要增加△W,为避免水温升高和保证电堆进出口的温差较小,电子水泵3转速需达到Vpump,电子节温器4需转到角度θ,电子风扇5的转速需提高到V,根据上述各工作参数,燃料电池系统控制器2对电子水泵3、电子节温器4和电子风扇5进行控制,从而主动达到该功率下的热平衡状态,避免由水温升高后被动达到,保证水温稳定性。
当车辆处于大功率行驶状态,前方道路为长距离的下坡时,电子风扇5和电子水泵3都以很高的转速在运行,电子节温器4的角度也完全打开,此时燃料电池系统内的水温也相对很高。当车辆在大功率行驶后,燃料电池系统控制器2获取到前方长距离的下坡信息时,根据热管理控制模型,计算燃料电池的输出功率需要减小△W,电子水泵3转速需降低到Vpump,电子节温器4需转到角度θ,电子风扇5转速需降低到V。即使当前水温较高,也可以提前降低电子水泵3转速,降低电子风扇5转速或使电子风扇5停止运转,可以主动达到该功率下的热平衡状态,利用长下坡引起的风速,可以对电子风扇提供冷却效果,利用外部条件辅助散热,实现节能。而常规的被动控制,当水温未下降到需求值时,电子水泵3和电子风扇5的转速不会提前降低。
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种氢能汽车燃料电池热管理温度控制系统,其特征在于,包括:
前方道路信息获取模块,用于获取前方道路信息;
燃料电池系统控制器,依据车辆性能参数,根据整车热管理控制原理建立热管理控制模型,所述燃料电池系统控制器与所述前方道路信息获取模块通讯连接,接收所述前方道路信息;
电子水泵、电子节温器和电子风扇,与所述燃料电池系统控制器电性连接,所述燃料电池系统控制器根据所述前方道路信息,依据所述热管理控制模型,计算出电子水泵、电子节温器、电子风扇的工作参数,所述燃料电池系统控制器根据各所述工作参数对所述电子水泵、电子节温器和电子风扇进行控制。
2.如权利要求1所述的氢能汽车燃料电池热管理温度控制系统,其特征在于,所述车辆性能参数包括整车重量、风阻系数、滚阻系数、轮胎直径、电子水泵性能、电子风扇性能、电子节温器性能的一种或多种。
3.如权利要求1所述的氢能汽车燃料电池热管理温度控制系统,其特征在于,所述整车热管理控制原理包括整车控制原理、热管理原理、热力学、传热学的一种或多种。
4.如权利要求1所述的氢能汽车燃料电池热管理温度控制系统,其特征在于,所述前方道路信息包括道路通畅度、红绿灯数据、前方道路坡度及距离的一种或多种。
5.一种氢能汽车,其特征在于,包括如权利要求1至4任一项所述的氢能汽车燃料电池热管理温度控制系统。
CN202011491867.3A 2020-12-17 2020-12-17 氢能汽车燃料电池热管理温度控制系统及氢能汽车 Pending CN112506250A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011491867.3A CN112506250A (zh) 2020-12-17 2020-12-17 氢能汽车燃料电池热管理温度控制系统及氢能汽车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011491867.3A CN112506250A (zh) 2020-12-17 2020-12-17 氢能汽车燃料电池热管理温度控制系统及氢能汽车

Publications (1)

Publication Number Publication Date
CN112506250A true CN112506250A (zh) 2021-03-16

Family

ID=74921651

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011491867.3A Pending CN112506250A (zh) 2020-12-17 2020-12-17 氢能汽车燃料电池热管理温度控制系统及氢能汽车

Country Status (1)

Country Link
CN (1) CN112506250A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103758622A (zh) * 2014-01-07 2014-04-30 潍柴动力股份有限公司 一种发动机冷却风扇的控制方法和控制系统
CN108944900A (zh) * 2018-08-28 2018-12-07 安徽江淮汽车集团股份有限公司 燃料电池汽车能量管理控制方法
CN109808518A (zh) * 2018-12-29 2019-05-28 清华大学 基于地理位置信息的燃料电池汽车能量管理方法与系统
CN109960255A (zh) * 2017-12-26 2019-07-02 郑州宇通客车股份有限公司 一种最优目标车速预测、燃料电池系统的控制方法及装置
CN111439167A (zh) * 2020-03-20 2020-07-24 清华大学 燃料电池汽车多环境综合热管理方法
CN111634212A (zh) * 2020-05-14 2020-09-08 东风汽车集团有限公司 一种燃料电池汽车热管理系统、方法、存储介质及汽车
CN112060979A (zh) * 2020-08-21 2020-12-11 东风汽车集团有限公司 一种燃料电池车辆的冷却控制方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103758622A (zh) * 2014-01-07 2014-04-30 潍柴动力股份有限公司 一种发动机冷却风扇的控制方法和控制系统
CN109960255A (zh) * 2017-12-26 2019-07-02 郑州宇通客车股份有限公司 一种最优目标车速预测、燃料电池系统的控制方法及装置
CN108944900A (zh) * 2018-08-28 2018-12-07 安徽江淮汽车集团股份有限公司 燃料电池汽车能量管理控制方法
CN109808518A (zh) * 2018-12-29 2019-05-28 清华大学 基于地理位置信息的燃料电池汽车能量管理方法与系统
CN111439167A (zh) * 2020-03-20 2020-07-24 清华大学 燃料电池汽车多环境综合热管理方法
CN111634212A (zh) * 2020-05-14 2020-09-08 东风汽车集团有限公司 一种燃料电池汽车热管理系统、方法、存储介质及汽车
CN112060979A (zh) * 2020-08-21 2020-12-11 东风汽车集团有限公司 一种燃料电池车辆的冷却控制方法及装置

Similar Documents

Publication Publication Date Title
CN108428916B (zh) 燃料电池温度控制方法和装置
Xing et al. Modeling and thermal management of proton exchange membrane fuel cell for fuel cell/battery hybrid automotive vehicle
US8970147B2 (en) Traction motor controller with dissipation mode
CN110661059B (zh) 车辆电池热管理方法、装置和系统
JP2007053051A (ja) 燃料電池車両の制御装置
JP2018137900A (ja) 燃料電池車両およびその制御方法
CN102522796B (zh) 一种动力电池系统功率稳定给定方法
US11117491B2 (en) Electric vehicle control device
FR2954405A1 (fr) Dispositif de refroidissement pour vehicule automobile
CN112224035B (zh) 一种纯电动汽车的驱动转矩优化控制方法
CN108167068A (zh) 一种涡轮增压器电子执行器标定方法及系统
CN102795115B (zh) 一种增程式电动汽车发电控制方法
CN102664582B (zh) 一种增程式电动汽车发电控制方法
CN109263485A (zh) 一种智能发电机的控制方法及系统
CN107288735A (zh) 一种建立汽车电子风扇转速控制函数的方法
CN112506250A (zh) 氢能汽车燃料电池热管理温度控制系统及氢能汽车
CN114580801A (zh) 车辆热管理控制方法、车辆热管理系统
CN109687810B (zh) 一种纯电动物流车防止电机超速的转速控制方法
KR101583832B1 (ko) 연료전지 차량의 냉각시스템 제어 방법
CN108501955A (zh) 一种増程器最大效率点寻优方法
CN113300021B (zh) 一种多温度测点的电动汽车液冷管路控制系统及控制方法
CN110896149A (zh) 燃料电池系统
CN116653709B (zh) 一种多能量源的燃料电池系统能量管理的方法和系统
CN110159410B (zh) 汽车发动机热管理控制系统
CN220248243U (zh) 2kw增程器发动机启动发电控制器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210316

RJ01 Rejection of invention patent application after publication